首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Elicitation of potent and broadly neutralizing antibodies is an important goal in designing an effective human immunodeficiency virus-1 (HIV-1) vaccine. The HIV-1 gp41 inner-core trimer represents a functionally and structurally conserved target for therapeutics. Here we report the 2.0-A-resolution crystal structure of the complex between the antigen-binding fragment of D5, an HIV-1 cross-neutralizing antibody, and 5-helix, a gp41 inner-core mimetic. Both binding and neutralization depend on residues in the D5 CDR H2 loop protruding into the conserved gp41 hydrophobic pocket, as well as a large pocket in D5 surrounding core gp41 residues. Kinetic analysis of D5 mutants with perturbed D5-gp41 interactions suggests that D5 persistence at the fusion intermediate is crucial for neutralization. Thus, our data validate the gp41 N-peptide trimer fusion intermediate as a target for neutralizing antibodies and provide a template for identification of more potent and broadly neutralizing molecules.  相似文献   

2.
A series of mini-antibodies (monovalent and bivalent Fabs) targeting the conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41 has been previously constructed and reported. Crystal structures of two closely related monovalent Fabs, one (Fab 8066) broadly neutralizing across a wide panel of HIV-1 subtype B and C viruses, and the other (Fab 8062) non-neutralizing, representing the extremes of this series, were previously solved as complexes with 5-Helix, a gp41 pre-hairpin intermediate mimetic. Binding of these Fabs to covalently stabilized chimeric trimers of N-peptides of HIV-1 gp41 (named (CCIZN36)3 or 3-H) has now been investigated using X-ray crystallography, cryo-electron microscopy, and a variety of biophysical methods. Crystal structures of the complexes between 3-H and Fab 8066 and Fab 8062 were determined at 2.8 and 3.0 Å resolution, respectively. Although the structures of the complexes with the neutralizing Fab 8066 and its non-neutralizing counterpart Fab 8062 were generally similar, small differences between them could be correlated with the biological properties of these antibodies. The conformations of the corresponding CDRs of each antibody in the complexes with 3-H and 5-Helix are very similar. The adaptation to a different target upon complex formation is predominantly achieved by changes in the structure of the trimer of N-HR helices, as well as by adjustment of the orientation of the Fab molecule relative to the N-HR in the complex, via rigid-body movement. The structural data presented here indicate that binding of three Fabs 8062 with high affinity requires more significant changes in the structure of the N-HR trimer compared to binding of Fab 8066. A comparative analysis of the structures of Fabs complexed to different gp41 intermediate mimetics allows further evaluation of biological relevance for generation of neutralizing antibodies, as well as provides novel structural insights into immunogen design.  相似文献   

3.
The membrane proximal external region (MPER) of the gp41 subunit of the HIV-1 envelope glycoprotein (Env) contains determinants for broadly neutralizing antibodies and has remained an important focus of vaccine design. However, creating an immunogen that elicits broadly neutralizing antibodies to this region has proven difficult in part due to the relative inaccessibility of the MPER in the native conformation of Env. Here, we describe the antigenicity and immunogenicity of a panel of oligomeric gp41 immunogens designed to model a fusion-intermediate conformation of Env in order to enhance MPER exposure in a relevant conformation. The immunogens contain segments of the gp41 N- and C-heptad repeats to mimic a trapped intermediate, followed by the MPER, with variations that include different N-heptad lengths, insertion of extra epitopes, and varying C-termini. These well-characterized immunogens were evaluated in two different immunization protocols involving gp41 and gp140 proteins, gp41 and gp160 DNA primes, and different immunization schedules and adjuvants. We found that the immunogens designed to reduce extension of helical structure into the MPER elicited the highest MPER antibody binding titers, but these antibodies lacked neutralizing activity. The gp41 protein immunogens also elicited higher MPER titers than the gp140 protein immunogen. In prime-boost studies, the best MPER responses were seen in the groups that received DNA priming with gp41 vectors followed by gp41 protein boosts. Finally, although titers to the entire protein immunogen were similar in the two immunization protocols, MPER-specific titers differed, suggesting that the immunization route, schedule, dose, or adjuvant may differentially influence MPER immunogenicity. These findings inform the design of future MPER immunogens and immunization protocols.  相似文献   

4.
The conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41 is transiently exposed during the fusion process by forming a pre-hairpin intermediate, thus representing an attractive target for the design of fusion inhibitors and neutralizing antibodies. In previous studies we reported a series of broadly neutralizing mini-antibodies derived from a synthetic naïve human combinatorial antibody library by panning against a mimetic of the trimeric N-HR coiled coil, followed by affinity maturation using targeted diversification of the CDR-H2 loop. Here we report crystal structures of the N-HR mimetic 5-Helix with two Fabs that represent the extremes of this series: Fab 8066 is broadly neutralizing across a wide panel of B and C type HIV-1 viruses, whereas Fab 8062 is non-neutralizing. The crystal structures reveal important differences in the conformations of the CDR-H2 loops in the complexes that propagate into other regions of the antigen-antibody interface, and suggest that both neutralization properties and affinity for the target can be attributed, at least in part, to the differences in the interactions of the CDR-H2 loops with the antigen. Furthermore, modeling of the complex of an N-HR trimer with three Fabs suggests that the CDR-H2 loop may be involved in close intermolecular contacts between neighboring antibody molecules, and that such contacts may hinder the formation of complexes between the N-HR trimer and more than one antibody molecule depending on the conformation of the bound CDR-H2 loop which is defined by its interactions with antigen. Comparison with the crystal structure of the complex of 5-Helix with another neutralizing monoclonal antibody known as D5, derived using an entirely different antibody library and panning procedure, reveals remarkable convergence in the optimal sequence and conformation of the CDR-H2 loop.  相似文献   

5.
Mader A  Kunert R 《PloS one》2012,7(6):e39063
The HIV-1 envelope protein harbors several conserved epitopes that are recognized by broadly neutralizing antibodies. One of these neutralizing sites, the MPER region of gp41, is targeted by one of the most potent and broadly neutralizing monoclonal antibody, 2F5. Different vaccination strategies and a lot of efforts have been undertaken to induce MPER neutralizing antibodies but little success has been achieved so far. We tried to consider the alternative anti-idiotypic vaccination approach for induction of 2F5-like antibodies. The previously developed and characterized anti-idiotypic antibody Ab2/3H6 was expressed as antibody fragment fusion protein with C-terminally attached immune-modulators and used for immunization of rabbits to induce antibodies specific for HIV-1. Only those rabbits immunized with immunogens fused with the immune-modulators developed HIV-1 specific antibodies. Anti-anti-idiotypic antibodies were affinity purified using a two-step affinity purification protocol which revealed that only little amount of the total rabbit IgG fraction contained HIV-1 specific antibodies. The characterization of the induced anti-anti-idiotypic antibodies showed specificity for the linear epitope of 2F5 GGGELDKWASL and the HIV-1 envelope protein gp140. Despite specificity for the linear epitope and the truncated HIV-1 envelope protein these antibodies were not able to exhibit virus neutralization activities. These results suggest that Ab2/3H6 alone might not be suitable as a vaccine.  相似文献   

6.
Sadler K  Zhang Y  Xu J  Yu Q  Tam JP 《Biopolymers》2008,90(3):320-329
During viral entry, the fusogenic state of human immunodeficiency virus Type 1 (HIV-1) envelope protein gp41 is a quaternary structure consisting of three gp41 glycoproteins, each with two conserved helical domains (N-HR and C-HR). Thus far, the examination of monomeric gp41 peptides as an immunologically focused approach to vaccine design has not been successful. Here we report an approach using quaternary protein mimetics (called 3alpha mimetics) that are based on the gp41 N-HR and C-HR domains to closely mimic the fusogenic state and overcome the deficiencies of the monomeric peptide approach for synthetic vaccine design. The 3alpha mimetics are conveniently prepared by chemoselective ligation of unprotected monomeric peptides to an interstrand linker, and display enhanced conformational stability compared to the corresponding monomers. The 3alpha mimetics with or without a covalently attached T-helper epitope were immunogenic and elicited antisera that bound both recombinant gp160, which contains gp41, and HIV-1 virions and immunoprecipitated recombinant gp41. Anti-3alpha mimetic antisera neutralized viral infectivity against R5- and X4-tropic strains of HIV-1 at 31.5 degrees C. The results suggest that a quaternary protein approach to mimic conserved and functional domains of viral envelope proteins is desirable for HIV vaccine development as such antigens are more likely to produce immunologically-focused and broadly neutralizing antibody responses.  相似文献   

7.
Conformationally constrained HIV-1 Env and gp120 immunogens induce broadly cross-reactive neutralizing antibodies. Thus, it is now feasible to rationally design an HIV-1 vaccine that affords protection through humoral mechanisms. This paper reviews our progress toward the development of an oral bacterial vaccine vector that is capable of delivering an HIV-1 DNA vaccine to host lymphoid tissues and inducing broadly neutralizing antibodies to HIV-1 in the mucosal and systemic immune compartments.  相似文献   

8.
The rare, broadly neutralizing antibodies, 4E10 and 2F5, that target the HIV-1 membrane proximal external region also associate with HIV-1 membrane lipids as part of a required first-step in HIV-1 neutralization. HIV-1 virions have high concentration of cholesterol and sphingomyelin, which are able to organize into liquid-ordered domains (i.e., lipid rafts), and could influence the interaction of neutralizing antibodies with epitopes proximal to the membrane. The objective of this research is to understand how these lipid domains contribute to 2F5/4E10 membrane interactions and to antigen presentation in liposomal form of HIV-1 vaccines. To this end we have engineered biomimetic supported lipid bilayers and are able to use atomic force microscopy to visualize membrane domains, antigen clustering, and antibody–membrane interactions. Our results demonstrate that 2F5/4E10 do not interact with highly ordered gel and liquid-ordered domains and exclusively bind to a liquid-disordered lipid phase. This suggests that vaccine liposomes that contain key viral membrane components, such as high cholesterol content, may not be advantageous for 2F5/4E10 vaccine strategies. Rather, vaccine liposomes that primarily contain a liquid-disordered phase may be more likely to elicit production of lipid reactive, 2F5- and 4E10-like antibodies.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1) isolates from India mainly belong to clade C and are quite distinct from clade C isolates from Africa in terms of their phylogenetic makeup, serotype, and sensitivity to known human broadly neutralizing monoclonal antibodies. Because many of these properties are associated with the envelope proteins of HIV-1, it is of interest to study the envelope proteins of Indian clade C isolates as part of the ongoing efforts to develop a vaccine against HIV-1. To this end, we purified trimeric uncleaved gp145 of a CCR5 tropic Indian clade C HIV-1 (93IN101) from the conditioned medium of 293 cells. The purified protein was shown to be properly folded with stable structure by circular dichroism. Conformational integrity was further demonstrated by its high affinity binding to soluble CD4, CD4 binding site antibodies such as b12 and VRC01, quaternary epitope-specific antibody PG9, and CD4-induced epitope-specific antibody 17b. Sera from rabbits immunized with gp145 elicited high titer antibodies to various domains of gp120 and neutralized a broad spectrum of clade B and clade C HIV-1 isolates. Similar to other clade B and clade C envelope immunogens, most of the Tier 1 neutralizing activity could be absorbed with the V3-specific peptide. Subsequent boosting of these rabbits with a clade B HIV-1 Bal gp145 resulted in an expanded breadth of neutralization of HIV-1 isolates. The present study strongly supports the inclusion of envelopes from Indian isolates in a future mixture of HIV-1 vaccines.  相似文献   

10.
Synthetic mimetics of the CD4-binding site of HIV-1 gp120 are promising candidates for HIV-1 entry inhibition, as well as immunogen candidates for the elicitation of virus-neutralizing antibodies. On the basis of the crystal structure of gp120 in complex with CD4, we have used a recently introduced strategy for the generation of structurally diverse scaffolds to design and synthesize a scaffolded peptide, in which three fragments, making up the sequentially discontinuous binding site of gp120 for CD4, are presented in a nonlinear and discontinuous fashion through a molecular scoffold, which restrains conformational flexibility. The affinities of this molecule to CD4, as well as to the broadly neutralizing antibody mAb b12, whose epitope overlaps the CD4-binding site of gp120, were determined in competitive binding assays.  相似文献   

11.
Human immunodeficiency virus 1 (HIV-1) infection remains a public health concern globally. Although great strides in the management of HIV-1 have been achieved, current highly active antiretroviral therapy is limited by multidrug resistance, prolonged use-related effects, and inability to purge the HIV-1 latent pool. Even though novel therapeutic options with HIV-1 broadly neutralizing antibodies (bNAbs) are being explored, the scalability of bNAbs is limited by economic cost of production and obligatory requirement for parenteral administration. However, these limitations can be addressed by antibody mimetics/peptidomimetics of HIV-1 bNAbs. In this review we discuss the limitations of HIV-1 bNAbs as HIV-1 entry inhibitors and explore the potential therapeutic use of antibody mimetics/peptidomimetics of HIV-1 entry inhibitors as an alternative for HIV-1 bNAbs. We highlight the reduced cost of production, high specificity, and oral bioavailability of peptidomimetics compared to bNAbs to demonstrate their suitability as candidates for novel HIV-1 therapy and conclude with some perspectives on future research toward HIV-1 novel drug discovery.  相似文献   

12.
The Human immunodeficiency virus type 1(HIV-1) gp41 membrane proximal external region(MPER) is targeted by broadly neutralizing antibodies(e.g. 2F5, 4E10, Z13 e and m66.6), which makes this region a promising target for vaccine design. One strategy to elicit neutralizing antibodies against the MPER epitope is to design peptide immunogens mimicking neutralization structures. To probe 2F5-like neutralizing antibodies, two yeast-displayed antibody libraries from peripheral blood mononuclear cells from a HIV-1 patient were screened against the 2F5 epitope peptide SP62. Two 2F5-like antibodies were identified that specifically recognized SP62. However,these antibodies only weakly neutralized HIV-1 primary isolates. The epitopes recognized by these two 2F5-like antibodies include not only the 2F5 epitope(amino acids(aa) 662–667 in the MPER)but also several other residues(aa 652–655) locating at the N-terminus in SP62. Experimental results suggest that residues of SP62 adjacent to the 2F5 epitope influence the response of broadly neutralizing 2F5-like antibodies in vaccination. Our findings may aid the design of vaccine immunogens and development of therapeutics against HIV-1 infection.  相似文献   

13.
Induction of broadly cross-reactive neutralizing antibodies is a high priority for AIDS vaccine development but one that has proven difficult to be achieved. While most immunogens generate antibodies that neutralize a subset of T-cell-line-adapted strains of human immunodeficiency virus type 1 (HIV-1), none so far have generated a potent, broadly cross-reactive response against primary isolates of the virus. Even small increments in immunogen improvement leading to increases in neutralizing antibody titers and cross-neutralizing activity would accelerate vaccine development; however, a lack of uniformity in target strains used by different investigators to assess cross-neutralization has made the comparison of vaccine-induced antibody responses difficult. Thus, there is an urgent need to establish standard panels of HIV-1 reference strains for wide distribution. To facilitate this, full-length gp160 genes were cloned from acute and early subtype B infections and characterized for use as reference reagents to assess neutralizing antibodies against clade B HIV-1. Individual gp160 clones were screened for infectivity as Env-pseudotyped viruses in a luciferase reporter gene assay in JC53-BL (TZM-bl) cells. Functional env clones were sequenced and their neutralization phenotypes characterized by using soluble CD4, monoclonal antibodies, and serum samples from infected individuals and noninfected recipients of a recombinant gp120 vaccine. Env clones from 12 R5 primary HIV-1 isolates were selected that were not unusually sensitive or resistant to neutralization and comprised a wide spectrum of genetic, antigenic, and geographic diversity. These reference reagents will facilitate proficiency testing and other validation efforts aimed at improving assay performance across laboratories and can be used for standardized assessments of vaccine-elicited neutralizing antibodies.  相似文献   

14.
Identifying the targets of broadly neutralizing antibodies to HIV-1 and understanding how these antibodies develop remain important goals in the quest to rationally develop an HIV-1 vaccine. We previously identified a participant in the CAPRISA Acute Infection Cohort (CAP257) whose plasma neutralized 84% of heterologous viruses. In this study we showed that breadth in CAP257 was largely due to the sequential, transient appearance of three distinct broadly neutralizing antibody specificities spanning the first 4.5 years of infection. The first specificity targeted an epitope in the V2 region of gp120 that was also recognized by strain-specific antibodies 7 weeks earlier. Specificity for the autologous virus was determined largely by a rare N167 antigenic variant of V2, with viral escape to the more common D167 immunotype coinciding with the development of the first wave of broadly neutralizing antibodies. Escape from these broadly neutralizing V2 antibodies through deletion of the glycan at N160 was associated with exposure of an epitope in the CD4 binding site that became the target for a second wave of broadly neutralizing antibodies. Neutralization by these CD4 binding site antibodies was almost entirely dependent on the glycan at position N276. Early viral escape mutations in the CD4 binding site drove an increase in wave two neutralization breadth, as this second wave of heterologous neutralization matured to recognize multiple immunotypes within this site. The third wave targeted a quaternary epitope that did not overlap any of the four known sites of vulnerability on the HIV-1 envelope and remains undefined. Altogether this study showed that the human immune system is capable of generating multiple broadly neutralizing antibodies in response to a constantly evolving viral population that exposes new targets as a consequence of escape from earlier neutralizing antibodies.  相似文献   

15.
Broadly neutralizing monoclonal antibodies effective against the majority of circulating isolates of HIV-1 have been isolated from a small number of infected individuals. Definition of the conformational epitopes on the HIV spike to which these antibodies bind is of great value in defining targets for vaccine and drug design. Drawing on techniques from compressed sensing and information theory, we developed a computational methodology to predict key residues constituting the conformational epitopes on the viral spike from cross-clade neutralization activity data. Our approach does not require the availability of structural information for either the antibody or antigen. Predictions of the conformational epitopes of ten broadly neutralizing HIV-1 antibodies are shown to be in good agreement with new and existing experimental data. Our findings suggest that our approach offers a means to accelerate epitope identification for diverse pathogenic antigens.  相似文献   

16.
An effective HIV-1 vaccine probably will need to be able to induce broadly neutralizing HIV-1 antibodies (bNAbs) in order to be efficacious. The many bNAbs that have been isolated from HIV-1 infected patients illustrate that the human immune system is able to elicit this type of antibodies. The elucidation of the structure of the HIV-1 envelope glycoprotein (Env) trimer has further fueled the search for Env immunogens that induce bNAbs, but while native Env trimer mimetics are often capable of inducing strain-specific neutralizing antibodies (NAbs) against the parental virus, they have not yet induced potent bNAb responses. To improve the performance of Env trimer immunogens, researchers have studied the immune responses that Env trimers have induced in animals; they have evaluated how to best use Env trimers in various immunization regimens; and they have engineered increasingly stabilized Env trimer variants. Here, we review the different approaches that have been used to increase the stability of HIV-1 Env trimer immunogens with the aim of improving the induction of NAbs. In particular, we draw parallels between the various approaches to stabilize Env trimers and ones that have been used by nature in extremophile microorganisms in order to survive in extreme environmental conditions.  相似文献   

17.
A major challenge in human immunodeficiency virus type 1 (HIV-1) vaccine development is to elicit potent and broadly neutralizing antibodies that are effective against primary viral isolates. Previously, we showed that DNA prime-protein boost vaccination using HIV-1 gp120 antigens was more effective in eliciting neutralizing antibodies against primary HIV-1 isolates than was a recombinant gp120 protein-only vaccination approach. In the current study, we analyzed the difference in antibody specificities in rabbit sera elicited by these two immunization regimens using peptide enzyme-linked immunosorbent assay and a competitive virus capture assay. Our results indicate that a DNA prime-protein boost regimen is more effective than a protein-alone vaccination approach in inducing antibodies that target two key neutralizing domains: the V3 loop and the CD4 binding site. In particular, positive antibodies targeting several peptides that overlap with the known CD4 binding area were detected only in DNA-primed sera. Different profiles of antibody specificities provide insight into the mechanisms behind the elicitation of better neutralizing antibodies with the DNA prime-protein boost approach, and our results support the use of this approach to further optimize Env formulations for HIV vaccine development.  相似文献   

18.
Broadly neutralizing antibodies are not commonly produced in HIV-1 infected individuals nor by experimental HIV-1 vaccines. When these antibodies do occur, it is important to be able to isolate and characterize them to provide clues for vaccine design. CAP206 is a South African subtype C HIV-1-infected individual previously shown to have broadly neutralizing plasma antibodies targeting the envelope gp41 distal membrane proximal external region (MPER). We have now used a fluoresceinated peptide tetramer antigen with specific cell sorting to isolate a human neutralizing monoclonal antibody (mAb) against the HIV-1 envelope gp41 MPER. The isolated recombinant mAb, CAP206-CH12, utilized a portion of the distal MPER (HXB2 amino acid residues, 673-680) and neutralized a subset of HIV-1 pseudoviruses sensitive to CAP206 plasma antibodies. Interestingly, this mAb was polyreactive and used the same germ-line variable heavy (V(H)1-69) and variable kappa light chain (V(K)3-20) gene families as the prototype broadly neutralizing anti-MPER mAb, 4E10 (residues 672-680). These data indicate that there are multiple immunogenic targets in the C-terminus of the MPER of HIV-1 gp41 envelope and suggests that gp41 neutralizing epitopes may interact with a restricted set of naive B cells during HIV-1 infection.  相似文献   

19.
Rabies virus (RV) vaccine strain-based vectors show significant promise as potential live-attenuated vaccines against human immunodeficiency virus type 1 (HIV-1). Here we describe a new RV construct that will also likely have applications as a live-attenuated or killed-particle immunogen. We have created a RV containing a chimeric HIV-1 Env protein, which contains introduced cysteine residues that give rise to an intermolecular disulfide bridge between gp120 and the ectodomain of gp41. This covalently linked gp140 (gp140 SOS) is fused in frame to the cytoplasmic domain of RV G glycoprotein and is efficiently incorporated into the RV virion. On the HIV-1 virion, the gp120 and gp41 moieties are noncovalently associated, which leads to extensive shedding of gp120 from virions and virus-infected cells. The ability to use HIV-1 particles as purified, inactivated immunogens has been confounded by the loss of gp120 during preparation. Additionally, monomeric gp120 and uncleaved gp160 molecules have been shown to be poor antigenic representations of virion-associated gp160. Because the gp120 and gp41 portions are covalently attached in the gp140 SOS molecule, the protein is maintained on the surface of the RV virion throughout purification. Surface immunostaining and fluorescence-activated cell sorting analysis with anti-envelope antibodies show that the gp140 SOS protein is stably expressed on the surface of infected cells and maintains CD4 binding capabilities. Furthermore, Western blot and immunoprecipitation experiments with infected-cell lysates and purified virions show that a panel of neutralizing anti-envelope antibodies efficiently recognize the gp140 SOS protein. The antigenic properties of this recombinant RV particle containing covalently attached Env, as well as the ability to present Env in a membrane-bound form, suggest that this approach could be a useful component of a HIV-1 vaccine strategy.  相似文献   

20.
Human immunodeficiency virus type 1 (HIV-1) subtype C infections are on the rise in Sub-Saharan Africa and Asia. Therefore, there is a need to develop an HIV vaccine capable of eliciting broadly reactive immune responses against members of this subtype. We show here that modified HIV envelope (env) DNA vaccines derived from the South African subtype C TV1 strain are able to prime for humoral responses in rabbits and rhesus macaques. Priming rabbits with DNA plasmids encoding V2-deleted TV1 gp140 (gp140TV1DeltaV2), followed by boosting with oligomeric protein (o-gp140TV1DeltaV2) in MF59 adjuvant, elicited higher titers of env-binding and autologous neutralizing antibodies than priming with DNA vaccines encoding the full-length TV1 env (gp160) or the intact TV1 gp140. Immunization with V2-deleted subtype B SF162 env and V2-deleted TV1 env together using a multivalent vaccine approach induced high titers of oligomeric env-binding antibodies and autologous neutralizing antibodies against both the subtypes B and C vaccine strains, HIV-1 SF162 and TV1, respectively. Low-level neutralizing activity against the heterologous South African subtype C TV2 strain, as well as a small subset of viruses in a panel of 13 heterologous primary isolates, was observed in some rabbits immunized with the V2-deleted vaccines. Immunization of rhesus macaques with the V2-deleted TV1 DNA prime/protein boost also elicited high titers of env-binding antibodies and moderate titers of autologous TV1 neutralizing antibodies. The pilot-scale production of the various TV1 DNA vaccine constructs and env proteins described here should provide an initial platform upon which to improve the immunogenicity of these subtype C HIV envelope vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号