首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study determined the effects of apoA-I, HDL3, or hydroxy-beta-cyclodextrin on apoB-100 secretion and bile acid synthesis by HepG2 cells. The principal observations were that: 1) ApoB-100 secretion into the medium was significantly less after the addition of any of the three agents. 2) Triglyceride mass was not significantly changed from control in the medium but was significantly, although modestly, reduced in the cells. 3) Neither free cholesterol (FC) nor cholesteryl ester (CE) mass in the medium was changed; by contrast, CE mass was reduced within the cells although FC was not. 4) Although the total mass of cholesterol in the medium was unaffected, the proportion associated with apoB-100 was reduced, whereas the proportion associated with the non-apoB-100 fraction was increased. 5) There was also an unanticipated, but substantial, increase in bile acid synthesis induced by apoA-I, HDL3, or hydroxy-beta-cyclodextrin, which was time and concentration dependent, and which was associated with marked increases in cholesterol 7 alpha-hydroxylase activity. There were no significant changes in ACAT activity and only modest increases in HMG-CoA reductase activity. These findings support previous clinical observations that an elevated apoB-100 can accompany a low HDL cholesterol in normotriglyceridemic subjects. They also point to physiologically important, although still only partially understood, metabolic relationships amongst hepatic apoB-100 secretion, cholesterol efflux, and bile acid synthesis.  相似文献   

2.
Apolipoprotein B-100 (apoB-100) is degraded by endoplasmic reticulum-associated degradation (ERAD) when lipid availability limits assembly of VLDLs. The ubiquitin ligase gp78 and the AAA-ATPase p97 have been implicated in the proteasomal degradation of apoB-100. To study the relationship between ERAD and VLDL assembly, we used small interfering RNA (siRNA) to reduce gp78 expression in HepG2 cells. Reduction of gp78 decreased apoB-100 ubiquitination and cytosolic apoB-ubiquitin conjugates. Radiolabeling studies revealed that gp78 knockdown increased secretion of newly synthesized apoB-100 and, unexpectedly, enhanced VLDL assembly, as the shift in apoB-100 density in gp78-reduced cells was accompanied by increased triacylglycerol (TG) secretion. To explore the mechanisms by which gp78 reduction might enhance VLDL assembly, we compared the effects of gp78 knockdown with those of U0126, a mitogen-activated protein kinase/ERK kinase1/2 inhibitor that enhances apoB-100 secretion in HepG2 cells. U0126 treatment increased secretion of both apoB100 and TG and decreased the ubiquitination and cellular accumu-lation of apoB-100. Furthermore, p97 knockdown caused apoB-100 to accumulate in the cell, but if gp78 was concomitantly reduced or assembly was enhanced by U0126 treatment, cellular apoB-100 returned toward baseline. This indicates that ubiquitination commits apoB-100 to p97-mediated retrotranslocation during ERAD. Thus, decreasing ubiquitination of apoB-100 enhances VLDL assembly, whereas improving apoB-100 lipidation decreases its ubiquitination, suggesting that ubiquitination has a regulatory role in VLDL assembly.  相似文献   

3.
Epidemiological studies suggest that the red wine consumption may reduce the risk factor of cardiovascular disease. However, the mechanisms of how the red wine phenolic components reduce the risk of cardiovascular disease is currently unknown. Our previous study demonstrated that red wine polyphenolics suppress the secretion of pro-atherogenic lipoproteins (very low density lipoproteins) from human hepatic HepG2 cells. Therefore, in this study we hypothesize that red wine polyphenolics will also attenuate the production and secretion of another pro-atherogenic lipoprotein (chylomicrons) from human intestinal CaCo-2 cells. Cultured CaCo-2 cells were incubated in the presence of dealcoholized red wine, alcoholized red wine and atorvastatin for 24 h. The apo B48 protein (marker of intestinal chylomicrons) was quantified on Western blotting and the enhanced chemiluminescence. Apo B48 levels in the cells and that secreted into the media were significantly reduced by 29% in the cells incubated with dealcoholized red wine compared with control cells. Also the similar effect was shown in the cells incubated with alcoholized red wine. The cells incubated with atorvastatin shown the significant reduction of apo B48 production compared to control cells. Collectively, this study suggests that red wine polyphenolics down regulate the production of chylomicron in intestinal CaCo-2 cells.  相似文献   

4.
Sixteen hyperlipidemic men were enrolled in a randomized, placebo-controlled, double-blind, cross-over study to evaluate the effect of ezetimibe 10 mg and simvastatin 40 mg, coadministered and alone, on the in vivo kinetics of apolipoprotein (apo) B-48 and B-100 in humans. Subjects underwent a primed-constant infusion of a stable isotope in the fed state. The coadministration of simvastatin and ezetimibe significantly reduced plasma concentrations of cholesterol (−43.0%), LDL-C (−53.6%), and triglycerides (−44.0%). Triglyceride-rich lipoproteins (TRL) apoB-48 pool size (PS) was significantly decreased (−48.9%) following combination therapy mainly through a significant reduction in TRL apoB-48 production rate (PR) (−38.0%). The fractional catabolic rate (FCR) of VLDL and LDL apoB-100 were significantly increased with all treatment modalities compared with placebo, leading to a significant reduction in the PS of these fractions. We also observed a positive correlation between changes in TRL apoB-48 PS and changes in TRL apoB-48 PR (r = 0.85; P < 0.0001) with combination therapy. Our results indicate that treatment with simvastatin plus ezetimibe is effective in reducing plasma TRL apoB-48 levels and that this effect is most likely mediated by a reduction in the intestinal secretion of TRL apoB-48. Our study also indicated that the reduction in LDL-C concentration following combination therapy is mainly driven by an increase in FCR of apoB-100 containing lipoproteins.  相似文献   

5.
We aimed to identify mechanisms by which apolipoprotein B-48 (apoB-48) could have an atherogenic role by simultaneously studying the metabolism of postprandial apoB-48 and apoB-100 lipoproteins. The kinetics of apoB-48 and apoB-100, each in four density subfractions of VLDL and intermediate density lipoprotein (IDL), were studied by stable isotope labeling in a constantly fed state with half-hourly administration of almond oil in five postmenopausal women. A non-steady-state, multicompartmental model was used. Despite a much lower production rate, VLDL and IDL apoB-48 shared a similar secretion pattern with apoB-100: both were directly secreted into all fractions with similar percentage mass distributions. Fractional catabolic rates (FCRs) of apoB-48 and apoB-100 were similar in VLDL and IDL. We identified a fast turnover compartment of light VLDL that had a residence time of <30 min for apoB-48 and apoB-100. Finally, a high secretion rate of apoB-48 was associated with a slow FCR of VLDL and IDL apoB-100. In conclusion, the intestine secretes a spectrum of apoB lipoproteins, similar to what the liver secretes, albeit with a much lower secretion rate. Once in plasma, intestinal and hepatic triglyceride-rich lipoproteins have similar rates of clearance and participate interactively in similar metabolic pathways, with high apoB-48 production inhibiting the clearance of apoB-100.  相似文献   

6.
Hepatic overproduction of apolipoprotein B (apoB)-containing lipoproteins is characteristic of the dyslipidemia associated with insulin resistance. Recently, we demonstrated that the flavonoid naringenin, like insulin, decreased apoB secretion from HepG2 cells by activation of both the phosphoinositide-3-kinase (PI3-K) pathway and the mitogen-activated protein kinase/extracellular-regulated kinase (MAPK(erk)) pathway. In the present study, we determined whether naringenin-induced signaling required the insulin receptor (IR) and sensitized the cell to the effects of insulin, and whether the kinetics of apoB assembly and secretion in cells exposed to naringenin were similar to those of insulin. Immunoblot analysis revealed that insulin stimulated maximal phosphorylation of IR and IR substrate-1 after 10 min, whereas naringenin did not affect either at any time point up to 60 min. The combination of naringenin and submaximal concentrations of insulin potentiated extracellular-regulated kinase 1/2 activation and enhanced upregulation of the LDL receptor, downregulation of microsomal triglyceride transfer protein expression, and inhibition of apoB-100 secretion. Multicompartmental modeling of apoB pulse-chase studies revealed that attenuation of secreted radiolabeled apoB in naringenin- or insulin-treated cells was similar under lipoprotein-deficient or oleate-stimulated conditions. Naringenin and insulin both stimulated intracellular apoB degradation via a kinetically defined rapid pathway. Therefore, naringenin, like insulin, inhibits apoB secretion through activation of both PI3-K and MAPK(erk) signaling, resulting in similar kinetics of apoB secretion. However, the mechanism for naringenin-induced signaling is independent of the IR. Naringenin represents a possible strategy for reduction of hepatic apoB secretion, particularly in the setting of insulin resistance.  相似文献   

7.
We isolated a HepG2-derived sub-clone (HepG2-Lipo), which possessed an increased lipoprotein synthesizing ability. HepG2-Lipo cells could secrete triglycerides (TG) and cholesterol at rates 9.4- and 6-fold higher, respectively, when compared to HepG2 cells. Real-time RT-PCR analysis revealed that the expression levels of sterol regulatory element-binding protein-1c and -2 were 2.9- and 1.5-fold higher than in HepG2 cells. Furthermore, two apolipoprotein (apo) genes (apoA-1 and apoB-100) in HepG2-Lipo cells were expressed at 2.8- and 1.9-fold higher levels when compared to those in parental cells. We examined the effects of three antihyperlipidemic agents on the lipoprotein profiles of HepG2-Lipo cells. Simvastatin at 5 μM selectively suppressed cholesterol secretion from HepG2-Lipo cells, and 500 μM fenofibrate inhibited both TG and cholesterol secretion from the cells.  相似文献   

8.
To investigate the mechanism of control of intestinal apolipoprotein B (apoB) secretion, we studied the effects of fatty acids and calcium ionophores on the human intestinal model cell line Caco-2. Although treatment with various fatty acids (18:1w9, 18:2w6, and 20:5w3) complexed to bovine serum albumin resulted in a dramatic redistribution of apoB-100 from the low density and high density lipoproteins to the very low density lipoprotein fraction, there was no effect of any of the fatty acids on the overall rate of total apoB (apoB-100 and apoB-48) secretion. Treatment of differentiated monolayers with calcium ionophores A23187 or ionomycin caused dose-specific increases (125% at 1 microM) in the accumulation of total apoB, but not apoA-I, in conditioned medium as measured by specific immunoassays. Incubation studies with 35S-labeled Caco-2 apoB,E-containing low density lipoprotein particles revealed that treatment with ionomycin over a broad concentration range had no effect on the reuptake of secreted apoB-100. The effect on A23187 on total apoB secretion was blocked by prior chelation of medium calcium and was significantly enhanced by the addition of calcium (up to 50 mM) to the medium. The effect of A23187 was significantly blunted by treatment with the calmodulin antagonist trifluoperazine (10 microM). The time course of A23187 action on Caco-2 apoB secretion required at least 6 h to occur. In contrast to the concentration of apoB in the medium, cellular apoB content was not influenced by treatment with ionophore. Pulse-chase experiments demonstrated a significant reduction in the synthesis-secretion interval for apoB-100 and apoB-48 after 24 h of exposure to ionomycin. Neither fatty acid treatment nor stimulation with ionophore affected the ratio of apoB-100 to apoB-48 produced by the cells. These findings with calcium ionophores implicate the involvement of calcium ion in the mechanism of intestinal apoB secretion. A role for calcium-dependent processes in apoB production raises the possibility that, rather than fatty acid flux, calcium-evoked or calcium-dependent hormones may be important regulators of apoB secretion.  相似文献   

9.
10.
The aim of this study was to investigate the direct effects of growth hormone (GH) on production and secretion of apolipoprotein B (apoB)-containing lipoproteins from hepatocytes. Bovine GH (5-500 ng/ml) was given for 1 or 3 days to rat hepatocytes cultured on laminin-rich matrigel in serum-free medium. The effects of GH were compared with those of 3 nM insulin and 500 microM oleic acid. GH increased the editing of apoB mRNA, and the proportion of newly synthesized apoB-48 (of total apoB) in the cells and secreted into the medium changed in parallel. GH increased total secretion of apoB-48 (+30%) and apoB-48 in very low density lipoproteins (VLDL) more than twofold. Total apoB-100 secretion decreased 63%, but apoB-100-VLDL secretion was unaffected by GH. Pulse-chase studies indicated that GH increased intracellular early degradation of apoB-100 but not apoB-48. GH had no effect on apoB mRNA or LDL receptor mRNA levels. The triglyceride synthesis, the mass of triglycerides in the cells, and the VLDL fraction of the medium increased after GH incubation. Three days of insulin incubation had effects similar to those of GH. Combined incubation with oleic acid and GH had additive effects on apoB mRNA editing and apoB-48-VLDL secretion. In summary, GH has direct effects on production and secretion of apoB-containing lipoproteins, which may add to the effects of hyperinsulinemia and increased flux of fatty acids to the liver during GH treatment in vivo.  相似文献   

11.
Despite a complete lack of microsomal triglyceride transfer protein (MTP), L35 rat hepatoma cells secrete triglyceride-containing lipoproteins, albeit at a rate 25% of that of parental FAO hepatoma cells, which express high levels of MTP. The inability to express MTP was associated with a complete block in the secretion of both apolipoprotein (apo)B-100 and apoB-48. Stable expression of a MTP transgene restored the secretion of both apoB-100 and apoB-48 in L35 cells, indicating that MTP is essential for the secretion of both forms of apoB. Treatment with the MTP inhibitor BMS-200150 reduced the secretion of triglyceride by 70% in FAO cells, whereas the inhibitor did not affect the secretion of triglycerides by L35 cells. Thus, in the presence of the MTP inhibitor, both cell types secreted triglycerides at similar rates. Essentially, all of the triglycerides secreted by L35 cells were associated with HDL containing apoA-IV and apoE but devoid of apoB-100 or apoB-48. These results suggest that these triglyceride-containing lipoproteins are assembled and secreted via a pathway that is independent of both apoB and MTP. Our findings support the concept that apoB and MTP co-evolved and provided a means to augment the secretion of triglyceride through the formation of lipoproteins containing large hydrophobic cores enriched with triglycerides.  相似文献   

12.
Control of apolipoprotein E secretion in the human hepatoma cell line KYN-2   总被引:5,自引:0,他引:5  
Even though it is known that apolipoprotein E (apoE) is deeply involved in major age-related disorders such as atherosclerosis or Alzheimer's disease (AD), the control of cell-specific apoE expression is still poorly understood. We compared the apoE secretion as previously described in astrocytic cell17 to hepatic cell apoE secretion. We used the human hepatoma cell line KYN-2 to better delineate the characteristics of apoE secretion and to validate it with respect to the classical human hepatoma cell line HepG2. Interleukin-1beta (IL-1beta) and interferon-gamma (IFN-gamma) significantly inhibited, while IL-2, IL-6 and tumour necrosis factor-alpha (TNF-alpha) were inactive on apoE secretion by KYN-2 as well as HepG2 cells. Cholesterol and 25-OH cholesterol had no effect, while forskolin exerted a significant inhibitory effect, on apoE secretion in KYN-2 cells. Our results suggest that the KYN-2 cell line represents an appropriate cell model, and in any case an alternative model to the HepG2 cell line, to study the control of apoE secretion. The response of KYN-2 cells to both cytokines and cholesterol differs from that found in astrocytoma cells, suggesting that blood variations of apoE concentrations in AD may not reflect the dysregulations taking place in the brain.  相似文献   

13.
To study the mechanism of low levels of full length and truncated apoB in individuals heterozygous for apoB truncation, a non-sense mutation was introduced in one of the three alleles of apob gene of HepG2 cells by homologous recombination. Despite very low levels of apoB-82 (1-2%) in the media, a prominent N-terminal apoB protein of 85 kDa (apoB-15) was secreted that fractionated at d > 1.065 in density gradient ultracentrifugation. The mechanism of production of this short protein was studied by 35S-methionine pulse-chase experiment. Oleate prevented presecretory degradation of apoB-100 in the cell and resulted in increased secretion of newly synthesized apoB-100 with decreases in the apoB-15, suggesting that rescue of pre-secretary intracellular degradation of apoB restricted the production and secretion of apoB-15. Further investigation on the degradation of transmembrane forms of apoB, in the presence and absence of a cysteine protease inhibitor, N-acetyl-leucyl-leucyl-norleucinal (ALLN), showed appearance of detectable levels of newly synthesized apoB-82 in the cell and the media together with increased apoB-100 secretion, and reduction in the secretion of apoB-15. Compared to ER membrane, the levels of apoB were higher in the luminal content, and presence of both oleate and ALLN had additive effect on apoB secretion. These results suggest that the presence of improper folding of apoB during translocation led to the cleavage of both apoB-100 and apoB-82 by ALLN-sensitive protease and generation of 85 kDa N-terminal fragment of apoB.  相似文献   

14.
15.
Studies in different liver-derived cells in culture indicate that apolipoprotein (apo) B-100 production is regulated largely by intracellular degradation and the ubiquitin-proteasome pathway is a major mechanism for the degradation. The proteasomal degradation of apoB-100 was postulated to be an intrinsic property of the protein that occurs even in the presence of optimal amounts of lipids supplied to the cell. We examined apoB-100 and apoB-48 biogenesis in CaCo2, a human colon carcinoma cell line. To our surprise, apoB-100 and apoB-48 were quantitatively secreted by CaCo2 cells; essentially none of the newly synthesized apoB was degraded before secretion in a 2-h period whether the cells were cultured on filter or on plastic. Furthermore, although ubiquitin immunoreactivity was readily detected in the intracellular apoB isolated from HepG2 cells, little or no ubiquitin was detectable in the intracellular apoB from CaCo2 cells. The amounts of free ubiquitin and total and non-apoB ubiquitinated proteins were comparable in HepG2 and CaCo2 cells, indicating that CaCo2 cells have the necessary machinery for tagging ubiquitin chains onto cellular proteins for proteasomal degradation. Incubation in lipoprotein-deficient serum did not induce apoB degradation, but the addition of a microsomal triglyceride transfer protein inhibitor led to apoB degradation in CaCo2 cells. Finally, similar proportions of apoB polypeptide in isolated microsomes from CaCo2 and HepG2 cells were accessible to exogenously added trypsin, indicating that the mere exposure of apoB nascent chains to the cytosolic compartment is insufficient to cause the proteasomal degradation. Therefore, the intracellular degradation of apoB is not an intrinsic property of the protein, and the phenomenon is neither universal nor inevitable. The unconditional use of apoB as a paradigm for intracellular protein degradation is not warranted.  相似文献   

16.
Epigallocatechin gallate (EGCG) increases the formation of cytosolic lipid droplets by a mechanism that is independent of the rate of triglyceride biosynthesis and involves an enhanced fusion between lipid droplets, a process that is crucial for their growth in size. EGCG treatment reduced the secretion of both triglycerides and apolipoprotein B-100 (apoB-100) VLDLs but not of transferrin, albumin, or total proteins, indicating that EGCG diverts triglycerides from VLDL assembly to storage in the cytosol. This is further supported by the observed increase in both intracellular degradation of apoB-100 and ubiquitination of the protein (indicative of increased proteasomal degradation) in EGCG-treated cells. EGCG did not interfere with the microsomal triglyceride transfer protein, and the effect of EGCG on the secretion of VLDLs was found to be independent of the LDL receptor. Thus, our results indicate that EGCG promotes the accumulation of triglycerides in cytosolic lipid droplets, thereby diverting lipids from the assembly of VLDL to storage in the cytosol. Our results also indicate that the accumulation of lipids in the cytosol is not always associated with increased secretion of VLDL.  相似文献   

17.
18.
Apolipoprotein B (apoB) truncation-specifying mutations cause familial hypobetalipoproteinemia (FHBL). Lipoprotein kinetics studies have shown that production rates of apoB-100 are reduced by 70-80% in heterozygous FHBL humans, instead of the expected 50%. To develop suitable mouse models to study the underlying mechanism, apoB-38.9-only (Apob(38.9/38.9)) mice were crossbred with Apobec-1 knockout (Apobec-1(-/-)) mice or apoB-100-only (Apob(100/100)) mice to produce two lines of apoB-38.9 heterozygous mice that produce only apoB-38.9 and apoB-100, namely Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) mice. In vivo rates of apoB-100 secretion were measured using [35S]Met/Cys to label proteins and Triton WR-1339 to block apoB-100 VLDL lipolysis/uptake. Rates of secretion were reduced by 80%, rather than the expected 50%, in both Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) mice compared with those of the respective Apobec-1(-/-)/Apob(+/+) and Apob(100/100) control mice. Continuous labeling and pulse-chase experiments in primary hepatocyte cultures revealed that rates of apoB-100 synthesis by Apobec-1(-/-)/Apob(38.9/+) and Apob(38.9/100) hepatocytes were reduced to the expected 50% of those of the respective controls, but the efficiency of secretion of apoB-100 was significantly lower in apoB-38.9 heterozygous hepatocytes. The greater-than-expected decreases in apoB-100 production rates of FHBL heterozygous humans appear to be attributable to a defect in secretion rather than in the synthesis of apoB-100 from the unaffected apoB allele.  相似文献   

19.
Lovastatin, a potent competitive inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase activity, was used to study the regulation of cholesterol metabolism and the basolateral-membrane secretion of triacylglycerol and cholesterol in the human intestinal cell line CaCo-2. At 0.1 microgram/ml, lovastatin decreased 3H2O incorporation into cholesterol by 71%. In membranes prepared from cells incubated with lovastatin for 18 h, HMG-CoA reductase activity was induced 4-8-fold. Mevalonolactone prevented this induction. In intact cells, lovastatin (10 micrograms/ml) decreased cholesterol esterification by 50%. The reductase inhibitor decreased membrane acyl-CoA:cholesterol O-acyltransferase (ACAT) activity by 50% at 5 micrograms/ml. ACAT inhibition by lavastatin was not reversed by adding excess of cholesterol or fatty acyl-CoA to the assay. Lovastatin, in the presence or absence of mevalonolactone, decreased the basolateral secretion of newly synthesized cholesteryl esters and triacylglycerols. Lovastatin also inhibited the esterification of absorbed cholesterol and the secretion of this newly synthesized cholesteryl ester. Lovastatin is a potent inhibitor of cholesterol synthesis in CaCo-2 cells. Moreover, it is a direct inhibitor of ACAT activity, independently of its effect on HMG-CoA reductase and cholesterol synthesis.  相似文献   

20.
One of the most promising cell-based therapies for combating insulin-dependent diabetes entails the use of genetically engineered non-β cells that secrete insulin in response to physiologic stimuli. A normal pancreatic β cell secretes insulin in a biphasic manner in response to glucose. The first phase is characterized by a transient stimulation of insulin to rapidly lower the blood glucose levels, which is followed by a second phase of insulin secretion to sustain the lowered blood glucose levels over a longer period of time. Previous studies have demonstrated hepatic and enteroendocrine cells to be appropriate hosts for recombinant insulin expression. Due to different insulin secretion kinetics from these cells, we hypothesized that a combination of the two cell types would mimic the biphasic insulin secretion of normal β cells with higher fidelity than either cell type alone. In this study, insulin secretion experiments were conducted with two hepatic cell lines (HepG2 and H4IIE) transduced with 1 of 3 adenoviruses expressing the insulin transgene and with a stably transfected recombinant intestinal cell line (GLUTag-INS). Insulin secretion was stimulated by exposing the cells to glucose only (hepatic cells), meat hydrolysate only (GLUTag-INS), or to a cocktail of the two secretagogues. It was found experimentally that the recombinant hepatic cells secreted insulin in a more sustained manner, whereas the recombinant intestinal cell line exhibited rapid insulin secretion kinetics upon stimulation. The insulin secretion profiles were computationally combined at different cell ratios to arrive at the combinatorial kinetics. Results indicate that combinations of these two cell types allow for tuning the first and second phase of insulin secretion better than either cell type alone. This work provides the basic framework in understanding the secretion kinetics of the combined system and advances it towards preclinical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号