首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
I studied the relationship between seed-set patterns within inflorescences and temporal variations in light and pollinator availabilities for 2 years in the spring ephemeral species Gagea lutea in a deciduous forest. Timing of canopy closure and seasonal trend of pollinator frequency did not synchronize with the annual fluctuation in flowering phenology. In the early snowmelt year, seed-set success reflected the seasonal pollinator abundance from early to middle flowering periods. In the late snowmelt year, however, seed-set rates were independent of pollinator activity and decreased with canopy closing even after hand pollination. The restricted seed production by defoliation and the increase in seed-set rates at the forest edge suggested that seed production was supported by current photosynthetic carbon gain. Thus, annual fluctuations of reproductive success can explain the variation in flowering phenology within a population although seasonal light deterioration would serve as a selective force for flowering in the early season.  相似文献   

2.

Background and Aims

Because of differences in snowmelt time, the reproductive phenologies of alpine plants are highly variable among local populations, and there is large variation in seed set across populations. Temporal variation in pollinator availability during the season may be a major factor affecting not only seed production but also outcrossing rate of alpine plants.

Methods

Among local populations of Phyllodoce aleutica that experience different snowmelt regimes, flowering phenology, pollinator availability, seed-set rate, and outcrossing rate were compared with reference to the mating system (self-compatibility or heterospecific compatibility with a co-occurring congeneric species).

Key Results

Flowering occurred sequentially among populations reflecting snowmelt time from mid-July to late August. The visit frequency of bumble-bees increased substantially in late July when workers appeared. Both seed set and outcrossing rate increased as flowering season progressed. Although flowers were self-compatible and heterospecific compatible, the mixed-pollination experiment revealed that fertilization with conspecific, outcrossing pollen took priority over selfing and hybridization, indicating a cryptic self-incompatibility. In early snowmelt populations, seed production was pollen-limited and autogamous selfing was common. However, genetic analyses revealed that selfed progenies did not contribute to the maintenance of populations due to late-acting inbreeding depression.

Conclusions

Large variations in seed-set and outcrossing rates among populations were caused by the timing of pollinator availability during the season and the cryptic self-incompatibility of this species. Despite the intensive pollen limitation in part of the early season, reproductive assurance by autogamous selfing was not evident. Under fluctuating conditions of pollinator availability and flowering structures, P. aleutica maintained the genetic composition by conspecific outcrossing.Key words: Alpine snowbed, autogamy, bumble-bee, cryptic self-incompatibility, flowering phenology, mixed pollination, outcrossing rate, Phyllodoce aleutica, pollination success, seasonality, self-pollination  相似文献   

3.
Variation in flowering plant density can have conflicting effects on pollination and seed production. Dense flower patches may attract more pollinators, but flowers in those patches may also compete for pollinator visits and abiotic resources. We examined how natural and experimental conspecific flowering plant density affected pollen receipt and seed production in a protandrous, bumble bee-pollinated wildflower, Delphinium barbeyi (Ranunculaceae). We also compared floral sex ratios, pollinator visitation rates, and pollen limitation of seed set from early to late in the season to determine whether these factors mirrored seasonal changes in pollen receipt and seed production. Pollen receipt increased with natural flowering plant density, while seed production increased across lower densities and decreased across higher flower densities. Experimental manipulation of flowering plant density did not affect pollinator visitation rate, pollen receipt, or seed production. Although pollinator visitation rate increased 10-fold from early to late in the season, pollen receipt and seed set decreased over the season. Seed set was never pollen-limited. Thus, despite widespread effects of flowering plant density on plant reproduction in other species, the effects of conspecific flowering plant density on D. barbeyi pollination and seed production are minor.  相似文献   

4.
Both pollen and seed dispersal components of gene flow were examined in the annual plant Chamaecrista fasciculata (Leguminosae) and quantified in terms of Wright's neighborhood area. Pollen dispersal was estimated by measuring pollinator flight movement throughout the flowering season and the contribution of pollen carryover to pollen dispersal was determined by comparing pollinator flight movement with dispersal of electrophoretic markers in an experimental transect. Phenological effects on the probability of fruit set were measured to determine whether pollinations should be weighted differentially across the flowering season. The outcrossing rate, a major determinant of the role of pollen dispersal in gene flow, was estimated from electrophoretic analysis of progeny arrays and by measuring the proportion of nongeitonogamous pollinator flight movements. Seed dispersal was measured in a prairie habitat and in experimental plots without surrounding vegetation. Seed dispersal was small in comparison to pollen dispersal in both environments. Fruit set was low at the beginning and end of the flowering season, periods when flower density is low and pollinator flight distances are large. Although the outcrossing rate was high (t = 80%) and pollen carryover substantial, pollen dispersal was limited. Averaged over 4 years, neighborhood area, based on both seed and pollen dispersal, was 17.6 m2, and corresponds to a circle of radius 2.4 m. The observed limited gene dispersal suggests the population of C. fasciculata is genetically subdivided into small breeding units of related individuals.  相似文献   

5.
Gentiana leucomelaena manifests dramatic flower color polymorphism, with both blue‐ and white‐flowered individuals (pollinated by flies and bees) both within a population and on an individual plant. Previous studies of this species have shown that pollinator preference and flower temperature change as a function of flower color throughout the flowering season. However, few if any studies have explored the effects of flower color on both pollen viability (mediated by anther temperature) and pollinator preference on reproductive success (seed set) in a population or on individual plants over the course of the entire flowering season. Based on prior observations, we hypothesized that flower color affects both pollen viability (as a function of anther temperature) and pollen deposition (as a function of pollinator preference) to synergistically determine reproductive success during the peak of the flowering season. This hypothesis was tested by field observations and hand pollination experiments in a Tibetan alpine meadow. Generalized linear model and path analyses showed that pollen viability was determined by flower color, flowering season, and anther temperature. Anther temperature correlated positively with pollen viability during the peak of the early flowering season, but negatively affected pollen viability during the peak of the mid‐ to late flowering season. Pollen deposition was determined by flower color, flowering season (early, or mid‐ to late season), and pollen viability. Pollen viability and pollen deposition were affected by flower color that in turn affected seed set across the peak of the flowering season (i.e., when the greatest number of flowers were being pollinated). Hand pollination experiments showed that pollen viability and pollen deposition directly influenced seed set. These data collectively indicate that the preference of pollinators for flower color and pollen viability changed during the flowering season in a manner that optimizes successful reproduction in G. leucomelaena. This study is one of a few that have simultaneously considered the effects of both pollen viability and pollen deposition on reproductive success in the same population and on individual plants.  相似文献   

6.
Although pollination networks between plants and flower visitors are diverse and flexible, seed production of many plant species is restricted by pollen limitation. Obligate outcrossers often suffer from low pollinator activity or severe interspecific competition for pollinator acquisition among co-flowering species. This study focused on seasonal changes in plant–flower visitor linkages in an alpine ecosystem and examined whether and how this seasonality affected the seed-set of Primula modesta, a self-incompatible distylous herb having long-tubed flowers. First, we recorded the linkages between plants and flower visitors along the snowmelt gradient. Then, pollination experiment was conducted to estimate the degree of pollen limitation over the course of flowering season of P. modesta. Flower visitors were classified by their tongue length based on the morphological matching with P. modesta flowers. As the season progressed, plant–visitor linkages became more diverse and generalized, and the visitation frequency to P. modesta flowers increased. In the later part of the season, however, the seed set of P. modesta was significantly reduced due to severe pollen limitation, presumably because of increased competition for long-tongued pollinators among co-flowering species. The present study revealed that pollinator availability for specialist species may be restricted even when plant–visitor linkages are diverse and generalized as a whole. In the case of P. modesta, morphological matching and competition for pollinators might be the main factors explaining this discrepancy.  相似文献   

7.
The rate of pollen exchange within and among flowers may depend on pollinator attraction traits such as floral display size and flowering plant density. Variations in these traits may influence pollinator movements, pollen receipt, and seed number. To assess how floral display size and flowering plant density affect parameters of pollinator visitation rate, pollen receipt per flower, seed number per fruit and the between-plant pollinator movements, we studied the self-incompatible plant, Nierembergia linariifolia. Per-flower pollinator visitation rate and bout length increased linearly with increasing floral display size. Pollen receipt per flower increased linearly with increasing flowering plant density. For seed number per fruit, a polynomial model describing an increased seed number per fruit at low density and a decreased seed number per fruit at high density provided a significant fit. Per-flower pollinator visitation rate was not associated with pollen receipt per flower and seed number per fruit. Bees visited plants located near to the center of the population more frequently than plants located at the periphery. Increases in both floral display size and flowering plant density led to an increased chance of a plant being chosen as the center of the pollinator foraging area. These results suggest that even though large floral displays and high flowering plant density are traits that attract more pollinators, they may also reduce potential mate diversity by restricting pollen movement to conspecific mates that are closely located.  相似文献   

8.
Abundance and diversity of insect pollinators are declining in many ecosystems worldwide. The abundance and diversity of wild and managed bees are related to the availability of continuous floral resources. In particular, in Mediterranean basin countries, the presence of wildflower spots enhances the establishment of social Apoidea, since coastal regions are usually characterized by pollen and nectar shortage in early spring and late summer. Anthyllis barba-jovis produces both nectar and pollen as important food source for bees helping them to overcome early spring period food shortage. We investigated flowering, seed set, and pollinator diversity of A. barba-jovis in arid coastal environments of the Mediterranean basin. Pollinator abundance reached a maximum in early April. Honeybees were the most common pollinators followed by bumblebees and solitary bees. Plants prevented from entomophilous pollination showed inbreeding depression with a strong decrease in seed-set. To the best of our knowledge, this is the first report on pollination ecology of A. barba-jovis.  相似文献   

9.
Pollinator activity and competition for pollinators lead to quantitative and qualitative pollen limitations on seed production and affect the reproductive success of plant species, depending on their breeding system (e.g., self‐compatibility and heterospecific compatibility) and genetic load (e.g., inbreeding depression and hybrid inviability). In alpine ecosystems, snowmelt regimes determine the distribution and phenology of plant communities. Plant species growing widely along a snowmelt gradient often grow with different species among local populations. Their pollinators also vary in their abundance, activity, and behavior during the season. These variations may modify plant–pollinator and plant–plant interactions. We integrated a series of our studies on the alpine dwarf shrub, Phyllodoce aleutica (Ericaceae), to elucidate the full set of intrinsic (species‐specific breeding system) and extrinsic factors (snow condition, pollinator activity, and interspecific competition) acting on their reproductive process. Seasonality of pollinator activity led to quantitative pollen limitation in the early‐blooming populations, whereas in the late‐blooming populations, high pollinator activity ensured pollination service, but interspecific competition for pollinators led to qualitative and quantitative pollen limitation in less competitive species. However, negative effects of illegitimate pollen receipt on seed‐set success might be reduced when cryptic incompatibility systems (i.e., outcross pollen grains took priority over self‐ and heterospecific pollen grains) could effectively prevent ovule and seed discounting. Our studies highlight the importance of species‐specific responses of plant reproduction to changing pollinator availability along environmental gradients to understand the general features of pollination networks in alpine ecosystems.  相似文献   

10.
Sargent RD 《Oecologia》2003,135(2):221-226
The rate at which pollen is presented varies widely both among and within species of flowering plants. Although several studies have tried to explain between-species variation in this trait, few explanations exist for the variation that exists among individuals of the same species. I used protandrous fireweed, Chamerion angustifolium (Onagraceae), to examine seasonal changes in pollinator visitation, population sex ratio, and pollen presentation schedules. Most studies that make predictions about optimal pollen presentation assume conditions are constant throughout the flowering season. However, data presented here show that pollen presentation schedules vary seasonally: in early season flowers, anthers dehisce over a number of days, while late season flowers present all anthers simultaneously. I show that pollinator visitation rates to individual plants are higher but more variable early in the season than late in the season. Furthermore, per-male availability of female-phase flowers increases over the course of the flowering season in this population. I suggest that seasonal differences in the variability of pollinator visitation and the availability of female flowers has played an important role in selection for pollen presentation schedules.  相似文献   

11.
Pollination and seed predation were studied in Silene vulgaris populations during two seasons, one with much lower pollinator abundance than the other. Among the pollinators, noctuid moths of the genus Hadena also acted as seed predators. Nectar-foraging female moths oviposited in flowers, and their larvae consumed flowers and seed capsules.
Despite a lower percentage of pollinated flowers in the year of low pollinator abundance, similar numbers of flowers set fruit in both years, because fewer flower buds and flowers were eaten by Hadena larvae during the year of low pollinator visitation. The number of seed capsules preyed upon was also lower in the year with low pollinator abundance, resulting in a higher seed set. The positive correlation between the percentage of pollinated flowers and the percentage of seed capsules destroyed was also observed when comparing flowers opening in different parts of the season.
Early flowering plant individuals had the same pollination success but suffered higher seed predation than late flowering ones. Selection for maximized pollination success through synchronous flowering, is probably the main reason for the compressed flowering period in 5. vulgaris , but the high level of predation early in the season may further increase the reproductive success of synchronous flowering individuals.  相似文献   

12.
Climate change has had numerous ecological effects, including species range shifts and altered phenology. Altering flowering phenology often affects plant reproduction, but the mechanisms behind these changes are not well‐understood. To investigate why altering flowering phenology affects plant reproduction, we manipulated flowering phenology of the spring herb Claytonia lanceolata (Portulacaceae) using two methods: in 2011–2013 by altering snow pack (snow‐removal vs. control treatments), and in 2013 by inducing flowering in a greenhouse before placing plants in experimental outdoor arrays (early, control, and late treatments). We measured flowering phenology, pollinator visitation, plant reproduction (fruit and seed set), and pollen limitation. Flowering occurred approx. 10 days earlier in snow‐removal than control plots during all years of snow manipulation. Pollinator visitation patterns and strength of pollen limitation varied with snow treatments, and among years. Plants in the snow removal treatment were more likely to experience frost damage, and frost‐damaged plants suffered low reproduction despite lack of pollen limitation. Plants in the snow removal treatment that escaped frost damage had higher pollinator visitation rates and reproduction than controls. The results of the array experiment supported the results of the snow manipulations. Plants in the early and late treatments suffered very low reproduction due either to severe frost damage (early treatment) or low pollinator visitation (late treatment) relative to control plants. Thus, plants face tradeoffs with advanced flowering time. While early‐flowering plants can reap the benefits of enhanced pollination services, they do so at the cost of increased susceptibility to frost damage that can overwhelm any benefit of flowering early. In contrast, delayed flowering results in dramatic reductions in plant reproduction through reduced pollination. Our results suggest that climate change may constrain the success of early‐flowering plants not through plant‐pollinator mismatch but through the direct impacts of extreme environmental conditions.  相似文献   

13.
Ida  Takashi Y.  Minato  Erina 《Plant Ecology》2020,221(10):965-978

Multi-cycle synchronous dichogamy is expected to be a mechanism for reducing self-pollination and sexual interference. It is often found in plants with umbellate inflorescences where pollinator movement is unpredictable, but not in plants with raceme inflorescences that are pollinated by bumblebees. Plants with raceme inflorescences often acropetally open flowers, resulting in an arrangement of females at lower level and males at upper level. This is good enough to preclude geitonogamy because bees tend to move upwardly within the inflorescences. Furthermore, although the degree of segregation of sexes varies among species, their intraspecific variations within a population have rarely been examined. Here, we present a synchronous protandry in bee-pollinated Aconitum grossedentatum, which has a raceme-like inflorescence and opens flowers basipetally. To evaluate the functional significance of synchronous dichogamy in mating, we firstly observed the distribution of sex phases of open flowers. Then, we assessed the effect of each phase flower on foraging behavior by pollinators and seed-set success. The inflorescences tended to exhibit either male- or female-phase flowers at any moment early in the flowering season, but the degree of segregation of sexes declined over time within a population. The degree of the segregation did not affect bumblebee visits to flowers, but it decreased seed-set success of female-phase flowers at that time. Our results demonstrated that synchronous protandry was beneficial for pollination success in A. grossedentatum by avoiding geitonogamy. Nevertheless, we also found asynchronous protandry late in the season, suggesting that the benefits by synchronous protandry decreased over the season.

  相似文献   

14.
Dactylorhiza sambucina is a European terrestrial orchid that lacks a pollinator reward. Throughout most of its range, populations contain yellow- and purple-flowering individuals, but in western Germany, monomorphic yellow populations predominate. As elsewhere, bumblebee queens are the most important pollinators in these populations, and mean fruit set over two years was 19%, well within the range reported from dimorphic populations. Multivariate analyses of plant and population traits, including plant height, leaf number, flower number and density on the spikes, flowering population density, and nearest neighbor distance, showed that only individual plant height and population density had a unique positive effect on pollen export; female function was unrelated to height or population density. The positive effects of dense spacing of flowering conspecifics and tall size appear due to greater visual attractiveness. Good visual exposure may also explain that flowers higher up on the spikes, in spite of opening late in the season, had higher male reproductive success than early flowers.  相似文献   

15.
Effective mating in plant populations need not occur during periods of peak pollinator activity and flowering. We measured seasonal and diurnal patterns of pollinator activity, pollen and ovule availability, and seed production in an experimental population of Raphanus sativus to infer the times of reproductively effective mating. On a seasonal scale, we found that most effective matings, those resulting in mature seeds, occurred very early in the season, well before the peak of flowering and pollinator activity. At a finer scale, diurnal schedules of flower opening, stigma saturation with pollen, and pollen removal indicated that most effective matings occurred before noon, even though pollinator activity increased later in the day. These patterns may be most common in populations that are not pollen limited, but other ecological factors (e.g. seed predation, resource depletion) could weaken the correspondence between pollination and effective mating.  相似文献   

16.
Background and Aims Flowering plants display considerable variation in mating system, specifically the relative frequency of cross- and self-fertilization. The majority of estimates of outcrossing rate do not account for temporal variation, particularly during the flowering season. Here, we investigated seasonal variation in mating and fertility in Incarvillea sinensis (Bignoniaceae), an annual with showy, insect-pollinated, ‘one-day’ flowers capable of delayed selfing. We examined the influence of several biotic and abiotic environmental factors on day-to-day variation in fruit set, seed set and patterns of mating.Methods We recorded daily flower number and pollinator abundance in nine 3 × 3-m patches in a population at Mu Us Sand land, Inner Mongolia, China. From marked flowers we collected data on daily fruit and seed set and estimated outcrossing rate and biparental inbreeding using six microsatellite loci and 172 open-pollinated families throughout the flowering period.Key Results Flower density increased significantly over most of the 50-d flowering season, but was associated with a decline in levels of pollinator service by bees, particularly on windy days. Fruit and seed set declined over time, especially during the latter third of the flowering period. Multilocus estimates of outcrossing rate were obtained using two methods (the programs MLTR and BORICE) and both indicated high selfing rates of ∼80 %. There was evidence for a significant increase in levels of selfing as the flowering season progressed and pollinator visitation declined. Biparental inbreeding also declined significantly as the flowering season progressed.Conclusions Temporal variation in outcrossing rates may be a common feature of the mating biology of annual, insect-pollinated plants of harsh environments but our study is the first to examine seasonal mating-system dynamics in this context. Despite having large flowers and showy floral displays, I. sinensis attracted relatively few pollinators. Delayed selfing by corolla dragging largely explains the occurrence of mixed mating in I. sinensis, and this mode of self-fertilization probably functions to promote reproductive assurance when pollinator service is limited by windy environmental conditions and competition from co-occurring flowering plants.  相似文献   

17.
The timing of the snowmelt is a crucial factor in determining the phenological schedule of alpine plants. A long-term monitoring of snowmelt regimes in a Japanese alpine area revealed that the onset of the snowmelt season has been accelerated during the last 17 years in early snowmelt sites but that such a trend has not been detected in late snowmelt sites. This indicates that the global warming effect on the snowmelt pattern may be site-specific. The flowering phenology of fellfield plants in an exposed wind-blown habitat was consistent between an unusually warm year (1998) and a normal year (2001). In contrast, the flowering occurrence of snowbed plants varied greatly between the years depending on the snowmelt time. There was a large number of flowering species in the fellfield community from mid- to late to late June and from mid- to late July. The flowering peak of an early-melt snowbed plant community was in the middle of the flowering season and that of a late-melt snowbed community was in the early flowering season. These habitat-specific phenological patterns were consistent between 1998 and 2001. The effects of the variation in flowering timing on seed-set success were evaluated for an entomophilous snowbed herb, Peucedanum multivittatum, along the snowmelt gradient during a 5-year period. When flowering occurred prior to early August, mean temperature during the flowering season positively influenced the seed set. When flowering occurred later than early August, however, the plants enjoyed high seed-set success irrespective of temperature conditions if frost damage was absent. These observations are probably explained based on the availability of pollinators, which depends not only on ambient temperature but also on seasonal progress. These results suggest that the effects of climate change on biological interaction may vary depending on the specific habitat in the alpine ecosystem in which diverse snowmelt patterns create complicated seasonality for plants within a very localized area.  相似文献   

18.
This study documents the flowering phenology and its potential consequences on a nursery pollination mutualism between a dioecious plant, in which honest male plants, but not cheating females, allow the specific pollinator to reproduce within inflorescences. Very few pollinators were found to emerge during plant anthesis, leading to a low (if any) potential benefit through pollen dispersal. This opens the question why male plants do not also cheat their pollinators. Female plants flowered late in the season, when many males had just achieved their own anthesis, which increased the efficiency of pollen transfer. Finally, some late‐flowering males reached their anthesis simultaneously with females, which open the possibility for pollinator to choose between honest males and cheating females. Nevertheless, female plants were found to produce fruits, even though fruit production was limited by pollen (and pollinator) supply, meaning that cheating was not entirely retaliated by the mutualistic partner.  相似文献   

19.
Volcanic activity provides an indispensable opportunity to study the ecological responses of organisms to environmental devastation. We examined the reproductive success of Camellia trees to identify how volcanic activity affects the processes of leaf survival, flowering activity, fruit and seed production, pollinator abundance, pollinator visitation frequency, pollination rate, and fruit and seed maturation at different damage sites on Miyake-jima, which experienced an eruption in the summer of 2000. Volcanic gases negatively affect leaf survival and reduce flowering activity in heavily damaged areas. Pollen transfer was sufficient to ensure that higher pollination rates (83%) occurred in heavily damaged areas than in less damaged areas (26–45%), but pollinator densities were lower in response to reduced flower resources. Fruit abortion rates were greater in heavily damaged sites (78%) than in less-damaged sites (53–63%). Consequently, fruit-set rates (16–29%) did not differ significantly among sites. Seed set rates tended to increase with increasing volcanic damage. The negative correlation between seed-set rates and seed mass suggests that the decreased seed mass in severely damaged sites was attributable to the better pollination rates observed there. These results indicate that compensation mechanisms ensure better reproductive success at sites that are more strongly affected by volcanic activity.  相似文献   

20.
Aims When sympatric flowering plant species in a natural community share pollinators, study of plant–plant interactions via interspecific pollen transfer (IPT) is essential for understanding species coexistence. However, little is known about the extent of IPT between interactive species and its causes.Methods To explore how sympatric flowering plants sharing pollinators minimize deleterious effects of IPT, we investigated the pollination ecology of two endemic species, Salvia przewalskii and Delphinium yuanum, in an alpine meadow in the Hengduan Mountains, southwest China. We quantified conspecific and interspecific visits by shared bumblebee pollinators, amounts of pollen placed on different body sites of the pollinators and stigmatic pollen loads on open-pollinated flowers. To examine whether IPT affects female fitness, we measured pollen germination and seed production in the two species in an artificial pollination experiment.Important findings One bumblebee species, Bombus trifasciatus, was found to be the sole effective pollinator for the two coflowering species. Pollination experiments indicated that deposition of heterospecific pollen could significantly decrease seed set in both species. Experiments showed that S. przewalskii pollen could germinate well on stigmas of D. yuanum, inhibiting conspecific pollen germination in D. yuanum. However, seed set was not lower under open pollination than under cross-pollination within species, suggesting that no female fitness loss was caused by IPT. In foraging bouts with pollinator switches, switches from S. przewalskii to D. yuanum were relatively more frequent (8.27%) than the converse (1.72%). However, IPT from S. przewalskii to D. yuanum accounted for only 1.82% of total stigmatic pollen loads while the reverse IPT to S. przewalskii was 8.70%, indicating that more switches of bumblebees to D. yuanum did not result in higher IPT. By contrast, selection for reduced IPT to S. przewalskii would limit pollinator switches from D. yuanum. We found that a bumblebee generally carried pollen grains from both species but the two species differed in the position of pollen placement on the bumblebee's body; S. przewalskii ' s pollen was concentrated on the dorsal thorax while D. yuanum ' s pollen was concentrated ventrally on the head. This differential pollen placement along with pollinator fidelity largely reduced IPT between the two species with a shared pollinator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号