首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phylogenetic relationships of chemoautotrophic endosymbionts in the gutless marine oligochaete Inanidrilus leukodermatus to chemoautotrophic ecto- and endosymbionts from other host phyla and to free-living bacteria were determined by comparative 16S rRNA sequence analysis. Fluorescent in situ hybridization confirmed that the 16S rRNA sequence obtained from these worms originated from the symbionts. The symbiont sequence is unique to I. leukodermatus. In phylogenetic trees inferred by both distance and parsimony methods, the oligochaete symbiont is peripherally associated with one of two clusters of chemoautotrophic symbionts that belong to the gamma subdivision of the Proteobacteria. The endosymbionts of this oligochaete form a monophyletic group with chemoautotrophic ectosymbionts of a marine nematode. The oligochaete and nematode symbionts are very closely related, although their hosts belong to separate, unrelated animal phyla. Thus, cospeciation between the nematode and oligochaete hosts and their symbionts could not have occurred. Instead, the similar geographic locations and habitats of the hosts may have influenced the establishment of these symbioses.  相似文献   

2.
Endosymbiosis is a mutualistic, parasitic or commensal symbiosis in which one symbiont is living within the body of another organism. Such symbiotic relationship with free-living amoebae and arthropods has been reported with a large biodiversity of microorganisms, encompassing various bacterial clades and to a lesser extent some fungi and viruses. By contrast, current knowledge on symbionts of nematodes is still mainly restricted to Wolbachia and its interaction with filarial worms that lead to increased pathogenicity of the infected nematode. In this review article, we aim to highlight the main characteristics of symbionts in term of their ecology, host cell interactions, parasitism and co-evolution, in order to stimulate future research in a field that remains largely unexplored despite the availability of modern tools.  相似文献   

3.
Marine nematode worms without a mouth or functional gut are found worldwide in intertidal sandflats, deep-sea muds and methane-rich pock marks, and morphological studies show that they are associated with endosymbiotic bacteria. While it has been hypothesized that the symbionts are chemoautotrophic sulfur oxidizers, to date nothing is known about the phylogeny or function of endosymbionts from marine nematodes. In this study, we characterized the association between bacterial endosymbionts and the marine nematode Astomonema sp. from coral reef sediments in the Bahamas. Phylogenetic analysis of the host based on its 18S rRNA gene showed that Astomonema sp. is most closely related to non-symbiotic nematodes of the families Linhomoeidae and Axonolaimidae and is not closely related to marine stilbonematinid nematodes with ectosymbiotic sulfur-oxidizing bacteria. In contrast, phylogenetic analyses of the symbionts of Astomonema sp. using comparative 16S rRNA gene sequence analysis revealed that these are closely related to the stilbonematinid ectosymbionts (95-96% sequence similarity) as well as to the sulfur-oxidizing endosymbionts from gutless marine oligochaetes. The closest free-living relatives of these gammaproteobacterial symbionts are sulfur-oxidizing bacteria from the family Chromatiaceae. Transmission electron microscopy and fluorescence in situ hybridization showed that the bacterial symbionts completely fill the gut lumen of Astomonema sp., suggesting that these are their main source of nutrition. The close phylogenetic relationship of the Astomonema sp. symbionts to known sulfur-oxidizing bacteria as well as the presence of the aprA gene, typically found in sulfur-oxidizing bacteria, indicates that the Astomonema sp. symbionts use reduced sulfur compounds as an energy source to provide their hosts with nutrition.  相似文献   

4.
Wolbachia are well known as bacterial symbionts of arthropods, where they are reproductive parasites, but have also been described from nematode hosts, where the symbiotic interaction has features of mutualism. The majority of arthropod Wolbachia belong to clades A and B, while nematode Wolbachia mostly belong to clades C and D, but these relationships have been based on analysis of a small number of genes. To investigate the evolution and relationships of Wolbachia symbionts we have sequenced over 70 kb of the genome of wOvo, a Wolbachia from the human-parasitic nematode Onchocerca volvulus, and compared the genes identified to orthologues in other sequenced Wolbachia genomes. In comparisons of conserved local synteny, we find that wBm, from the nematode Brugia malayi, and wMel, from Drosophila melanogaster, are more similar to each other than either is to wOvo. Phylogenetic analysis of the protein-coding and ribosomal RNA genes on the sequenced fragments supports reciprocal monophyly of nematode and arthropod Wolbachia. The nematode Wolbachia did not arise from within the A clade of arthropod Wolbachia, and the root of the Wolbachia clade lies between the nematode and arthropod symbionts. Using the wOvo sequence, we identified a lateral transfer event whereby segments of the Wolbachia genome were inserted into the Onchocerca nuclear genome. This event predated the separation of the human parasite O. volvulus from its cattle-parasitic sister species, O. ochengi. The long association between filarial nematodes and Wolbachia symbionts may permit more frequent genetic exchange between their genomes.  相似文献   

5.
The classical view of nematode parasites depicts their surface as the epicuticle, the outermost layer of a thick extracellular cuticle. However, many stages and species of nematode have been found to bear an electron-dense cuter envelope distinct from and distal to the epicuticle itself. In this review, Mark Blaxter and colleagues summarize some wide-ranging studies in both free-living and parasitic nematodes, and suggest that, in many cases, it is the surface coat rather than the cuticle that displays dynamic properties thought to be involved in immune evasion by parasites.  相似文献   

6.
Photorhabdus luminescens细菌与昆虫病原异小杆属Heterorhabditis线虫专性共生。初生型共生细菌产生两种胞内晶体蛋白CipA and CipB,为共生线虫提供营养。为探索Cip蛋白是否对自由生活的全齿复活线虫Panagrellus redivivus具有类似的营养功能,建立了Cip蛋白的重组酿酒酵母表达体系,并用于饲喂无菌的P. redivivus线虫J1幼虫。重组酿酒酵母表达的Cip蛋白能为线虫所利用,表现为营养支持作用,体现为线虫生长发育速度的加快以及繁殖能力的提高,说明Cip蛋白能为此种自由生活线虫提供营养来源。  相似文献   

7.
Acidovorax-like symbionts in the nephridia of earthworms   总被引:1,自引:0,他引:1  
Dense accumulations of bacteria in the excretory organs, nephridia, were first described more than 75 years ago in members of the annelid family Lumbricidae (earthworms). These nephridial symbionts were assumed to play a role in the degradation of proteins in the excretory fluid for nitrogen recycling. In the present study, the phylogenetic affiliation of the nephridial bacteria of the earthworms Lumbricus terrestris, Aporrectodea tuberculata, Octolasion lacteum and Eisenia foetida was resolved. The 16S rRNA gene sequences of the symbionts formed a monophyletic cluster within the genus Acidovorax. Similarity between symbiont sequences from different host species was 95.5-97.6%, whereas similarity was> 99% between symbiont sequences from individuals of the same species. Densely packed bacteria were detected in the ampulla of the nephridia by fluorescence in situ hybridization (FISH) using Acidovorax-specific oligonucleotide probes. No other bacterial cells could be found by FISH, although a few sequences other than Acidovorax had been found by PCR and cloning. These results suggest that the Acidovorax-earthworm symbiosis is a stable, host-specific association that has evolved from a common bacterial ancestor. Given the close phylogenetic relationship of the symbionts to proteolytic, free-living Acidovorax species, they may indeed play a role in protein degradation during nitrogen excretion by earthworms.  相似文献   

8.
Germline transformation of a parasitic nematode of mammals has proven to be an elusive goal. We report here the heritable germline transformation of Parastrongyloides trichosuri, a nematode parasite whose natural hosts are Australian possums of the genus Trichosurus. This parasite can undergo multiple free-living life cycles and these replicative cycles can be maintained indefinitely in the laboratory. Transformation was achieved by microinjection of DNA into the ovary syncytium of either free-living or parasitic adult females. By selecting for the transgenic progeny of successive free-living life cycles, it was possible to establish and maintain transgenic lines. All three transgenic lines tested were shown capable of establishing patent infections in possums and to transmit the functional transgene to their progeny. The transgene, driven by the Pt hsp-1 promoter, was constitutively expressed in intestinal cells at all stages of both parasitic and free-living life cycles, although gene silencing appears to occur in some transgenic progeny. This is the first report of heritable transgenesis in a parasitic nematode of a mammal and we discuss a variety of previously inaccessible experimental avenues that will now be possible with this powerful model system.  相似文献   

9.
The flagellate Caduceia versatilis in the gut of the termite Cryptotermes cavifrons reportedly propels itself not by its own flagella but solely by the flagella of ectosymbiotic bacteria. Previous microscopic observations have revealed that the motility symbionts are flagellated rods partially embedded in the host cell surface and that, together with a fusiform type of ectosymbiotic bacteria without flagella, they cover almost the entire surface. To identify these ectosymbionts, we conducted 16S rRNA clone analyses of bacteria physically associated with the Caduceia cells. Two phylotypes were found to predominate in the clone library and were phylogenetically affiliated with the "Synergistes" phylum and the order Bacteroidales in the Bacteroidetes phylum. Probes specifically targeting 16S rRNAs of the respective phylotypes were designed, and fluorescence in situ hybridization (FISH) was performed. As a result, the "Synergistes" phylotype was identified as the motility symbiont; the Bacteroidales phylotype was the fusiform ectobiont. The "Synergistes" phylotype was a member of a cluster comprising exclusively uncultured clones from the guts of various termite species. Interestingly, four other phylotypes in this cluster, including the one sharing 95% sequence identity with the motility symbiont, were identified as nonectosymbiotic, or free-living, gut bacteria by FISH. We thus suggest that the motility ectosymbiont has evolved from a free-living gut bacterium within this termite-specific cluster. Based on these molecular and previous morphological data, we here propose a novel genus and species, "Candidatus Tammella caduceiae," for this unique motility ectosymbiont of Caducaia versatilis.  相似文献   

10.
The discovery of bacterium-bivalve symbioses capable of utilizing methane as a carbon and energy source indicates that the endosymbionts of hydrothermal vent and cold seep bivalves are not restricted to sulfur-oxidizing chemoautotrophic bacteria but also include methanotrophic bacteria. The phylogenetic origin of methanotrophic endosymbionts and their relationship to known symbiotic and free-living bacteria, however, have remained unexplored. In situ localization and phylogenetic analysis of a symbiont 16S rRNA gene cloned from the gills of a recently described deep-sea mussel species demonstrate that this symbiont represents a new taxon which is closely related to free-living, cultivable Type I methanotrophic bacteria. This symbiont is distinct from known chemoautotrophic symbionts. Thus, despite compelling similarities between the symbioses, chemoautotrophic and methanotrophic symbionts of marine bivalves have independent phylogenetic origins.  相似文献   

11.
Photosymbiosis is widespread and ecologically important in the oceanic plankton but remains poorly studied. Here, we used multimodal subcellular imaging to investigate the photosymbiosis between colonial Collodaria and their microalga dinoflagellate (Brandtodinium). We showed that this symbiosis is very dynamic whereby symbionts interact with different host cells via extracellular vesicles within the colony. 3D electron microscopy revealed that the photosynthetic apparatus of the microalgae was more voluminous in symbiosis compared to free-living while the mitochondria volume was similar. Stable isotope probing coupled with NanoSIMS showed that carbon and nitrogen were stored in the symbiotic microalga in starch granules and purine crystals respectively. Nitrogen was also allocated to the algal nucleolus. In the host, low 13C transfer was detected in the Golgi. Metal mapping revealed that intracellular iron concentration was similar in free-living and symbiotic microalgae (c. 40 ppm) and twofold higher in the host, whereas copper concentration increased in symbionts and was detected in the host cell and extracellular vesicles. Sulfur concentration was around two times higher in symbionts (chromatin and pyrenoid) than their host. This study improves our understanding on the functioning of this oceanic photosymbiosis and paves the way for more studies to further assess its biogeochemical significance.  相似文献   

12.
FMRFamide-related peptides (FaRPs) are the largest known family of invertebrate neuropeptides. Immunocytochemical screens of nematode tissues using antisera raised to these peptides have localized extensive FaRP-immunostaining to their nervous systems. Although 21 FaRPs have been isolated and sequenced from extracts of free-living and parasitic nematodes, available evidence indicates that other FaRPs await discovery. While our knowledge of the pharmacology of these native nematode neuropeptides is extremely limited, reports on their physiological activity in nematodes are ever increasing. All the nematode FaRPs examined so far have been found to have potent and varied actions on nematode neuromuscular activity. It is only through the extensive pharmacological and physiological assessment of the tissue, cell and receptor interactions of these peptidic messengers that an understanding of their activity on nematode neuromusculature will be possible. In this review, Aaron Maule and colleagues examine the current understanding of the pharmacology of nematode FaRPs.  相似文献   

13.
In marine invertebrates that acquire their symbionts from the environment, these are generally only taken up during early developmental stages. In the symbiosis between lucinid clams and their intracellular sulfur-oxidizing bacteria, it has been shown that the juveniles acquire their symbionts from an environmental stock of free-living symbiont forms, but it is not known if adult clams are still competent to take up symbiotic bacteria from the environment. In this study, we investigated symbiont acquisition in adult specimens of the lucinid clam Codakia orbiculata, using transmission electron microscopy, fluorescence in situ hybridization, immunohistochemistry and PCR. We show here that adults that had no detectable symbionts after starvation in aquaria for 6 months, rapidly reacquired symbionts within days after being returned to their natural environments in the field. Control specimens that were starved and then exposed to seawater aquaria with sulfide did not reacquire symbionts. This indicates that the reacquisition of symbionts in the starved clams returned to the field was not caused by high division rates of a small pool of remaining symbionts that we were not able to detect with the methods used here. Immunohistochemistry with an antibody against actin, a protein involved in the phagocytosis of intracellular bacteria, showed that actin was expressed at the apical ends of the gill cells that took up symbionts, providing further evidence that the symbionts were acquired from the environment. Interestingly, actin expression was also observed in symbiont-containing cells of untreated lucinids freshly collected from the environment, indicating that symbiont acquisition from the environment occurs continuously in these clams throughout their lifetime.  相似文献   

14.
The nearly neutral theory of molecular evolution predicts that the rate of nucleotide substitution should accelerate in small populations at sites under low selective constraint. We examined these predictions with respect to the relative population sizes for three bacterial life histories within chemolithoautotrophic sulfur-oxidizing bacteria: (1) free-living bacteria, (2) environmentally captured symbionts, and (3) maternally transmitted symbionts. Both relative rates of nucleotide substitution and relative ratios of loop, stem, and domain substitutions from 1,165 nt of the small-subunit 16S rDNA were consistent with expectations of the nearly neutral theory. Relative to free-living sulfur-oxidizing autotrophic bacteria, the maternally transmitted symbionts have faster substitution rates overall and also in low-constraint domains of 16S rDNA. Nucleotide substitition rates also differ between loop and stem positions. All of these findings are consistent with the predictions that these symbionts have relatively small effective population sizes. In contrast, the rates of nucleotide substitution in environmentally captured symbionts are slower, particularly in high-constraint domains, than in free-living bacteria.  相似文献   

15.
Selection of a specific microbial partner by the host is an all-important process. It guarantees the persistence of highly specific symbioses throughout host generations. The cuticle of the marine nematode Laxus oneistus is covered by a single phylotype of sulfur-oxidizing bacteria. They are embedded in a layer of host-secreted mucus containing the mannose-binding protein Mermaid. This Ca2+-dependent lectin mediates symbiont aggregation and attachment to the nematode. Here, we show that Stilbonema majum—a symbiotic nematode co-occurring with L. oneistus in shallow water sediment—is covered by bacteria phylogenetically distinct to those covering L. oneistus. Mermaid cDNA analysis revealed extensive protein sequence variability in both the nematode species. We expressed three recombinant Mermaid isoforms, which based on the structural predictions display the most different carbohydrate recognition domains (CRDs). We show that the three CRDs (DNT, DDA and GDA types) possess different affinities for L. oneistus and S. majum symbionts. In particular, the GDA type, exclusively expressed by S. majum, displays highest agglutination activity towards its symbionts and lowest towards its L. oneistus symbionts. Moreover, incubation of L. oneistus in the GDA type does not result in complete symbiont detachment, whereas incubation in the other types does. This indicates that the presence of particular Mermaid isoforms on the nematode surface has a role in the attachment of specific symbionts. This is the first report of the functional role of sequence variability in a microbe-associated molecular patterns receptor in a beneficial association.  相似文献   

16.
Gardner MP  Gems D  Viney ME 《Aging cell》2006,5(4):315-323
Aging evolves as the result of weakened selection against late-acting deleterious alleles due, for example, to extrinsic mortality. Comparative studies of aging support this evolutionary theory, but details of the genetic mechanisms by which lifespan evolves remain unclear. We have studied aging in an unusual nematode, Strongyloides ratti, to gain insight into the nature of these mechanisms, in this first detailed examination of aging in a parasitic nematode. S. ratti has distinct parasitic and free-living adults, living in the rat small intestine and the soil, respectively. We have observed reproductive and demographic aging in parasitic adults, with a maximum lifespan of 403 days. By contrast the maximum lifespan of free-living adults is only 5 days. Thus, the two adults of S. ratti have evolved strikingly different rates of aging. Parasitic nematode species are frequently longer-lived than free-living species, presumably reflecting different extrinsic mortality rates in their respective niches. Parasitic and free-living female S. ratti are morphologically different, yet genetically identical. Thus, the 80-fold difference in their lifespans, the greatest plasticity in aging yet reported, must largely reflect evolved differences in gene expression. This suggests that interspecific differences in lifespan may evolve via similar mechanisms.  相似文献   

17.
In vitro tests were carried out to verify the activity of 26 Brazilian isolates of predatory fungi of the genus Arthrobotrys on a free-living nematode (Panagrellus sp.) and on infective larvae of Cooperia punctata, a parasitic gastrointestinal nematode of cattle. The results showed that the free-living nematode Panagrellus sp. was the most preyed upon, compared to C. punctata, for all the fungal treatments. Also, variable predatory capacity was observed for different fungal isolates belonging to the same genus when applied to different nematode species.  相似文献   

18.
Bacteria containing magnetosomes (protein-bound nanoparticles of magnetite or greigite) are common to many sedimentary habitats, but have never been found before to live within another organism. Here, we show that octahedral inclusions in the extracellular symbionts of the marine bivalve Thyasira cf. gouldi contain iron, can exhibit magnetic contrast and are most likely magnetosomes. Based on 16S rRNA sequence analysis, T. cf. gouldi symbionts group with symbiotic and free-living sulfur-oxidizing, chemolithoautotrophic gammaproteobacteria, including the symbionts of other thyasirids. T. cf. gouldi symbionts occur both among the microvilli of gill epithelial cells and in sediments surrounding the bivalves, and are therefore facultative. We propose that free-living T. cf. gouldi symbionts use magnetotaxis as a means of locating the oxic–anoxic interface, an optimal microhabitat for chemolithoautotrophy. T. cf. gouldi could acquire their symbionts from near-burrow sediments (where oxic–anoxic interfaces likely develop due to the host''s bioirrigating behavior) using their superextensile feet, which could transfer symbionts to gill surfaces upon retraction into the mantle cavity. Once associated with their host, however, symbionts need not maintain structures for magnetotaxis as the host makes oxygen and reduced sulfur available via bioirrigation and sulfur-mining behaviors. Indeed, we show that within the host, symbionts lose the integrity of their magnetosome chain (and possibly their flagellum). Symbionts are eventually endocytosed and digested in host epithelial cells, and magnetosomes accumulate in host cytoplasm. Both host and symbiont behaviors appear important to symbiosis establishment in thyasirids.  相似文献   

19.
In vitro tests were carried out to assess the activity of 26 Brazilian isolates of predatory fungi of the genus Arthrobotrys on a free-living nematode (Panagrellus sp.) and on infective larvae of Haemonchus placei, a parasitic gastrointestinal nematode of cattle. The results showed that the free-living nematode Panagrellus sp. was the most preyed upon, compared to H. placei, for all the fungal treatments. Also, variable predatory capacity was observed for different fungal isolates belonging to the same genus when applied to different nematode species.  相似文献   

20.
The ciliate Paramecium bursaria living in mutualistic relationship with the unicellular green alga Chlorella is known to be easily infected by various potential symbionts/parasites such as bacteria, yeasts and other algae. Permanent symbiosis, however, seems to be restricted to Chlorella taxa. To test the specificity of this association, we designed infection experiments with two aposymbiotic P. bursaria strains and Chlorella symbionts isolated from four Paramecium strains, seven other ciliate hosts and two Hydra strains, as well as three free-living Chlorella species. Paramecium bursaria established stable symbioses with all tested Chlorella symbionts of ciliates, but never with symbiotic Chlorella of Hydra viridissima or with free-living Chlorella. Furthermore, we tested the infection specificity of P. bursaria with a 1:1:1 mixture of three compatible Chlorella strains, including the native symbiont, and then identified the strain of the newly established symbiosis by sequencing the internal transcribed spacer region 1 of the 18S rRNA gene. The results indicated that P. bursaria established symbiosis with its native symbiont. We conclude that despite clear preferences for their native Chlorella, the host-symbiont relationship in P. bursaria is flexible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号