首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Earlier we reported defects in D1 receptor function in renal proximal tubules (RPTs) of aged Fischer 344 (F344) and obese Zucker rats. However, the defects in the receptor function in RPTs of obese Zucker rats do not pass onto primary cultures of RPTs from these animals. Here, we determined whether the defects in D1 receptor function in RPTs of aged F344 rats pass onto the primary cultures. RPTs from aged (24-mo) and adult (6-mo) F344 rats were grown into primary cultures. The microscopic studies showed that cells in cultures from adult and old rats were healthy as determined by the shape and size of the cells and nuclei. D1 receptor agonist SKF-38393 produced inhibition of (86)Rb (rubidium) uptake, index of Na-K-ATPase activity, in cells from adult rats, but this was reduced in old rats. Also, SKF-38393 increased the [(35)S]GTPgammaS binding, index of receptor activation, in the membranes of cells from adult rats but to a lesser extent from old rats. Furthermore, there was a downward trend in the levels of D1 receptor numbers and in the receptor proteins in old rats. Interestingly, gp(91phox) subunit of NADPH oxidase and cellular protein carbonyl levels (oxidative stress marker) were higher in cultures from old rats. These results show that RPTs from adult and old F344 rats grow into epithelial cells in cultures. Furthermore, cells in cultures from old rats are at a higher level of oxidative stress, which may be contributing to the reduced D1 receptor function in the cells from old compared with adult rats.  相似文献   

2.
A membrane-permeable SOD mimetic, 4-hydroxytetramethyl-piperidine-1-oxyl (tempol), has been used as an antioxidant to prevent hypertension. We recently found that this SOD mimetic could not prevent development of hypertension induced by inhibition of renal medullary SOD with diethyldithiocarbamic acid. The present study tested a hypothesis that increased H2O2 counteracts the effects of tempol on renal medullary blood flow (MBF) and Na+ excretion (UNaV), thereby restraining the antihypertensive effect of this SOD mimetic. By in vivo microdialysis and Amplex red H2O2 microassay, it was found that interstitial H2O2 levels in the renal cortex and medulla in anesthetized rats averaged 55.91 +/- 3.66 and 102.18 +/- 5.16 nM, respectively. Renal medullary interstitial infusion of tempol (30 micromol x min-1x kg-1) significantly increased medullary H2O2 levels by 46%, and coinfusion of catalase (10 mg x min-1x kg-1) completely abolished this increase. Functionally, removal of H2O2 by catalase enhanced the tempol-induced increase in MBF, urine flow, and UNaV by 28, 41, and 30%, respectively. Direct delivery of H2O2 by renal medullary interstitial infusion (7.5-30 nmol x min-1x kg-1) significantly decreased renal MBF, urine flow, and UNaV, and catalase reversed the effects of H2O2. We conclude that tempol produces a renal medullary vasodilator effect and results in diuresis and natriuresis. However, this SOD mimetic increases the formation of H2O2, which constricts medullary vessels and, thereby, counteracts its vasodilator actions. This counteracting effect of H2O2 may limit the use of tempol as an antihypertensive agent under exaggerated oxidative stress in the kidney.  相似文献   

3.
The objective of the present study was to examine the role of the angiotensin II type 1 receptor (AT(1)-R) in the diabetes-aggravated oxidative stress and brain injury observed in a rat model of combined diabetes and focal cerebral ischemia. Diabetes was induced by an injection of streptozotoxin (STZ; 55 mg/kg iv) at 8 wk of age. Two weeks after the induction of diabetes, some animals received continuous subcutaneous infusion of the AT(1)-R antagonist candesartan (0.5 mg.kg(-1).day(-1)) for 14 days. Focal cerebral ischemia, induced by middle cerebral artery occlusion/reperfusion (MCAO), was conducted at 4 wk after STZ injection. Male Sprague-Dawley rats (n = 189) were divided into five groups: normal control, diabetes, MCAO, diabetes + MCAO, and diabetes + MCAO + candesartan. The major observations were that 1) MCAO produced typical cerebral infarction and neurological deficits at 24 h that were accompanied by elevation of NAD(P)H oxidase gp91(phox) and p22(phox) mRNAs, and lipid hydroperoxide production in the ipsilateral hemisphere; 2) diabetes enhanced NAD(P)H oxidase gp91(phox) and p22(phox) mRNA expression, potentiated lipid peroxidation, aggravated neurological deficits, and enlarged cerebral infarction; and 3) candesartan reduced the expression of gp91(phox) and p22(phox), decreased lipid peroxidation, lessened cerebral infarction, and improved the neurological outcome. We conclude that diabetes exaggerates the oxidative stress, NAD(P)H oxidase induction, and brain injury induced by focal cerebral ischemia. The diabetes-aggravated brain injury involves AT(1)-Rs. We have shown for the first time that candesartan reduces brain injury in a combined model of diabetes and cerebral ischemia.  相似文献   

4.
Angiotensin II (ANG II) contributes to cardiac remodeling, hypertrophy, and left ventricular dysfunction. ANG II stimulation of the ANG type 1 receptor (AT(1)R) generates reactive oxygen species via NADPH oxidase, which facilitates this hypertrophy and remodeling. This investigation sought to determine whether cardiac oxidative stress and cellular remodeling could be attenuated by in vivo AT(1)R blockade (AT(1)B) (valsartan) or superoxide dismutase/catalase mimetic (tempol) treatment in a rodent model of chronically elevated tissue levels of ANG II, the transgenic (mRen2) 27 rat (Ren2). Ren2 rats overexpress the mouse renin transgene with resultant hypertension, insulin resistance, proteinuria, and cardiovascular damage. Young (6-7 wk old) male Ren2 and age-matched Sprague-Dawley rats were treated with valsartan (30 mg/kg), tempol (1 mmol/l), or placebo for 3 wk. Heart tissue NADPH oxidase (NOX) activity and immunohistochemical analysis of subunits NOX2, Rac1, and p22(phox), heart tissue malondialdehyde, and insulin-stimulated protein kinase B (Akt) activation were measured. Structural changes were assessed with cine MRI, transmission electron microscopy, and light microscopy. Increases in septal wall thickness and altered systolic function (cine MRI) were associated with perivascular fibrosis and increased mitochondria in Ren2 on light and transmission electron microscopy (P < 0.05). AT(1)B, but not tempol, reduced blood pressure (P < 0.05); significant improvements were seen with both AT(1)B and tempol on NOX activity, subunit expression, malondialdehyde, and insulin-mediated activation/phosphorylation of Akt (each P < 0.05). Collectively, these data suggest cardiac oxidative stress-induced structural and functional changes are driven, in part, by AT(1)R-mediated increases in NADPH oxidase activity.  相似文献   

5.
Inflammation and oxidative stress are believed to contribute to hypertension in obesity/diabetes. Recently, we reported a role for the AT(2) receptor in blood pressure control in obese Zucker rats. However, the role of AT(2) receptors in inflammation and oxidative stress in obesity is not known. Therefore, in the present study, we tested the effects of the AT(2) receptor agonist CGP-42112A on inflammation and oxidative stress in obese Zucker rats and compared them in their lean counterparts. Rats were systemically treated with either vehicle (control) or CGP-42112A (1 μg·kg(-1)·min(-1); osmotic pump) for 2 wk. Markers of inflammation (CRP, MCP-1, TNF-α, and IL-6) and oxidative stress (HO-1, gp-91(phox)) as well as an antioxidant (SOD) were determined. Control obese rats had higher plasma levels of CRP, MCP-1, TNF-α, IL-6, and HO-1 compared with control lean rats. Conversely, plasma SOD activity was lower in control obese than in control lean rats. Furthermore, the protein levels of TNF-α and gp-91(phox) were higher in the kidney cortex of control obese rats. Interestingly, CGP-42112A treatment in obese rats reduced the plasma and kidney cortex inflammatory (TNF-α, IL-6) and oxidative stress (gp-91(phox)) markers and increased plasma SOD activity to the levels seen in lean control rats. However, CGP-42112A treatment in lean rats increased inflammatory (TNF-α, IL-6) and oxidative stress (gp-91(phox)) markers in the plasma and kidney cortex. Our present studies suggest anti-inflammatory and antioxidative functions of AT(2) receptor in obese Zucker rats but proinflammatory and prooxidative functions in lean Zucker rats.  相似文献   

6.
7.
Oxidative stress accompanies angiotensin (ANG) II infusion, but the role of ANG type 1 vs. type 2 receptors (AT1-R and AT2-R, respectively) is unknown. We infused ANG II subcutaneously in rats for 1 wk. Excretion of 8-isoprostaglandin F2alpha (8-Iso) and malonyldialdehyde (MDA) were related to renal cortical mRNA abundance for subunits of NADPH oxidase and superoxide dismutases (SODs) using real-time PCR. Subsets of ANG II-infused rats were given the AT1-R antagonist candesartan cilexetil (Cand) or the AT2-R antagonist PD-123,319 (PD). Compared to vehicle (Veh), ANG II increased 8-Iso excretion by 41% (Veh, 5.4 +/- 0.8 vs. ANG II, 7.6 +/- 0.5 pg/24 h; P < 0.05). This was prevented by Cand (5.6 +/- 0.5 pg/24 h; P < 0.05) and increased by PD (15.8 +/- 2.0 pg/24 h; P < 0.005). There were similar changes in MDA excretion. Compared to Veh, ANG II significantly (P < 0.005) increased the renal cortical mRNA expression of p22phox (twofold), Nox-1 (2.6-fold), and Mn-SOD (1.5-fold) and decreased expression of Nox-4 (2.1-fold) and extracellular (EC)-SOD (2.1-fold). Cand prevented all of these changes except for the increase in Mn-SOD. PD accentuated changes in p22phox and Nox-1 and increased p67phox. We conclude that ANG II infusion stimulates oxidative stress via AT1-R, which increases the renal cortical mRNA expression of p22phox and Nox-1 and reduces abundance of Nox-4 and EC-SOD. This is offset by strong protective effects of AT2-R, which are accompanied by decreased expression of p22phox, Nox-1, and p67phox.  相似文献   

8.
The aim of the present study was to explore the mood effects of D1 receptor agonist, SKF-38393 and D1 receptor antagonist, SCH-23390 alone or in combination with a low dose of 17β-estradiol (17β-E2) in the adult ovariectomized female rats (OVX). OVX rats of Wistar strain were used in all experiments. Two weeks after surgery rats were chronically treated with vehicle, a low dose of 17β-E2 (5.0 μg/rat), SKF-38393 (0.1 mg/kg), SCH-23390 (0.1 mg/kg), SKF-38393 plus 17β-E2 or SCH-23390 plus 17β-E2 for 14 days before the forced swimming test. We found that SCH-23390 significantly decreased immobility time in the OVX females. A combination of SCH-23390 with a low dose of 17β-E2 induced more profound decrease of immobility time in the OVX rats compared to the rats treated with SCH-23390 alone. On the contrary, SKF-38393 failed to modify depression-like behavior in the OVX rats. In addition, SKF-38393 significantly blocked the antidepressant-like effect of 17β-E2 in OVX rats. Thus, the D1 receptor antagonist SCH-23390 alone or in combination with a low dose of 17β-E2 exerted antidepressant-like effect in OVX female rats, while the D1 receptor agonist SKF-38393 produced depressant-like profile on OVX rats.  相似文献   

9.
Hyperthyroidism in rats is associated with increased oxidative stress. These animals also show abnormal renal hemodynamics and an attenuated pressure-diuresis-natriuresis (PDN) response. We analyzed the role of oxidative stress as a mediator of these alterations by examining acute effects of tempol, a superoxide dismutase mimetic. The effects of increasing bolus doses of tempol (25-150 micromol/kg) on mean arterial pressure (MAP), renal vascular resistance (RVR), and cortical (CBF) and medullary (MBF) blood flow were studied in control and thyroxine (T4)-treated rats. In another experiment, tempol was infused at 150 micromol.kg(-1).h(-1) to analyze its effects on the glomerular filtration rate (GFR) and on PDN response in these animals. Tempol dose dependently decreased MAP and RVR and increased CBF and MBF in control and T4-treated rats, but the T4 group showed a greater responsiveness to tempol in all of these variables. The highest dose of tempol decreased RVR by 13.5 +/- 2.1 and 5.5 +/- 1.2 mmHg.ml(-1).min(-1) in hyperthyroid (P < 0.01) and control rats, respectively. GFR was not changed by tempol in controls but was significantly increased in the hyperthyroid group. Tempol did not change the absolute or fractional PDN responses of controls but significantly improved those of hyperthyroid rats, although without attaining normal values. Tempol increased the slopes of the relationship between renal perfusion pressure and natriuresis (T4+tempol: 0.17 +/- 0.05; T4: 0.09 +/- 0.03 microeq.min(-1).g(-1).mmHg(-1); P < 0.05) and reduced 8-isoprostane excretion in hyperthyroid rats. These results show that antioxidant treatment with tempol improves renal hemodynamic variables and PDN response in hyperthyroid rats, indicating the participation of an increased oxidative stress in these mechanisms.  相似文献   

10.
Water deprivation activates sympathoexcitatory neurons in the paraventricular nucleus (PVN); however, the neurotransmitters that mediate this activation are unknown. To test the hypothesis that ANG II and glutamate are involved, effects on blood pressure (BP) of bilateral PVN microinjections of ANG II type 1 receptor (AT1R) antagonists, candesartan and valsartan, or the ionotropic glutamate receptor antagonist, kynurenate, were determined in urethane-anesthetized water-deprived and water-replete male rats. Because PVN may activate sympathetic neurons via the rostral ventrolateral medulla (RVLM) and because PVN disinhibition increases sympathetic activity in part via increased drive of AT1R in the RVLM, candesartan was also bilaterally microinjected into the RVLM. Total blockade of the PVN with bilateral microinjections of muscimol, a GABA(A) agonist, decreased BP more (P < 0.05) in water-deprived (-29 +/- 8 mmHg) than in water-replete (-7 +/- 2 mmHg) rats, verifying that the PVN is required for BP maintenance during water deprivation. PVN candesartan slowly lowered BP by 7 +/- 1 mmHg (P < 0.05). In water-replete rats, however, candesartan did not alter BP (1 +/- 1 mmHg). Valsartan also produced a slowly developing decrease in arterial pressure (-6 +/- 1 mmHg; P < 0.05) in water-deprived but not in water-replete (-1 +/- 1 mmHg) rats. In water-deprived rats, PVN kynurenate rapidly decreased BP (-19 +/- 3 mmHg), and the response was greater (P < 0.05) than in water-replete rats (-4 +/- 1 mmHg). Finally, as in PVN, candesartan in RVLM slowly decreased BP in water-deprived (-8 +/- 1 mmHg; P < 0.05) but not in water-replete (-3 +/- 1 mmHg) rats. These data suggest that activation of AT(1) and glutamate receptors in PVN, as well as of AT1R in RVLM, contributes to BP maintenance during water deprivation.  相似文献   

11.
We have published that pharmacological induction of oxidative stress (OS) causes anxiety-like behavior in rats. Using animal models, we also have established that psychological stress induces OS and leads to anxiety-like behaviors. All evidence points towards the causal role of OS in anxiety-like behaviors. To fully ascertain the role of OS in anxiety-like behaviors, it is reasonable to test whether the pro-anxiety effects of anxiogenic drugs caffeine or N-methyl-beta-carboline-3-carboxamide (FG-7142) can be mitigated using agents that minimize OS. In this study, osmotic pumps were either filled with antioxidant tempol or saline. The pumps were attached to the catheter leading to the brain cannula and inserted into the subcutaneous pocket in the back pocket of the rat. Continuous i.c.v. infusion of saline or tempol in the lateral ventricle of the brain (4.3mmol/day) was maintained for 1 week. Rats were intraperitoneally injected either with saline or an anxiogenic drug one at a time. Two hours later all groups were subjected to behavioral assessments. Anxiety-like behavior tests (open-field, light-dark and elevated plus maze) suggested that tempol prevented anxiogenic drug-induced anxiety-like behavior in rats. Furthermore, anxiogenic drug-induced increase in stress examined via plasma corticosterone and increased oxidative stress levels assessed via plasma 8-isoprostane were prevented with tempol treatment. Protein carbonylation assay also suggested preventive effect of tempol in the prefrontal cortex brain region of rats. Antioxidant protein expression and pro-inflammatory cytokine levels indicate compromised antioxidant defense as well as an imbalance of inflammatory response.  相似文献   

12.
Angiotensin (ANG) II via AT1 receptors (AT1Rs) maintains sodium homeostasis by regulating renal sodium transporters including Na(+)/H(+) exchanger 3 (NHE3) in a biphasic manner. Low-ANG II concentration stimulates whereas high concentrations inhibit NHE3 activity. Oxidative stress has been shown to upregulate AT1R function that could modulate the ANG II-mediated NHE3 regulation. This study was designed to identify the signaling pathways responsible for ANG II-mediated biphasic regulation of proximal tubular NHE3 and the effect of oxidative stress on this phenomenon. Male Sprague-Dawley rats were chronically treated with a pro-oxidant L-buthionine sulfoximine (BSO) with and without an antioxidant tempol in tap water for 3 wk. BSO-treated rats exhibited oxidative stress and high blood pressure. At low concentration (1 pM) ANG II increased NHE3 activity in proximal tubules from all animals. However, in BSO-treated rats, the stimulation was more robust and was normalized by tempol treatment. ANG II (1 pM)-mediated NHE3 activation was abolished by AT1R blocker, intracellular Ca(2+) chelator, and inhibitors of phospholipase C (PLC) and Ca(2+)-dependent calmodulin (CaM) but it was insensitive to Giα and protein kinase C inhibitors or AT2R antagonist. A high concentration of ANG II (1 μM) inhibited NHE3 activity in control and tempol-treated rats. However, in BSO-treated rats, ANG II (1 μM) continued to induce NHE3 stimulation. Tempol restored the inhibitory effect of ANG II (1 μM) in BSO-treated rats. The inhibitory effect of ANG II (1 μM) involved AT1R-dependent, cGMP-dependent protein kinase (PKG) activation and was independent of AT2 receptor and nitric oxide signaling. We conclude that ANG II stimulates NHE3 via AT1R-PLC-CaM pathway and inhibits NHE3 by AT1R-PKG activation. Oxidative stress impaired ANG II-mediated NHE3 biphasic response in that stimulation was observed at both high- and low-ANG II concentration.  相似文献   

13.
We investigated the effect of N-acetyl-l-cysteine (NAC) on the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, antioxidant enzymes, and inflammatory markers in diabetic rat hearts. Metabolic parameters, free 15-F(2t)-isoprostane level, protein expression of NADPH oxidase, superoxide dismutase (SOD), heme oxygenase (HO-1), interleukin-6 (IL-6), and cyclooxygenase-2 (COX-2) were analyzed in control and streptozotocin-induced diabetic rats treated with or without NAC in drinking water for 8 wk. The cardiac protein expression of p67(phox) and p22(phox) was increased in diabetic rats, accompanied by increased NADPH-dependent superoxide production. As a compensatory response to the increased NADPH oxidase, the protein expression of Cu-Zn-SOD and HO-1 and the total SOD activity were also increased in diabetic rat hearts. Consequently, cardiac free 15-F(2t)-isoprostane, an index of oxidative stress, was increased in diabetic rats, indicating that the production of reactive oxygen species becomes excessive in diabetic rat hearts. Cardiac inflammatory markers IL-6 and COX-2 were also increased in diabetic rats. NAC treatment prevented the increased expression of p22(phox) and translocation of p67(phox) to the membrane in diabetic rat hearts. Subsequently, the levels of cardiac free 15-F(2t)-isoprostane, HO-1, Cu-Zn-SOD, total SOD, IL-6, and COX-2 in diabetic rats were decreased by NAC. Consequently, cardiac hypertrophy was attenuated in diabetic rats treated with NAC. The protective effects of NAC on diabetic rat hearts may be attributable to its protection of hearts against oxidative damage induced by the increased NADPH oxidase and to its reduction in cardiac inflammatory mediators IL-6 and COX-2.  相似文献   

14.
The aim of this study was to evaluate whether exercise training (ET) prevents or minimizes cardiac dysfunction and pathological ventricular remodeling in ovariectomized rats subjected to myocardial infarction (MI) and to examine the possible mechanisms involved in this process. Ovariectomized Wistar rats were subjected to either MI or fictitious surgery (Sham) and randomly divided into the following groups: Control, OVX+SHAMSED, OVX+SHAMET, OVX+MISED and OVX+MIET. ET was performed on a motorized treadmill (5x/wk, 60 min/day, 8 weeks). Cardiac function was assessed by ventricular catheterization and Dihydroethidium fluorescence (DHE) was evaluated to analyze cardiac oxidative stress. Histological analyses were made to assess collagen deposition, myocyte hypertrophy and infarct size. Western Blotting was performed to analyze the protein expression of catalase and SOD-2, as well as Gp91phox and AT1 receptor (AT1R). MI-trained rats had significantly increased in +dP/dt and decreased left ventricular end-diastolic pressure compared with MI-sedentary rats. Moreover, oxidative stress and collagen deposition was reduced, as was myocyte hypertrophy. These effects occurred in parallel with a reduction in both AT1R and Gp91phox expression and an increase in catalase expression. SOD-2 expression was not altered. These results indicate that ET improves the functional cardiac parameters associated with attenuation of cardiac remodeling in ovariectomized rats subjected to MI. The mechanism seems to be related to a reduction in the expression of both the AT1 receptor and Gp91phox as well as an increase in the antioxidant enzyme catalase, which contributes to a reduction in oxidative stress. Therefore, ET may be an important therapeutic target for the prevention of heart failure in postmenopausal women affected by MI.  相似文献   

15.
Studies have demonstrated that angiotensin II has been involved in immune and inflammatory responses which might contribute to the pathogenesis of immune-mediated diseases. Recent evidence suggests that oxidative stress may play a role in myocarditis. Here, we investigated whether olmesartan, an AT(1)R antagonist protects against experimental autoimmune myocarditis (EAM) by suppression of oxidative stress, endoplasmic reticulum (ER) stress and inflammatory cytokines. EAM was induced in Lewis rats by immunization with porcine cardiac myosin, were divided into two groups and treated with either olmesartan (10 mg/kg/day) or vehicle for a period of 21 days. Myocardial functional parameters measured by hemodynamic and echocardiographic analyses were significantly improved by the treatment with olmesartan compared with those of vehicle-treated rats. Treatment with olmesartan attenuated the myocardial mRNA expressions of proinflammatory cytokines, [Interleukin (IL)-1β, monocyte chemoattractant protein-1, tumor necrosis factor-α and interferon-γ)] and the protein expression of tumor necrosis factor-α compared with that of vehicle-treated rats. Myocardial protein expressions of AT(1)R, NADPH oxidase subunits (p47phox, p67phox, gp91phox) and the expression of markers of oxidative stress (3-nitrotyrosine and 4-hydroxy-2-nonenal), and the cardiac apoptosis were also significantly decreased by the treatment with olmesartan compared with those of vehicle-treated rats. Furthermore, olmesartan treatment down-regulated the myocardial expressions of glucose regulated protein-78, growth arrest and DNA damage-inducible gene, caspase-12, phospho-p38 mitogen-activated protein kinase (MAPK) and phospho-JNK. These findings suggest that olmesartan protects against EAM in rats, at least in part via suppression of oxidative stress, ER stress and inflammatory cytokines.  相似文献   

16.
The ability of selective D1 and D2 agonists of dopamine (DA) receptors SKE-38393 and Ly-171555 to induce rotational and stereotypes behaviour were studied in rats with unilateral striatal kainic acid lesion before and after procedure of REM sleep deprivation (REMSD) lasting for 5 days. It was found that REMSD SKF-38393 given along induced the ipsilateral rotation. REMSD increased the circling and decreased an oral stereotype simultaneously when SKF-38393 and Ly-171555 were given together. The depletion of brain DA in part with alpha-methyl-p-tyrosine (AMPT) in nondeprived rats fails to influence the rotational behaviour and stereotype when SKF 38393 was injected 30 min following Ly-171555. After REMSD the AMPT pretreatment prevents the rotational behaviour caused by Ly-171555 which restores SKF-38393. The results suggest that prolonged REMSD may induce nonidentical changes in the sensitivity of the postsynaptic D1 and D2 receptors.  相似文献   

17.
Preeclampsia is associated with autoimmune cells T(H)17, secreting interleukin-17, autoantibodies activating the angiotensin II type I receptor (AT1-AA), and placental oxidative stress (ROS). The objective of our study was to determine whether chronic IL-17 increases blood pressure by stimulating ROS and AT1-AAs during pregnancy. To answer this question four groups of rats were examined: normal pregnant (NP, n = 20), NP+IL-17 (n = 12), NP+tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) (n = 7) (a superoxide dismutase mimetic that scavenges ROS), and NP+IL-17+tempol (n = 11). IL-17 (150 pg/day) was infused into NP rats while tempol was administered via the drinking water ad libitum. On day 19 blood pressure (MAP) was recorded, and plasma, urine, and tissue were collected for isolation of ROS detected by chemilluminescent technique. Urinary isoprostane was measured by ELISA. AT1-AAs were determined via cardiomyocyte assay and expressed as beats per minute. MAP increased from 98 ± 3 mmHg in NP to 123 ± 3 mmHg in IL-17-infused NP rats. Urinary isoprostane increased from 1,029 ± 1 in NP to 3,526 ± 2 pg·mg(-1)·day(-1) in IL-17-infused rats (P < 0.05). Placental ROS was 436 ± 4 RLU·ml(-1)·min(-1) (n = 4) in NP and 702 ± 5 (n = 5) RLU·ml(-1)·min(-1) in IL-17-treated rats. Importantly, AT1-AA increased from 0.41 ± 0.05 beats/min in NP rats (n = 8) to 18.4 ± 1 beats/min in IL-17 rats (n = 12). Administration of tempol attenuated the hypertension (101 ± 3 mmHg) ROS (459 ± 5 RLU·ml(-1)·min(-1)) and blunted AT1-AAs (7.3 ± 0.6 beats/min) in NP+IL-17+tempol-treated rats. Additionally, AT1 receptor blockade inhibited IL-17-induced hypertension and placental oxidative stress. MAP was 105 ± 5 mmHg and ROS was 418 ± 5 RLU·ml(-1)·min(-1) in NP+IL 17-treated with losartan. These data indicate that IL-17 causes placental oxidative stress, which serves as stimulus modulating AT1-AAs that may play an important role in mediating IL-17-induced hypertension during pregnancy.  相似文献   

18.
Age-related increases in oxidative stress contribute to impaired skeletal muscle vascular control. However, recent evidence indicates that antioxidant treatment with tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) attenuates flow-mediated vasodilation in isolated arterioles from the highly oxidative soleus muscle of aged rats. Whether antioxidant treatment with tempol evokes similar responses in vivo at rest and during exercise in senescent individuals and whether this effect varies based on muscle fiber type composition are unknown. We tested the hypothesis that redox modulation via acute systemic tempol administration decreases vascular conductance (VC) primarily in oxidative hindlimb locomotor muscles at rest and during submaximal whole body exercise (treadmill running at 20 m/min, 5% grade) in aged rats. Eighteen old (25-26 mo) male Fischer 344 x Brown Norway rats were assigned to either rest (n = 8) or exercise (n = 10) groups. Regional VC was determined via radiolabeled microspheres before and after intra-arterial administration of tempol (302 μmol/kg). Tempol decreased mean arterial pressure significantly by 9% at rest and 16% during exercise. At rest, similar VC in 26 out of 28 individual hindlimb muscles or muscle parts following tempol administration compared with control resulted in unchanged total hindlimb muscle VC (control: 0.18 ± 0.02; tempol: 0.17 ± 0.05 ml·min(-1)·100 g(-1)·mmHg(-1); P > 0.05). During exercise, all individual hindlimb muscles or muscle parts irrespective of fiber type composition exhibited either an increase or no change in VC with tempol (i.e., ↑11 and ?17 muscles or muscle parts), such that total hindlimb VC increased by 25% (control: 0.93 ± 0.04; tempol: 1.15 ± 0.09 ml·min(-1)·100 g(-1)·mmHg(-1); P ≤ 0.05). These results demonstrate that acute systemic administration of the antioxidant tempol significantly impacts the control of regional vascular tone in vivo presumably via redox modulation and improves skeletal muscle vasodilation independently of fiber type composition during submaximal whole body exercise in aged rats.  相似文献   

19.
Aging is associated with blunted endothelium-dependent relaxations and vascular oxidative stress. Our previous study has indicated that daily intake of red wine polyphenols (RWPs) by young rats retards aging-related endothelial dysfunction in middle-aged rats. The aim of the present study is to determine whether intake of RWPs also improves an established endothelial dysfunction in middle-aged rats and, if so, to determine the underlying mechanism. Middle-aged rats (51 weeks) received either solvent (3% ethanol), RWPs extract (100mg/kg/day) or the antioxidant and NADPH oxidase inhibitor apocynin (100mg/kg/day) in the drinking water for 4 weeks. Vascular reactivity of mesenteric artery rings from control young (12 weeks) and middle-aged rats was assessed in organ chambers. The expression level of endothelial NO synthase (eNOS), arginase I, angiotensin II receptors (AT1R and AT2R), NADPH oxidase subunits and nitrotyrosines was assessed by immunohistochemistry, and the vascular formation of reactive oxygen species (ROS) by dihydroethidine. Aging is associated with blunted endothelium-dependent relaxations, an excessive vascular formation of ROS and peroxynitrites, and an up-regulation of eNOS, arginase I, NADPH oxidase subunits (nox-1, p22phox), and AT1R and AT2R expression. RWPs and apocynin treatments improved endothelial dysfunction, normalized oxidative stress and the expression of the different proteins in the mesenteric artery of middle-aged rats. The present findings indicate that aging is associated with blunted endothelium-dependent relaxations involving an increased oxidative stress, and that these responses are improved by the intake of RWPs or apocynin for 4weeks most likely by normalizing the expression of eNOS, arginase I, NADPH oxidase and angiotensin receptors.  相似文献   

20.
Excessive salt intake is known to preferentially increase blood pressure (BP) and promote kidney damage in young, salt-sensitive hypertensive human and animal models. We have suggested that mineralocorticoid receptor (MR) activation plays a major role in kidney injury in young rats. BP and urinary protein were compared in young (3-wk-old) and adult (10-wk-old) uninephrectomized (UNx) Sprague-Dawley rats fed a high (8.0%)-salt diet for 4 wk. The effects of the MR blocker eplerenone on BP and renal injury were examined in the high-salt diet-fed young UNx rats. Renal expression of renin-angiotensin-aldosterone (RAA) system components and of inflammatory and oxidative stress markers was also measured. The effects of the angiotensin receptor blocker olmesartan with or without low-dose aldosterone infusion, the aldosterone synthase inhibitor FAD286, and the antioxidant tempol were also studied. Excessive salt intake induced greater hypertension and proteinuria in young rats than in adult rats. The kidneys of young salt-loaded rats showed marked histological injury, overexpression of RAA system components, and an increase in inflammatory and oxidative stress markers. These changes were markedly ameliorated by eplerenone treatment. Olmesartan also ameliorated salt-induced renal injury but failed to do so when combined with low-dose aldosterone infusion. FAD286 and tempol also markedly reduced urinary protein. UNx rats exposed to excessive salt at a young age showed severe hypertension and renal injury, likely primarily due to MR activation and secondarily due to angiotensin receptor activation, which may be mediated by inflammation and oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号