首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mechanism proposed for lactose/H(+) symport by the lactose permease of Escherichia coli indicates that lactose permease is protonated prior to ligand binding. Moreover, in the ground state, the symported H(+) is shared between His322 (helix X) and Glu269 (helix VIII), while Glu325 (helix X) is charge-paired with Arg302 (helix IX). Substrate binding at the outer surface between helices IV (Glu126) and V (Arg144, Cys148) induces a conformational change that leads to transfer of the H(+) to Glu325 and reorientation of the binding site to the inner surface. After release of substrate, Glu325 is deprotonated on the inside due to re-juxtapositioning with Arg302. The conservative mutation Glu269-->Asp causes a 50-100-fold decrease in substrate binding affinity and markedly reduced active lactose transport, as well as decreased rates of equilibrium exchange and efflux. Gly-scanning mutagenesis of helix VIII was employed systematically with mutant Glu269-->Asp in an attempt to rescue function, and two mutants with increased activity are identified and characterized. Mutant Thr266-->Gly/Met267-->Gly/Glu269-->Asp binds ligand with increased affinity and catalyzes active lactose transport with a marked increase in rate; however, little improvement in efflux or equilibrium exchange is observed. In contrast, mutant Gly262-->Ala/Glu269-->Asp exhibits no improvement in ligand binding but a small increase in the rate of active transport; however, an increase in the steady-state level of accumulation, as well as efflux and equilibrium exchange is observed. Remarkably, when the two sets of mutations are combined, all translocation reactions are rescued to levels approximating those of wild-type permease. The findings support the contention that Glu269 plays a pivotal role in the mechanism of lactose/H(+) symport. Moreover, the results suggest that the two classes of mutants rescue activity by altering the equilibrium between outwardly and inwardly facing conformations of the permease such that impaired protonation and/or H(+) transfer is enhanced from one side of the membrane or the other. When the two sets of mutants are combined, the equilibrium between outwardly and inwardly facing conformations and thus protonation and H(+) transfer are restored.  相似文献   

2.
By using functional lactose permease devoid of native Cys residues with a discontinuity in the periplasmic loop between helices VII and VIII (N(7)/C(5) split permease), cross-linking between engineered paired Cys residues in helices VII and X was studied with the homobifunctional, thiol-specific cross-linkers 1,1-methanediyl bismethanethiosulfonate (3 A), N,N'-o- phenylenedimaleimide (6 A) and N,N'-p-phenylenedimaleimide (10 A). Mutant Asp240-->Cys (helix VII)/Lys319-->Cys (helix X) cross-links most efficiently with the 3 A reagent, providing direct support for studies indicating that Asp240 and Lys319 are in close proximity and charge paired. Furthermore, cross-linking the two positions inactivates the protein. Other Cys residues more disposed towards the middle of helix VII cross-link to Cys residues in the approximate middle of helix X, while no cross-linking is evident with paired Cys residues at the periplasmic or cytoplasmic ends of these helices. Thus, helices VII and X are in close proximity in the middle of the membrane. In the presence of ligand, the distance between Cys residues at positions 240 (helice VII) and 319 (helix X) increases. In contrast, the distance between paired Cys residues more disposed towards the cytoplasmic face of the membrane decreases in a manner suggesting that ligand binding induces a scissors-like movement between the two helices. The results are consistent with a recently proposed mechanism for lactose/H(+) symport in which substrate binding induces a conformational change between helices VII and X, during transfer of H(+) from His322 (helix X)/Glu269 (helix VIII) to Glu325 (helix X).  相似文献   

3.
The lac permease of Escherichia coli was modified by site-directed mutagenesis such that Arg-302 in putative helix IX was replaced with Leu. In addition, Ser-300 (helix IX) was replaced with Ala, and Lys-319 in putative helix X was replaced with Leu. Permease with Leu at position 302 manifests properties that are similar to those of permease with Arg in place of His-322 [Püttner, I. B., Sarkar, H. K., Poonian, M. S., & Kaback, H. R. (1986) Biochemistry 25, 4483]. Thus, permease with Leu-302 is markedly defective in active lactose transport, efflux, exchange, and counterflow but catalyzes downhill influx of lactose at high substrate concentrations without H+ translocation. In contrast, permease molecules with Ala at position 300 or Leu at position 319 catalyze lactose/H+ symport in a manner indistinguishable from that of wild-type permease. By molecular modeling, Arg-302 may be positioned in helix IX so that it faces the postulated His-322/Glu-325 ion pair in helix X. In this manner, the guanidino group in Arg-302 may interact with the imidazole of His-322 and thereby play a role in the H+ relay suggested to be involved in lactose/H+ symport [Carrasco, N., Antes, L. M., Poonian, M. S., & Kaback, H. R. (1986) Biochemistry 25, 4486].  相似文献   

4.
lac permease with Ala in place of Glu325 was solubilized from the membrane, purified, and reconstituted into proteoliposomes. The reconstituted molecule is completely unable to catalyze lactose/H+ symport but catalyzes exchange and counterflow at least as well as wild-type permease. In addition, Ala325 permease catalyzes downhill lactose influx without concomitant H+ translocation and binds p-nitrophenyl alpha-D-galactopyranoside with a KD only slightly higher than that of wild-type permease. Studies with right-side-out membrane vesicles demonstrate that replacement of Glu325 with Gln, His, Val, Cys, or Trp results in behavior similar to that observed with Ala in place of Glu325. On the other hand, permease with Asp in place of Glu325 catalyzes lactose/H+ symport about 20% as well as wild-type permease. The results indicate that an acidic residue at position 325 is essential for lactose/H+ symport and that hydrogen bonding at this position is insufficient. Taken together with previous results and those presented in the following paper [Lee, J. A., Püttner, I. B., & Kaback, H. R. (1989) Biochemistry (third paper of three in this issue)], the findings are consistent with the idea that Arg302, His322, and Glu325 may be components of a H+ relay system that plays an important role in the coupled translocation of lactose and H+.  相似文献   

5.
Lactose/H+ symport in Escherichia coli is catalysed by a hydrophobic transmembrane protein encoded by the lacY gene that has been purified to homogeneity, reconstituted into proteoliposomes and shown to be completely functional as a monomer. Circular dichroic studies and hydropathy profiling of the amino-acid sequence of this 'lac' permease suggest a secondary structure in which the polypeptide consists of 12 hydrophobic segments in alpha-helical conformation that traverse the membrane in zig-zag fashion connected by shorter, hydrophilic domains with most of the charged residues and many of the residues commonly found in beta-turns. Support for certain general aspects of the model has been obtained from other biophysical studies, as well as biochemical, immunological and genetic approaches. Oligonucleotide-directed, site-specific mutagenesis is currently being utilized to probe the structure and function of the permease. Application of the technique provides an indication that Arg302 (putative helix IX), His322 (putative helix X) and Glu325 (putative helix X) may be sufficiently close to hydrogen-bond and that these residues play a critical role in lactose-coupled H+ translocation, possibly as components of a charge-relay type of mechanism. In contrast, Cys residues, which were long thought to play a central role in the mechanism of lactose/H+ symport, do not appear to be involved in either substrate binding or H+ translocation.  相似文献   

6.
Zhang W  Kaback HR 《Biochemistry》2000,39(47):14538-14542
The temperature dependence of lactose active transport, efflux down a concentration gradient, and equilibrium exchange were analyzed in right-side-out membrane vesicles from Escherichia coli containing wild-type lactose permease and mutant Glu325 --> Ala. With respect to uphill transport and efflux down a concentration gradient, both of which involve H(+) symport, Arrhenius plots with wild-type permease exhibit a discontinuity at 18-19 degrees C with a 7-8-fold decrease in activation energy above the phase transition. For equilibrium exchange, which does not involve H(+) symport, the change in activation energy is much less pronounced (2-3-fold) than that observed for active transport or efflux. Strikingly, mutant Glu325 --> Ala, which catalyzes equilibrium exchange as well as wild-type permease but is defective in all translocation reactions that involve net H(+) translocation, exhibits no change whatsoever in activation energy. The findings are consistent with the conclusion that the primary effect of the lipid phase transition is to alter coupling between substrate and H(+) translocation rather than the conformational change(s) responsible for translocation across the membrane.  相似文献   

7.
lac permease of Escherichia coli was modified by site-directed mutagenesis in order to investigate the effects of polarity, distance, and orientation between the components of a putative H+ relay system (Arg302/His322/Glu325) postulated to be involved in lactose-coupled H+ translocation. The importance of polarity between His322 and Glu325 was studied by interchanging the residues, and the modified permease--H322E/E325H--is inactive in all modes of translocation. The effect of distance and/or orientation between His322 and Glu325 was investigated by interchanging Glu325 with Val326, thereby moving the carboxylate one residue around putative helix X. The resulting permease molecule--E325V/V326E--is also completely inactive; control mutations, E325V [Carrasco, N., Püttner, I. B., Antes, L. M., Lee, J. A., Larigan, J. D., Lolkema, J. S., Roepe, P. D., & Kaback, H. R. (1989) Biochemistry (second paper of three in this issue)], and E325A/V326E, indicate that a Glu residue at position 326 inactivates the permease. The wild-type orientation between His and Glu was then restored by further mutation of E325V/V326E to introduce a His residue into position 323 or by interchanging Met323 with His322. The resulting permease molecules--M323H/E325V/V326E and H322M/M323H/E325V/V326E--contain the wild-type His/Glu orientation, but the His/Glu ion pair is rotated about the helical axis by 100 degrees relative to Arg302 in putative helix IX. Both mutants are inactive with respect to all modes of translocation. The results provide strong support for the contention that the polarity between His322 and Glu325 and the geometric relationship between Arg302, His322, and Glu325 are critical for permease activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Sahin-Tóth M  Kaback HR 《Biochemistry》2000,39(20):6170-6175
The sucrose (CscB) permease is the only member of the oligosaccharide:H(+) symporter family in the Major Facilitator Superfamily that transports sucrose but not lactose or other galactosides. In lactose permease (lac permease), the most studied member of the family, three residues have been shown to participate in galactoside binding: Cys148 hydrophobically interacts with the galactosyl ring, while Glu126 and Arg144 are charge paired and form H-bonds with specific galactosyl OH groups. In the present study, the role of the corresponding residues in sucrose permease, Asp126, Arg144, and Ser148, is investigated using a functional Cys-less mutant (see preceding paper). Replacement of Ser148 with Cys has no significant effect on transport activity or expression, but transport becomes highly sensitive to the sulfhydryl reagent N-ethylmaleimide (NEM) in a manner similar to that of lac permease. However, in contrast to lac permease, substrate affords no protection whatsoever against NEM inactivation of transport or alkylation with [(14)C]NEM. Neutral (Ala, Cys) mutations of Asp126 and Arg144 abolish sucrose transport, while membrane expression is not affected. Similarly, combination of two Ala mutations within the same molecule (Asp126-->Ala/Arg144-->Ala) yields normally expressed, but completely inactive permease. Conservative replacements result in highly active molecules: Asp126-->Glu permease catalyzes sucrose transport comparable to Cys-less permease, while mutant Arg144-->Lys exhibits decreased but significant activity. The observations demonstrate that charge pair Asp126-Arg144 plays an essential role in sucrose transport and suggest that the overall architecture of the substrate binding sites is conserved between sucrose and lac permeases.  相似文献   

9.
B Persson  P D Roepe  L Patel  J Lee  H R Kaback 《Biochemistry》1992,31(37):8892-8897
Lys319, which is on the same face of putative helix X as His322 and Glu325 in the lactose permease of Escherichia coli, has been replaced with Leu by oligonucleotide-directed, site-specific mutagenesis. Although previous experiments suggested that the mutation does not alter permease activity, we report here that K319L permease is unable to catalyze active lactose accumulation or lactose efflux down a concentration gradient. The mutant does catalyze facilitated influx down a concentration gradient at a significant rate; however, the reaction occurs without concomitant H+ translocation. The mutant also catalyzes equilibrium exchange at about 50% of the wild-type rate, but it exhibits poor counterflow activity. Finally, flow dialysis and photoaffinity labeling experiments with p-nitrophenyl alpha-D-galactopyranoside indicate that K319L permease probably has a markedly decreased affinity for substrate. The alterations described are not due to diminished levels of the mutated protein in the membrane, since immunological studies reveal comparable amounts of permease in wild-type and K319L membranes. It is proposed that Lys319, like Arg302, His322, and Glu325, plays an important role in active lactose transport, as well as substrate recognition.  相似文献   

10.
Zhang W  Hu Y  Kaback HR 《Biochemistry》2003,42(17):4904-4908
Site-directed sulfhydryl modification of transmembrane helix IX in the lactose permease of Escherichia coli was studied in right-side-out membrane vesicles with the thiol-specific reagents N-[(14)C]ethylmaleimide (NEM) and methanethiosulfonate ethylsulfonate (MTSES) which are permeant and impermeant, respectively. Out of approximately 20 mutants with a single Cys residue at each position in the helix, only five mutants label with NEM. (i) Cys residues at positions 291, 308, and 310 label at 25 degrees C, and binding of substrate has no effect. (ii) Cys residues at positions 295 and 298 label only in the presence of substrate. NEM labeling at 0 degrees C indicates that alkylation of Cys residues at positions 295 and 308 is dependent on the thermal motion of the protein. In contrast, temperature has little effect on labeling of Cys residues at positions 291, 298, and 310. Interestingly, pretreatment with MTSES blocks NEM labeling of all the mutants. The findings demonstrate that the face of helix IX on which Arg302 is located is involved in ligand-induced conformational changes and accessible to water from the periplasmic surface of the membrane. Since Arg302 facilitates deprotonation of Glu325 (helix X) during turnover [Sahin-Tóth, M., and Kaback, H. R. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 6068-6073], the findings are consistent with the idea that this face of helix IX may comprise part of the H(+) translocation pathway.  相似文献   

11.
Wolin CD  Kaback HR 《Biochemistry》2000,39(20):6130-6135
Glu126 (helix IV) and Arg144 (helix V) in the lactose permease of Escherichia coli are critical for substrate binding and transport, and the two residues are in close proximity and charge-paired. By using a functional permease construct with two tandem factor Xa protease sites in the cytoplasmic loop between helices IV and V, it is shown here that Cys residues in place of Glu126 and Arg144, as well as Ala122 and Val149, spontaneously form disulfide bonds in situ, indicating that this region of transmembrane domains IV and V is in the alpha-helical conformation. To determine if the local structure or environment is perturbed by the presence of an unpaired charge, either Glu126 or Arg144 or both were replaced with Ala, and cross-linking between the Cys pair Ala122-->Cys/Val149-->Cys was studied. Ala replacement for Arg144 causes a marked decrease in cross-linking, while Ala replacement for Glu126 alone or for both Glu126 and Arg144 has little effect. The data provide strong support for the argument that Glu126 and Arg144 are within close proximity and suggest that an unpaired carboxylate at position 126 causes a structural change at the interface between helices IV and V.  相似文献   

12.
Biochemical and biophysical studies based upon crystal structures of both a mutant and wild-type lactose permease from Escherichia coli (LacY) in an inward-facing conformation have led to a model for the symport mechanism in which both sugar and H+ binding sites are alternatively accessible to both sides of the membrane. Previous findings indicate that the face of helix II with Asp68 is important for the conformational changes that occur during turnover. As shown here, replacement of Asp68 at the cytoplasmic end of helix II, particularly with Glu, abolishes active transport but the mutants retain the ability to bind galactopyranoside. In the x-ray structure, Asp68 and Lys131 (helix IV) lie within ∼ 4.2 Å of each other. Although a double mutant with Cys replacements at both position 68 and position 131 cross-links efficiently, single replacements for Lys131 exhibit very significant transport activity. Site-directed alkylation studies show that sugar binding by the Asp68 mutants causes closure of the cytoplasmic cavity, similar to wild-type LacY; however, strikingly, the probability of opening the periplasmic pathway upon sugar binding is markedly reduced. Taken together with results from previous mutagenesis and cross-linking studies, these findings lead to a model in which replacement of Asp68 blocks a conformational transition involving helices II and IV that is important for opening the periplasmic cavity. Evidence suggesting that movements of helices II and IV are coupled functionally with movements in the pseudo-symmetrically paired helices VIII and X is also presented.  相似文献   

13.
Guan L  Jakkula SV  Hodkoff AA  Su Y 《Biochemistry》2012,51(13):2950-2957
The melibiose permease of Salmonella typhimurium (MelB(St)) catalyzes symport of melibiose with Na(+), Li(+), or H(+), and bioinformatics analysis indicates that a conserved Gly117 (helix IV) is part of the Na(+)-binding site. We mutated Gly117 to Ala, Pro, Trp, or Arg; the effects on melibiose transport and binding of cosubstrates depended on the physical-chemical properties of the side chain. Compared with WT MelB(St), the Gly117 → Ala mutant exhibited little difference in either cosubstrate binding or stimulation of melibiose transport by Na(+) or Li(+), but all other mutations reduced melibiose active transport and efflux, and decreased the apparent affinity for Na(+). The bulky Trp at position 117 caused the greatest inhibition of melibiose binding, and Gly117 → Arg yielded less than a 4-fold decrease in the apparent affinity for melibiose at saturating Na(+) or Li(+) concentration. Remarkably, the mutant Gly117 → Arg catalyzed melibiose exchange in the presence of Na(+) or Li(+), but did not catalyze melibiose translocation involving net flux of the coupling cation, indicating that sugar is released prior to release of the coupling cation. Taken together, the findings are consistent with the notion that Gly117 plays an important role in cation binding and translocation.  相似文献   

14.
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino-acid residue in putative transmembrane helices IX and X and the short intervening loop was systematically replaced with Cys (from Asn-290 to Lys-335). Thirty-four of 46 mutants accumulate lactose to high levels (70-100% or more of C-less), and an additional 7 mutants exhibit lower but highly significant lactose accumulation. As expected (see Kaback, H.R., 1992, Int. Rev. Cytol. 137A, 97-125), Cys substitution for Arg-302, His-322, or Glu-325 results in inactive permease molecules. Although Cys replacement for Lys-319 or Phe-334 also inactivates lactose accumulation, Lys-319 is not essential for active lactose transport (Sahin-Tóth, M., Dunten, R.L., Gonzalez, A., & Kaback, H.R., 1992, Proc. Natl. Acad. Sci. USA 89, 10547-10551), and replacement of Phe-334 with leucine yields permease with considerable activity. All single-Cys mutants except Gly-296 --> Cys are present in the membrane in amounts comparable to C-less permease, as judged by immunological techniques. In contrast, mutant Gly-296 --> Cys is hardly detectable when expressed at a relatively low rate from the lac promoter/operator but present in the membrane in stable form when expressed at a high rate from T7 promoter. Finally, studies with N-ethylmaleimide (NEM) show that only a few mutants are inactivated significantly. Remarkably, the rate of inactivation of Val-315 --> Cys permease is enhanced at least 10-fold in the presence of beta-galactopyranosyl 1-thio-beta-D-galactopyranoside (TDG) or an H+ electrochemical gradient (delta mu-H+). The results demonstrate that only three residues in this region of the permease -Arg-302, His-322, and Glu-325-are essential for active lactose transport. Furthermore, the enhanced reactivity of the Val-315 --> Cys mutant toward NEM in the presence of TDG or delta mu-H+ probably reflects a conformational alteration induced by either substrate binding or delta mu-H+.  相似文献   

15.
M Zhao  K C Zen  W L Hubbell  H R Kaback 《Biochemistry》1999,38(23):7407-7412
Evidence has been presented [Venkatesan, P., and Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807] that Glu126 (helix IV) and Arg144 (helix V) which are critical for substrate binding in the lactose permease of Escherichia coli are charge paired and therefore in close proximity. To test this conclusion more directly, three different site-directed spectroscopic techniques were applied to permease mutants in which Glu126 and/or Arg144 were replaced with either His or Cys residues. (1) Glu126-->His/Arg144-->His permease containing a biotin acceptor domain was purified by monomeric avidin affinity chromatography, and Mn(II) binding was assessed by electron paramagnetic resonance spectroscopy. The mutant protein binds Mn(II) with a KD of about 40 microM at pH 7.5, while no binding is observed at pH 5.5. In addition, no binding is detected with Glu126-->His or Arg144-->His permease. (2) Permease with Glu126-->Cys/Arg144-->Cys and a biotin acceptor domain was purified, labeled with a thiol-specific nitroxide spin-label, and shown to exhibit spin-spin interactions in the frozen state after reconstitution into proteoliposomes. (3) Glu126-->Cys/Arg144-->Cys permease with a biotin acceptor domain was purified and labeled with a thiol-specific pyrene derivative, and fluorescence spectra were obtained after reconstitution into lipid bilayers. An excimer band is observed with the reconstituted E126C/R144C mutant, but not with either single-Cys mutant or when the single-Cys mutants are mixed prior to reconstitution. The results provide strong support for the conclusion that Glu126 (helix IV) and Arg144 (helix V) are in close physical proximity.  相似文献   

16.
Lactose permease structure is deemed consistent with a mechanical switch device for H(+)-coupled symport. Because the crystallography-assigned docking position of thiodigalactoside (TDG) does not make close contact with several amino acids essential for symport; the switch model requires allosteric interactions between the proton and sugar binding sites. The docking program, Autodock 3 reveals other lactose-docking sites. An alternative cotransport mechanism is proposed where His-322 imidazolium, positioned in the central pore equidistant (5-7 A) between six charged amino acids, Arg-302 and Lys-319 opposing Glu-269, Glu-325, Asp-237, and Asp-240, transfers a proton transiently to an H-bonded lactose hydroxyl group. Protonated lactose and its dissociation product H(3)O+ are repelled by reprotonated His-322 and drift in the electrostatic field toward the cytosol. This Brownian ratchet model, unlike the conventional carrier model, accounts for diminished symport by H322N mutant; how H322 mutants become uniporters; why exchanging Lys-319 with Asp-240 paradoxically inactivates symport; how some multiple mutants become revertant transporters; the raised export rate and affinity toward lactose of uncoupled mutants; the altered specificity toward lactose, melibiose, and galactose of some mutants, and the proton dissociation rate of H322 being 100-fold faster than the symport turnover rate.  相似文献   

17.
C D Wolin  H R Kaback 《Biochemistry》1999,38(26):8590-8597
Insertions of amino acids into transmembrane helices of polytopic membrane proteins disrupt helix-helix interactions with loss of function, while insertions into loops have little effect on transmembrane helices and therefore little effect on activity [Braun, P., Persson, B., Kaback, H. R., and von Heijne, G. (1997) J. Biol. Chem. 272, 29566-29571]. Here the inverse approach, amino acid deletion, is utilized systematically to approximate loop-helix boundaries in the lactose permease of Escherichia coli. Starting with deletion mutants in the periplasmic loop between helices VII and VIII (loop VII/VIII), which has been defined by immunological analysis and nitroxide-scanning electron paramagnetic resonance spectroscopy, it is shown that mutants with single or multiple deletions in the central portion of the loop retain significant transport activity, while deletion of amino acid residues near the loop-helix boundaries or within the flanking helices leads to complete inactivation. Results consistent with hydropathy analysis are obtained with loops VI/VII, VIII/IX, and IX/X and the flanking helices. In contrast, deletion analysis of loops III/IV, IV/V, and V/VI and the flanking helices indicates that this region of the permease differs from hydropathy predictions. More specifically, evidence is presented supporting the contention that Glu126 and Arg144 which are charge paired and critical for substrate binding are within helices IV and V, respectively.  相似文献   

18.
Guan L  Hu Y  Kaback HR 《Biochemistry》2003,42(6):1377-1382
Major determinants for substrate recognition by the lactose permease of Escherichia coli are at the interface between helices IV (Glu126, Ala122), V (Arg144, Cys148), and VIII (Glu269). We demonstrate here that Trp151, one turn of helix V removed from Cys148, also plays an important role in substrate binding probably by aromatic stacking with the galactopyranosyl ring. Mutants with Phe or Tyr in place of Trp151 catalyze active lactose transport with time courses nearly the same as wild type. In addition, apparent K(m) values for lactose transport in the Phe or Tyr mutants are only 6- or 3-fold higher than wild type, respectively, with a comparable V(max). Surprisingly, however, binding of high-affinity galactoside analogues is severely compromised in the mutants; the affinity of mutant Trp151-->Phe or Trp151-->Tyr is diminished by factors of at least 50 or 20, respectively. The results demonstrate that Trp151 is an important component of the binding site, probably orienting the galactopyranosyl ring so that important H-bond interactions with side chains in helices IV, V, and VIII can be realized. The results are discussed in the context of a current model for the binding site.  相似文献   

19.
A key to obtaining an X-ray structure of the lactose permease of Escherichia coli (LacY) (Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H. R., and Iwata, S. (2003) Science 301, 549-716) was the use of a mutant in which Cys154 (helix V) is replaced with Gly. LacY containing this mutation strongly favors an inward-facing conformation, which binds ligand with high affinity, but catalyzes little transport and exhibits few if any of the ligand-dependent conformational changes observed with wild-type LacY. The X-ray structure demonstrates that helix V crosses helix I in the approximate middle of the membrane in such a manner that Cys154 lies close to Gly24 (helix I). Therefore, it seems likely that replacing Cys154 with Gly may lead to tighter packing between helices I and V, thereby resulting in the phenotype observed. Consistently, replacement of Gly24 with Cys in the C154G mutant rescues significant transport activity, and the mutant exhibits properties similar to wild-type LacY with respect to substrate binding and thermostability. However, the only other replacements that rescue transport to any extent whatsoever are Val and Asp, both of which are much less effective than Cys. The results suggest that, although helix packing probably plays an important role with respect to the properties of the C154G mutant, the ability of Cys at position 24 to rescue transport activity of C154G is more complicated than simple replacement of bulk between positions 24 and 154. Rather, activity is dependent on more subtle interactions between the helices, and mutations that disrupt interactions between helix IV and loop 6-7 or between helices II and IV also rescue transport in the C154G mutant.  相似文献   

20.
Wang Q  Kaback HR 《Biochemistry》1999,38(10):3120-3126
Coexpression of lacY gene fragments encoding the first two transmembrane domains and the remaining 10 transmembrane domains complement in the membrane and catalyze active lactose transport [Wrubel, W., Stochaj, U., et al. (1990) J. Bacteriol. 172, 5374-5381]. Accordingly, a plasmid encoding contiguous, nonoverlapping permease fragments with a discontinuity in the cytoplasmic loop between helices II and III (loop II/III) was constructed (N2C10 permease). When Phe27 (helix I) is replaced with Cys, cross-linking is observed with two native Cys residues, Cys148 (helix V) and Cys355 (helix XI). Cross-linking of a Cys residue at position 27 to Cys148 occurs with N,N'-o-phenylenedimaleimide (o-PDM; rigid 6 A), with N,N'-p-phenylenedimaleimide (p-PDM; rigid 10 A), or with 1,6-bis(maleimido)hexane (BMH; flexible 16 A). On the other hand, with the Phe27-->Cys/Cys355 pair, cross-linking is observed with p-PDM or BMH but not o-PDM. In neither case is cross-linking observed with iodine. It is suggested that a Cys residue at position 27 is within 6-10 A from Cys148 and about 10 A from Cys355. The results provide evidence for proximity between helix I and helices V or XI in the tertiary structure of the permease. In addition, the findings are consistent with other results [Venkatesan, P., Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807] indicating that Glu126 (helix IV) and Arg144 (helix V) are within the membrane, rather than at the membrane-water interface on the cytoplasmic face.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号