共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Laganière J Tremblay GB Dufour CR Giroux S Rousseau F Giguère V 《The Journal of biological chemistry》2004,279(18):18504-18510
3.
4.
5.
6.
7.
8.
9.
10.
Anila S Mathai Arend Bonen Carley R Benton D L Robinson Terry E Graham 《Journal of applied physiology》2008,105(4):1098-1105
The mRNA of the nuclear coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) increases during prolonged exercise and is influenced by carbohydrate availability. It is unknown if the increases in mRNA reflect the PGC-1alpha protein or if glycogen stores are an important regulator. Seven male subjects [23 +/- 1.3 yr old, maximum oxygen uptake (Vo(2 max)) 48.4 +/- 0.8 ml.kg(-1).min(-1)] exercised to exhaustion ( approximately 2 h) at 65% Vo(2 max) followed by ingestion of either a high-carbohydrate (HC) or low-carbohydrate (LC) diet (7 or 2.9 g.kg(-1).day(-1), respectively) for 52 h of recovery. Glycogen remained depressed in LC (P < 0.05) while returning to resting levels by 24 h in HC. PGC-1alpha mRNA increased both at exhaustion (3-fold) and 2 h later (6.2-fold) (P < 0.05) but returned to rest levels by 24 h. PGC-1alpha protein increased (P < 0.05) 23% at exhaustion and remained elevated for at least 24 h (P < 0.05). While there was no direct treatment effect (HC vs. LC) for PGC-1alpha mRNA or protein, there was a linear relationship between the changes in glycogen and those in PGC-1alpha protein during exercise and recovery (r = -0.68, P < 0.05). In contrast, PGC-1beta did not increase with exercise but rather decreased (P < 0.05) below rest level at 24 and 52 h, and the decrease was greater (P < 0.05) in LC. PGC-1alpha protein content increased in prolonged exercise and remained upregulated for 24 h, but this could not have been predicted by the changes in mRNA. The beta-isoform declined rather than increasing, and this was greater when glycogen was not resynthesized to rest levels. 相似文献
11.
12.
13.
14.
15.
Carley R Benton Xiao-Xia Han Maria Febbraio Terry E Graham Arend Bonen 《Journal of applied physiology》2006,100(2):377-383
PGC-1alpha is a key regulator of tissue metabolism, including skeletal muscle. Because it has been shown that PGC-1alpha alters the capacity for lipid metabolism, it is possible that PGC-1alpha expression is regulated by the intramuscular lipid milieu. Therefore, we have examined the relationship between PGC-1alpha protein expression and the intramuscular fatty acid accumulation in hindlimb muscles of animals in which the capacity for fatty acid accumulation in muscle is increased (Zucker obese rat) or reduced [FAT/CD36 null (KO) mice]. Rates of palmitate incorporation into triacylglycerols were determined in perfused red (RG) and white gastrocnemius (WG) muscles of lean and obese Zucker rats and in perfused RG and WG muscles of FAT/CD36 KO and wild-type (WT) mice. In obese Zucker rats, the rate of palmitate incorporation into triacylglycerol depots in RG and WG muscles were 28 and 24% greater than in lean rats (P < 0.05). In FAT/CD36 KO mice, the rates of palmitate incorporation into triacylglycerol depots were lower in RG (-50%) and WG muscle (-24%) compared with the respective muscles in WT mice (P < 0.05). In the obese animals, PGC-1alpha protein content was reduced in both RG (-13%) and WG muscles (-15%) (P < 0.05). In FAT/CD36 KO mice, PGC-1alpha protein content was upregulated in both RG (+32%, P < 0.05) and WG muscles (+50%, P < 0.05). In conclusion, from studies in these two animal models, it appears that PGC-1alpha protein expression is inversely related to components of intramuscular lipid metabolism, because 1) PGC-1alpha protein expression is downregulated when triacylglycerol synthesis rates, an index of intramuscular lipid metabolism, are increased, and 2) PGC-1alpha protein expression is upregulated when triacylglycerol synthesis rates are reduced. Therefore, we speculate that the intramuscular lipid sensing may be involved in regulating the protein expression of PGC-1alpha in skeletal muscle. 相似文献
16.
Rhee J Ge H Yang W Fan M Handschin C Cooper M Lin J Li C Spiegelman BM 《The Journal of biological chemistry》2006,281(21):14683-14690
17.
18.
Cho KN Choi JY Kim CH Baek SJ Chung KC Moon UY Kim KS Lee WJ Koo JS Yoon JH 《The Journal of biological chemistry》2005,280(8):6676-6681
MUC8 gene expression is overexpressed in nasal polyp epithelium and is also increased by treatment with inflammatory mediators in nasal epithelial cells. These data suggest that MUC8 may be one of important mucin genes expressed in human airway. However, the mechanisms of various inflammatory mediator-induced MUC8 gene expression in normal nasal epithelial cells remain unclear. We examined the mechanism by which prostaglandin E(2) (PGE2), an arachidonic acid metabolite, increases MUC8 gene expression levels. Here, we show that ERK mitogen-activated protein kinase is essential for PGE2-induced MUC8 gene expression in normal human nasal epithelial cells and that p90 ribosomal S 6 protein kinase 1 (RSK1) mediates the PGE2-induced phosphorylation of cAMP-response element binding protein. Our results also indicate that cAMP-response element at the -803 region of the MUC8 promoter is an important site of PGE2-induced MUC8 gene expression. In conclusion, this study gives insights into the molecular mechanism of PGE2-induced MUC8 gene expression in human airway epithelial cells. 相似文献
19.