首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidemiological studies indicate that smoking is a negative, and exposure to pesticides, a positive risk factor for Parkinson's disease (PD). The purpose of this study was to assess the interplay between these two factors in a rodent model of nigrostriatal damage. To approach this, mice were administered nicotine, the agent in smoke implicated in neuroprotection. They were then treated for 3 weeks with the pesticide, paraquat, while nicotine was continued. Paraquat treatment decreased (25%) nigral dopaminergic neurons, consistent with previous results. Chronic nicotine administration significantly protected against nigral cell damage, with only a 16% decline in mice treated with both nicotine and paraquat. Paraquat treatment also decreased (14%) the striatal dopamine transporter, an effect that was partially prevented by nicotine. These changes in the striatal dopamine transporter paralleled those in a select striatal alpha6beta2* nicotinic receptor (nAChR) subtype. In contrast, striatal alpha4beta2* nAChRs were not decreased with paraquat treatment, suggesting they are on a differential subset of dopaminergic terminals. The results show that nicotine treatment partially protects against paraquat-induced declines in nigrostriatal dopaminergic neurons to which a select population of alpha6beta2* nAChRs are localized. Moreover, these data support epidemiological findings that environmental influences can elicit opposing effects on nigrostriatal dopaminergic integrity.  相似文献   

2.
We used immunoprecipitation with subunit-specific antibodies to examine the distribution of heteromeric neuronal nicotinic acetylcholine receptors (nAChRs) that contain the α5 subunit in the adult rat brain. Among the regions of brain we surveyed, the α5 subunit is associated in ∼37% of the nAChRs in the hippocampus, ∼24% of the nAChRs in striatum, and 11–16% of the receptors in the cerebral cortex, thalamus, and superior colliculus. Sequential immunoprecipitation assays demonstrate that the α5 subunit is associated with α4β2* nAChRs exclusively. Importantly, in contrast to α4β2 nAChRs, which are increased by 37–85% after chronic administration of nicotine, the α4β2α5 receptors are not increased by nicotine treatment. These data thus indicate that the α4β2α5 nAChRs in rat brain are resistant to up-regulation by nicotine in vivo , which suggests an important regulatory role for the α5 subunit. To the extent that nicotine-induced up-regulation of α4β2 nAChRs is involved in nicotine addiction, the resistance of the α4β2α5 subtype to up-regulation may have important implications for nicotine addiction.  相似文献   

3.
Knowledge of the effects of chronic nicotine is critical considering its widespread use in tobacco products and smoking cessation therapies. Although nicotine is well known to up-regulate alpha4* nAChR sites and function in the cortex, its actions in the striatum are uncertain because of the presence of multiple subtypes with potentially opposing effects. We therefore investigated the effect of long-term nicotine treatment on nAChR sites and function in the primate striatum, which offers the advantage of similar proportions of alpha3*/alpha6* and alpha4* nAChRs. Nicotine was given in drinking water, which resembles smoking in its intermittent but chronic delivery. Plasma nicotine and cotinine levels were similar to smokers. Chronic nicotine treatment (> 6 months) enhanced alpha4* nAChR-evoked [(3)H]dopamine release in striatal subregions, with an overall pattern of increase throughout the striatum when normalized to uptake. This increase correlated with elevated striatal alpha4* nAChRs. Under the same conditions, striatal alpha3*/alpha6* nAChR sites and function were decreased or unchanged. These divergent actions of chronic nicotine treatment on alpha4* versus alpha6* nAChRs, as well as effects on dopamine uptake, allow for a complex control of striatal activity to maintain dopaminergic function. Such knowledge is important for understanding nicotine dependence and the consequences of nicotine administration for the treatment of neurological disorders.  相似文献   

4.
High-affinity, β2-subunit-containing (β2*) nicotinic acetylcholine receptors (nAChRs) are essential for nicotine reinforcement; however, these nAChRs are found on both gamma-aminobutyric acid (GABA) and dopaminergic (DA) neurons in the ventral tegmental area (VTA) and also on terminals of glutamatergic and cholinergic neurons projecting from the pedunculopontine tegmental area and the laterodorsal tegmental nucleus. Thus, systemic nicotine administration stimulates many different neuronal subtypes in various brain nuclei. To identify neurons in which nAChRs must be expressed to mediate effects of systemic nicotine, we investigated responses in mice with low-level, localized expression of β2* nAChRs in the midbrain/VTA. Nicotine-induced GABA and DA release were partially rescued in striatal synaptosomes from transgenic mice compared with tissue from β2 knockout mice. Nicotine-induced locomotor activation, but not place preference, was rescued in mice with low-level VTA expression, suggesting that low-level expression of β2* nAChRs in DA neurons is not sufficient to support nicotine reward. In contrast to control mice, transgenic mice with low-level β2* nAChR expression in the VTA showed no increase in overall levels of cyclic AMP response element-binding protein (CREB) but did show an increase in CREB phosphorylation in response to exposure to a nicotine-paired chamber. Thus, CREB activation in the absence of regulation of total CREB levels during place preference testing was not sufficient to support nicotine place preference in β2 trangenic mice. This suggests that partial activation of high-affinity nAChRs in VTA might block the rewarding effects of nicotine, providing a potential mechanism for the ability of nicotinic partial agonists to aid in smoking cessation.  相似文献   

5.
l ‐dopa‐induced dyskinesias (LIDs) are a side effect of Parkinson's disease therapy that is thought to arise, at least in part, because of excessive dopaminergic activity. Thus, drugs that regulate dopaminergic tone may provide an approach to manage LIDs. Our previous studies showed that nicotine treatment reduced LIDs in Parkinsonian animal models. This study investigates whether nicotine may exert its beneficial effects by modulating pre‐synaptic dopaminergic function. Rats were unilaterally lesioned by injection of 6‐hydroxydopamine (6‐OHDA) (2 × 3 ug per site) into the medial forebrain bundle to yield moderate Parkinsonism. They were then implanted with minipumps containing vehicle or nicotine (2.0 mg/kg/d) and rendered dyskinetic with l ‐dopa (8 mg/kg plus 15 mg/kg benserazide). Lesioning alone decreased the striatal dopamine transporter, nicotinic receptor (nAChR) levels, and nAChR‐mediated 3H‐dopamine release, consistent with previous results. Nicotine administration reduced l ‐dopa‐induced abnormal involuntary movements throughout the course of the study (4 months). Nicotine treatment led to declines in the striatal dopamine transporter, α6β2* nAChRs and various components of α6β2* and α4β2* nAChR‐mediated release. l ‐dopa treatment had no effect. These data suggest that nicotine may improve LIDs in Parkinsonian animal models by dampening striatal dopaminergic activity.  相似文献   

6.
Nicotine, a major component of cigarette smoking, is the important risk factor for the development of periodontal disease. However, the mechanisms that underlie the cytotoxicity of nicotine in human periodontal ligament stem cells (PDLSCs) are largely unknown. Thus, the purpose of this study was to determine the cytotoxic effect of nicotine by means of nicotinic acetylcholine receptor (nAChR) activation in PDLSCs. We first detected α7 and β4 nAChRs in PDLSCs. The gene expressions of α7 and β4 nAChR were increased by nicotine administration. Nicotine significantly decreased cell viability at a concentration higher than 10−5 M. DNA fragmentation was also detected at high doses of nicotine treatment. Moreover, the detection of sub G1 phase and TUNEL assay demonstrated that nicotine significantly induced apoptotic cell death at 10−2 M concentration. Western blot analysis confirmed that p53 proteins were phosphorylated by nicotine. Under various doses of nicotine, a decrease in the anti-apoptotic protein Bcl-2, but an increase in p53 and cleaved caspase-3 protein levels, was detected in a dose-dependent manner. However, the apoptotic effect of nicotine was inhibited by the pretreatment of α-bungarotoxin, a selective α7 nAChR antagonist or mecamylamine, a non-selective nAChR antagonist. Finally, increases in the subG1 phase and DNA fragmentation by nicotine was attenuated by each nAChR antagonist. Collectively, the presence of α7 and β4 nAChRs in PDLSCs supports a key role of nAChRs in the modulation of nicotine-induced apoptosis.  相似文献   

7.
α4β2 Nicotinic acetylcholine receptors play an important role in the reward pathways for nicotine. We investigated whether receptor up-regulation of α4β2 nicotinic acetylcholine receptors involves expression changes for non-receptor genes. In a microarray analysis, 10 μM nicotine altered expression of 41 genes at 0.25, 1, 8 and 24 h in hα4β2 SH-EP1 cells. The maximum number of gene changes occurred at 8 h, around the initial increase in 3[H]-cytisine binding. Quantitative RT-PCR corroborated gene induction of endoplasmic reticulum proteins CRELD2, PDIA6, and HERPUD1, and suppression of the pro-inflammatory cytokines IL-1β and IL-6. Nicotine suppresses IL-1β and IL-6 expression at least in part by inhibiting NFκB activation. Antagonists dihydro-β-erythroidine and mecamylamine blocked these nicotine-induced changes showing that receptor activation is required. Antagonists alone or in combination with nicotine suppressed CRELD2 message while increasing α4β2 binding. Additionally, small interfering RNA knockdown of CRELD2 increased basal α4β2 receptor expression, and antagonists decreased CRELD2 expression even in the absence of α4β2 receptors. These data suggest that endoplasmic reticulum proteins such as CRELD2 can regulate α4β2 expression, and may explain antagonist actions in nicotine-induced receptor up-regulation. Further, the unexpected finding that nicotine suppresses inflammatory cytokines suggests that nicotinic α4β2 receptor activation promotes anti-inflammatory effects similar to α7 receptor activation.  相似文献   

8.
Abstract: The present study further investigated whether nicotinic acetylcholine receptor (nAChR) subtypes differ in their ability to up-regulate following chronic exposure to nicotinic agonists. Seven nicotinic agonists were studied for their ability to influence the number of chick α4β2 nAChR binding sites stably transfected in fibroblasts (M10 cells) following 3 days of exposure. The result showed a positive correlation between the K i values for binding inhibition and EC50 values for agonist-induced α4β2 nAChR up-regulation. The effects of epibatidine and nicotine were further investigated in human neuroblastoma SH-SY5Y cells (expressing α3, α5, β2, and β4 nAChR subunits). Nicotine exhibited a 14 times lower affinity for the nAChRs in SH-SY5Y cells as compared with M10 cells, whereas epibatidine showed similar affinities for the nAChRs expressed in the two cell lines. The nicotine-induced up-regulation of nAChR binding sites in SH-SY5Y cells was shifted to the right by two orders of magnitude as compared with that in M10 cells. The epibatidine-induced up-regulation of nAChR binding sites in SH-SY5Y cells was one-fourth that in M10 cells. The levels of mRNA of the various nAChR subunits were measured following the nicotinic agonist exposure. In summary, the various nAChR subtypes show different properties in their response to chronic stimulation.  相似文献   

9.
Nicotine, acting on nicotinic acetylcholine receptors (nAChRs) expressed at pre-synaptic dopaminergic terminals, has been shown to stimulate the release of dopamine in the neostriatum. However, the molecular consequences of pre-synaptic nAChR activation in post-synaptic neostriatal neurons are not clearly understood. Here, we investigated the effect of nAChR activation on dopaminergic signaling in medium spiny neurons by measuring phosphorylated DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of Mr 32 kDa) at Thr34 (the PKA-site) in mouse neostriatal slices. Nicotine produced dose-dependent responses, with a low concentration (1 microm) causing a sustained decrease in DARPP-32 Thr34 phosphorylation and a high concentration (100 microm) causing a transient increase in DARPP-32 Thr34 phosphorylation. Depending on the concentration of nicotine, either dopamine D2 or D1 receptor signaling was predominantly activated. Nicotine at a low concentration (1 microm) activated dopamine D2 receptor signaling in striatopallidal/indirect pathway neurons, likely by activating alpha4beta2* nAChRs at dopaminergic terminals. Nicotine at a high concentration (100 microm) activated dopamine D1 receptor signaling in striatonigral/direct pathway neurons, likely by activating (i) alpha4beta2* nAChRs at dopaminergic terminals and (ii) alpha7 nAChRs at glutamatergic terminals, which, by stimulating the release of glutamate, activated NMDA/AMPA receptors at dopaminergic terminals. The differential effects of low and high nicotine concentrations on D2- and D1-dependent signaling pathways in striatal neurons may contribute to dose-dependent actions of this drug of abuse.  相似文献   

10.
Abstract: Studies determined whether α4β2 or α3β2 neuronal nicotinic receptors expressed in Xenopus oocytes are substrates for cyclic AMP-dependent protein kinase (PKA) and whether nicotine affects receptor phosphorylation. The cRNAs for the subunits were coinjected into oocytes, and cells were incubated for 24 h in the absence or presence of nicotine (50 n M for α4β2 and 500 n M for α3β2 receptors). Nicotine did not interfere with the isolation of the receptors. When receptors isolated from oocytes expressing α4β2 receptors were incubated with [γ-32P]ATP and the catalytic subunit of PKA, separated by electrophoresis, and visualized by autoradiography, a labeled phosphoprotein with the predicted molecular size of the α4 subunit was present. Phosphorylation of α4 subunits of α4β2 receptors increased within the first 5 min of incubation with nicotine and persisted for 24 h. In contrast, receptors isolated from oocytes expressing α3β2 receptors did not exhibit a labeled phosphoprotein corresponding to the size of the α3 subunit. Results suggest that the PKA-mediated phosphorylation of α4 and not α3 subunits may explain the differential inactivation by nicotine of these receptors subtypes expressed in oocytes.  相似文献   

11.
The present studies were done to investigate the effect of long-term nicotine treatment against nigrostriatal damage in non-human primates. Monkeys were administered nicotine in drinking water for 6 months to provide chronic but intermittent delivery as with smoking. Plasma nicotine levels ranged from 10 to 15 ng/mL, which were within the range in cigarette smokers. Animals were then lesioned with low doses of the dopaminergic neurotoxin MPTP for several months while nicotine was continued. The results showed that levels of striatal tyrosine hydroxylase, dopamine transporter, vesicular monoamine transporter, dopamine and nicotinic receptors were greater in nicotine-treated MPTP-lesioned primates than in lesioned animals not receiving nicotine. Nicotine had no effect in unlesioned animals. Monoamine oxidase activity was similar in unlesioned and lesioned animals treated with or without nicotine, suggesting that nicotine did not exert its effects through changes in MPTP or dopamine metabolism. MPTP-induced cell loss in the substantia nigra was unaffected by nicotine treatment, indicating that nicotine acts at the striatal level to restore/maintain dopaminergic function. These data further support the possibility that nicotine contributes to the lower incidence of Parkinson's disease in smokers.  相似文献   

12.
Abstract: To determine whether prolonged exposure to nicotine differentially affects α3β2 versus α4β2 nicotinic receptors expressed in Xenopus oocytes, oocytes were coinjected with subunit cRNAs, and peak responses to agonist, evoked by 0.7 or 7 µ M nicotine for α4β2 and α3β2 receptors, respectively, were determined before and following incubation for up to 48 h with nanomolar concentrations of nicotine. Agonist responses of α4β2 receptors decreased in a concentration-dependent manner with IC50 values in the 10 n M range following incubation for 24 h and in the 1 n M range following incubation for 48 h. In contrast, responses of α3β2 receptors following incubation for 24–48 h with 1,000 n M nicotine decreased by only 50–60%, and total ablation of responses could not be achieved. Attenuation of responses occurred within the first 5 min of nicotine exposure and was a first-order process for both subtypes; half-lives for inactivation were 4.09 and 2.36 min for α4β2 and α3β2 receptors, respectively. Recovery was also first-order for both subtypes; half-lives for recovery were 21 and 7.5 h for α4β2 and α3β2 receptors, respectively. Thus, the responsiveness of both receptors decreased following sustained exposure to nicotine, but α4β2 receptors recovered much slower. Results may explain the differential effect of sustained nicotine exposure on nicotinic receptor-mediated neurotransmitter release.  相似文献   

13.
Despite a dramatic loss of nigrostriatal dopaminergic neurons in Parkinson's disease, clinical symptoms only arise with 70–80% reduction of striatal dopamine. The mechanisms responsible for this functional compensation are currently under debate. Although initial studies showed an enhanced pre-synaptic dopaminergic function with nigrostriatal degeneration, more recent work suggests that functional compensation is not dopamine-mediated. To address this issue, we used cyclic voltammetry to directly measure endogenous dopamine release from striatal slices of control monkeys and animals with a moderate or severe MPTP-induced dopaminergic lesion. The moderately lesioned monkeys were asymptomatic, while the severely lesioned animals were parkinsonian. In monkeys with a moderate lesion, a 300% increase was obtained in endogenous striatal dopamine release. In contrast, in striatal slices from severely lesioned animals, a small % of evoked dopamine signals were similar in amplitude to control while the greater majority were undetectable. These findings suggest that pre-synaptic dopaminergic compensation develops in residual dopaminergic terminals with moderate lesioning, but that this response is lost with severe nigrostriatal damage. Such an interpretation is supported by the results of dopamine turnover studies. This enhanced pre-synaptic dopaminergic activity may be important in maintaining normal motor function during the initial stages of Parkinson's disease.  相似文献   

14.
A novel radioligand, 6-chloro-3-((2-( S )-azetidinyl)methoxy)-5-(2-fluoropyridin-4-yl)pyridine (NIDA522131), for imaging extrathalamic nicotinic acetylcholine receptors (nAChRs) was characterized in vitro and in vivo using positron emission tomography. The Kd and T1/2 of dissociation of NIDA522131 binding measured at 37°C in vitro were 4.9 ± 0.4 pmol/L and 81 ± 5 min, respectively. The patterns of radioactivity distribution in monkey brain in vivo was similar to that of 2-[18F]fluoro-3-(2( S )-azetidinylmethoxy)pyridine (2FA), a radioligand that has been successfully used in humans, and matched the α4β2* nAChRs distribution. Comparison between [18F]NIDA522131 and 2FA demonstrated better in vivo binding properties of the new radioligand and substantially greater radioactivity accumulation in brain. Consistent with [18F]NIDA522131 elevated affinity for nAChRs and its increased lipophilicity, both, the total and non-displaceable distribution volumes were substantially higher than those of 2FA. Estimated binding potential values in different brain regions, characterizing the specificity of receptor binding, were 3–4 fold higher for [18F]NIDA522131 than those of 2FA. Pharmacological evaluation in mice demonstrated a toxicity that was comparable to 2FA and is in agreement with a 2300 fold higher affinity at α4β2* versus α3β4* nAChRs. These results suggest that [18F]NIDA522131 is a promising positron emission tomography radioligand for studying extrathalamic nAChR in humans.  相似文献   

15.
The up-regulation of α4β2* nicotinic acetylcholine receptors (nAChRs) by chronic nicotine is a cell-delimited process and may be necessary and sufficient for the initial events of nicotine dependence. Clinical literature documents an inverse relationship between a person’s history of tobacco use and his or her susceptibility to Parkinson’s disease; this may also result from up-regulation. This study visualizes and quantifies the subcellular mechanisms involved in nicotine-induced nAChR up-regulation by using transfected fluorescent protein (FP)-tagged α4 nAChR subunits and an FP-tagged Sec24D endoplasmic reticulum (ER) exit site marker. Total internal reflection fluorescence microscopy shows that nicotine (0.1 µM for 48 h) up-regulates α4β2 nAChRs at the plasma membrane (PM), despite increasing the fraction of α4β2 nAChRs that remain in near-PM ER. Pixel-resolved normalized Förster resonance energy transfer microscopy between α4-FP subunits shows that nicotine stabilizes the (α4)2(β2)3 stoichiometry before the nAChRs reach the trans-Golgi apparatus. Nicotine also induces the formation of additional ER exit sites (ERES). To aid in the mechanistic analysis of these phenomena, we generated a β2enhanced-ER-export mutant subunit that mimics two regions of the β4 subunit sequence: the presence of an ER export motif and the absence of an ER retention/retrieval motif. The α4β2enhanced-ER-export nAChR resembles nicotine-exposed nAChRs with regard to stoichiometry, intracellular mobility, ERES enhancement, and PM localization. Nicotine produces only small additional PM up-regulation of α4β2enhanced-ER-export receptors. The experimental data are simulated with a model incorporating two mechanisms: (1) nicotine acts as a stabilizing pharmacological chaperone for nascent α4β2 nAChRs in the ER, eventually increasing PM receptors despite a bottleneck(s) in ER export; and (2) removal of the bottleneck (e.g., by expression of the β2enhanced-ER-export subunit) is sufficient to increase PM nAChR numbers, even without nicotine. The data also suggest that pharmacological chaperoning of nAChRs by nicotine can alter the physiology of ER processes.  相似文献   

16.
Dopaminergic nerve endings in the corpus striatum possess nicotinic (nAChRs) and muscarinic cholinergic receptors (mAChRs) mediating release of dopamine (DA). Whether nAChRs and mAChRs co-exist and interact on the same nerve endings is unknown. We here investigate on these possibilities using rat nucleus accumbens synaptosomes pre-labeled with [3H]DA and exposed in superfusion to cholinergic receptor ligands. The mixed nAChR–mAChR agonists acetylcholine (ACh) and carbachol provoked [3H]DA release partially sensitive to the mAChR antagonist atropine but totally blocked by the nAChR antagonist mecamylamine. Addition of the mAChR agonist oxotremorine at the minimally effective concentration of 30 μmol/L, together with 3, 10, or 100 μmol/L (−)nicotine provoked synergistic effect on [3H]DA overflow. The [3H]DA overflow elicited by 100 μmol/L (−)nicotine plus 30 μmol/L oxotremorine was reduced by atropine down to the release produced by (−)nicotine alone and it was abolished by mecamylamine. The ryanodine receptor blockers dantrolene or 8-bromo-cADP-ribose, but not the inositol 1,4,5-trisphosphate receptor blocker xestospongin C inhibited the (−)nicotine/oxotremorine evoked [3H]DA overflow similarly to atropine. This overflow was partly sensitive to 100 nmol/L methyllycaconitine which did not prevent the synergistic effect of (−)nicotine/oxotremorine. Similarly to (−)nicotine, the selective α4β2 nAChR agonist RJR2403 exhibited synergism when added together with oxotremorine. To conclude, in rat nucleus accumbens, α4β2 nAChRs exert a permissive role on the releasing function of reportedly M5 mAChRs co-existing on the same dopaminergic nerve endings.  相似文献   

17.
Chronic exposure to nicotine up-regulates high sensitivity nicotinic acetylcholine receptors (nAChRs) in the brain. This up-regulation partially underlies addiction and may also contribute to protection against Parkinson’s disease. nAChRs containing the α6 subunit (α6* nAChRs) are expressed in neurons in several brain regions, but comparatively little is known about the effect of chronic nicotine on these nAChRs. We report here that nicotine up-regulates α6* nAChRs in several mouse brain regions (substantia nigra pars compacta, ventral tegmental area, medial habenula, and superior colliculus) and in neuroblastoma 2a cells. We present evidence that a coat protein complex I (COPI)-mediated process mediates this up-regulation of α6* or α4* nAChRs but does not participate in basal trafficking. We show that α6β2β3 nAChR up-regulation is prevented by mutating a putative COPI-binding motif in the β3 subunit or by inhibiting COPI. Similarly, a COPI-dependent process is required for up-regulation of α4β2 nAChRs by chronic nicotine but not for basal trafficking. Mutation of the putative COPI-binding motif or inhibition of COPI also results in reduced normalized Förster resonance energy transfer between α6β2β3 nAChRs and εCOP subunits. The discovery that nicotine exploits a COPI-dependent process to chaperone high sensitivity nAChRs is novel and suggests that this may be a common mechanism in the up-regulation of nAChRs in response to chronic nicotine.  相似文献   

18.
Neonicotinoid insecticides, such as imidacloprid, are selective agonists of insect nicotinic acetylcholine receptors (nAChRs) and are used extensively in areas of crop protection and animal health to control a variety of insect pest species. Here, we describe studies performed with nAChR subunits Nlα1 and Nlα2 cloned from the brown planthopper Nilaparvata  lugens , a major insect pest of rice crops in many parts of Asia. The influence of Nlα1 and Nlα2 subunits upon the functional properties of recombinant nAChRs has been examined by expression in Xenopus oocytes. In addition, the influence of a Nlα1 mutation (Y151S), which has been linked to neonicotinoid lab generated resistance in N. lugens , has been examined. As in previous studies of insect α subunits, functional expression has been achieved by co-expression with the mammalian β2 subunit. This approach has revealed a significantly higher apparent affinity of imidacloprid for Nlα1/β2 than for Nlα2/β2 nAChRs. In addition, evidence has been obtained for the co-assembly of Nlα1 and Nlα2 subunits into 'triplet' nAChRs of subunit composition Nlα1/Nlα2/β2. Evidence has also been obtained which demonstrates that the resistance-associated Y151S mutation has a significantly reduced effect on neonicotinoid agonist activity when Nlα1 is co-assembled with Nlα2 than when expressed as the sole α subunit in a heteromeric nAChR. These findings may be of importance in assessing the likely impact of the target-site mutations such as Y151S upon neonicotinoid insecticide resistance in insect field populations.  相似文献   

19.
The existence of pre-synaptic auto- and hetero receptors which modulate neurotransmitter release is well documented. Emerging evidence show that in some cases these pre-synaptic receptors may also cross-talk with each other. The aim of the present work was to investigate whether acetylcholine receptors (nAChRs) and dopamine (DA) autoreceptors, which are both able to modulate DA release, functionally interact on the same nerve endings. We used rat and mouse nucleus accumbens synaptosomes pre-labeled with [3H]DA and exposed to nicotinic and dopaminergic receptor ligands. Both nicotinic agonists and 4-aminopyridine (4-AP) provoked [3H]DA release which was inhibited by quinpirole and blocked by sulpiride and raclopride. Both the inhibitory effect of quinpirole and the stimulatory effect of (−)nicotine did not change when the nAChRs or the DA receptors were desensitized. (−)Nicotine and 4-AP were able to stimulate [3H]DA overflow also in mouse synaptosomes and this overflow was partially inhibited by quinpirole. In the β2 knockout mice quinpirole was still able to inhibit the [3H]DA overflow elicited by 4-AP. To conclude: in rat and mouse the (−)nicotine evoked-release can be modulated by D2/D3 autoreceptors present on the DA terminals and nAChRs function is independent from D2/D3 autoreceptors which themselves may function independently from the activation of nAChRs.  相似文献   

20.
Nicotine leads to both activation and desensitization (inactivation) of nicotinic acetylcholine receptors (nAChRs). This study tested the hypothesis that nicotine and a selective antagonist of β2*nAChRs would have similar effects on affective behavior. Adult C57BL/6J male mice were tested in a conditioned emotional response (CER) assay which evaluates the ability of an aversive stimulus to inhibit goal-directed behavior. Mice lever-pressed for a saccharin reinforcer according to a variable schedule of reinforcement during sessions in which two presentations of a compound light/tone conditioned stimulus (CS) co-terminated with a 0.1 or 0.3 mA, 0.5 s footshock unconditioned stimulus (US). During testing in the absence of the US, mice received doses of i.p. nicotine (0, 0.0032, 0.01, 0.032, 0.1 mg/kg) or a selective β2 subunit containing nAChR (β2*nAChR) antagonist dihydro-beta-erythroidine (0, 0.1, 0.3, 1.0, 3.0 mg/kg DHβE). There was a dose-dependent effect of nicotine revealing that only low doses (0.01, 0.032 mg/kg) increased CER suppression ratios (SR) in these mice. DHβE also dose-dependently increased SR at the 3 mg/kg dose. In ethological measures of fear−/anxiety-like behavior, these doses of nicotine and DHβE significantly reduced digging behavior in a marble burying task and 0.3 mg/kg DHβE promoted open-arm activity in the elevated plus maze. Doses of nicotine and DHβE that altered affective behavior had no effect on locomotor activity. Similar to previous reports with anxiolytic drugs, low dose nicotine and DHβE reversed SR in a CER assay, decreased digging in a marble burying assay and increased open arm activity in the elevated plus maze. This study provides evidence that inactivation of β2*nAChRs reduces fear-like and anxiety-like behavior in rodents and suggests that smokers may be motivated to smoke in part to desensitize their β2*nAChRs. These data further identify β2*nAChR antagonism as a potential therapeutic strategy for relief of negative affect and anxiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号