首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of soybean beta-amylase with glucose   总被引:1,自引:0,他引:1  
The interaction of soybean beta-amylase with glucose was investigated by inhibition kinetics studies and spectroscopic measurements. The inhibition type, inhibitor constant (Ki) and dissociation constant (Kd) of beta-amylase-glucose complex were dependent on pH. At pH 8.0, glucose behaved as a competitive inhibitor (Ki = 34 mM). Binding of glucose produced a characteristic difference spectrum and a change of circular dichroism (CD) at pH 8.1. By using difference absorbance at 292 nm and difference ellipticity at 290 nm, Kd values for beta-amylase-glucose complex were determined to be 45 and 46 mM, respectively. In contrast to pH 8.0, glucose behaved as a mixed-type inhibitor (Ki = 320 mM) at pH 5.4. The Kd values obtained from the difference spectrum were increased by lowering the pH from 8. The pH dependence of the Ki and Kd values suggested that one ionizable group of pK = 8.0, which is shifted to 6.9 by the binding of glucose, controls the binding affinity of glucose. The binding of glucose competed with the binding of cyclohexaamylose and maltose at pH 8.0. The modification of SH groups of the enzyme affected the binding of glucose but did not affect the binding of maltose or cyclohexaamylose at pH 8.0. It was concluded from these results that the binding site of glucose is different from that of maltose and cyclohexaamylose. Presumably, glucose may bind to the subsite 1 of soybean beta-amylase.  相似文献   

2.
Gluconacetobacter diazotrophicus was grown in chemostat under N2-fixing conditions at different culture pH values (from 2.5 to 7.5) with glucose as the C-source. Maximum glucose and oxygen utilization yields were observed at pH values between 5.0 and 6.5. Yields, although lower, were not severely affected at acidic (2.5–4.5) and moderate alkaline (7.5) pH values. But, at pH values just over 7.5, cultures became unstable and washed out. Maximum biomass yields coincided with optimal activity (and minimal synthesis) of pyrroloquinoline quinone (PQQ)-linked glucose dehydrogenase (PQQ-GDH). At external pH values of 7.0 and above, whereas PQQ-GDH was actively synthesized, a very low in situ activity could be detected. The lack of PQQ-GDH activity at moderate alkaline pH values seems to be the cause of lack of growth of this organism under these conditions.  相似文献   

3.
The influence of environmental pH on the regulation of glucose catabolism by Lactobacillus reuteri was examined in anaerobic batch cultures. Under acidic conditions both glucose consumption and end-products formation were low. Maximum biomass was reached at pH 5·0, with a specific growth rate of µ= 0·78 h-1. The shift in pH values from 4.3 to 6.5 reflected an increase in glucose uptake as well as in the yield ( Y p/x) of acetate, lactate and ethanol after 12 h of incubation. Ethanol was the major metabolite produced at all pH values assayed.  相似文献   

4.
Seminal plasma composition was studied in budgerigars. Semen was obtained from adult male budgerigars by applying gentle pressure to both sides of the cloaca. Pooled samples were centrifuged at 15,000 g for 2 min, and the seminal plasma separated for biochemical analysis. Osmolality, Na+, K+, Cl-, pH, glucose and fructose values were determined. The biochemical composition of budgerigar seminal plasma obtained in this study was: Osmolality 329.9 +/- 14.5 mOs/kg; Na+ 158.6 +/- 8.4 mEq/l; K+ 16.39 +/- 6.24 mEq/l; Cl- 109.2 +/- 7.4 mEq/l; pH 8.20 +/- 0.18 glucose 4.25 +/- 0.96 mmol/l; fructose 0.59 +/- 0.29 mmol/l. The results are discussed in relation to the values reported for the domestic fowl. This forms part of a reproductive biology study of non-domesticated avian species.  相似文献   

5.
In batch fermentations of C. acetobutylicum, with 5 g/L yeast extract and 50mM glucose, the ratio of ammonium to glucose affected solvent production when the pH was left to vary uncontrolled from 4.5 to 3.65. High solvent production was observed for a low ratio. When the pH was controlled at 4.5, only acids were produced for all ratio values. At a low ammonium-to-glucose ratio, solvents were produced when the pH was controlled at 3.7. Acids only were produced for a low ratio value at pH 4.0 or for a high ratio value at pH 3.7. In continuous cultures, mostly acids were produced under glucose limitation, but solvents were produced under nitrogen limitation. It was concluded that the nitrogen availability controls solvent production and that the pH affects the availability of organic nitrogen. Biomass autolysis at the stationary phase of batch cultures was reversibly inhibited at pH values less than 3.8. In batch fermentations, the overall molar growth yields on ATP (Y(ATP)) varied from 5.5 to 9.0 and the transient yields from 5.5 to 15.5. In continuous cultures, the Y(ATP) values varied from 5.5 to 14.7 under glucose limitation, and from 6.1 to 9.3 under nitrogen limitation. The Y(ATP) depended on the ammonium to glucose ratio and the culture pH, but did not show the usual dependence on the specific growth rate in batch cultures. The experiments seem to confirm the hypothesis that solvent production is controlled by the demand and availability of ATP.  相似文献   

6.
6,7 -Dideoxy-alpha-D-gluco-heptose 7-phosphonic acid, the isosteric phosphonate analogue of glucose 6-phosphate, was synthesized in six steps from the readily available precursor benzyl 4,6-O-benzylidene-alpha-D-glucopyranoside. The analogue is a substrate for yeast glucose 6-phosphate dehydrogenase, showing Michaelis-Menten kinetics at pH7.5 and 8.0. At both pH values the Km values of the analogue are 4-5 fold higher and the values approx. 50% lower than those of the natural substrate. The product of enzymic dehydrogenation of the phosphonate analogue at pH8.5 is itself a substrate for gluconate 6-phosphate dehydrogenase.  相似文献   

7.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutamine, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

8.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutaminE, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

9.
The effect of phentolamine, an alpha-adrenergic blocker, on hepatic oxygen supply, plasma glucose, and lactate, and survival in fasted male rats administered Echerichia coli endotoxin (25 mg/kg, ip) has been studied. Survival at 24 h was 8% in untreated endotoxic rats, 83% in rats receiving phentolamine (5 mg/kg, ip) and endotoxin, and 100% in phentolamine controls. Measurements during the initial 8 h postendotoxin recorded transiently lower systemic arterial pressure in the phentolamine-endotoxic rats. Arterial PO2 and increases of pH and heart rate were similar in both endotoxic groups. Lactacidemia, present by 4 h in untreated endotoxic rats, did not develop in the phentolamine group and plasma glucose was significantly higher at 8 h (98 +/- 2.5 vs. 77 +/- 5.6 mg%, mean +/- SE). Mean hepatic PO2 at 6 h in phentolamine-endotoxic rats was 9.6 mmHg with 28% of the values below 5 mmHg. By contrast, the mean in untreated endotoxic rats was 1.9 mmHg with 88% of values below 5 mmHg. Phentolamine controls were stable over 8 h; mean hepatic PO2 was 17.7 mmHg. The differences in plasma glucose and lactate suggest protection of hepatic metabolism in phentolamine-treated endotoxic rats by prevention of excessive hepatic hypoxia.  相似文献   

10.
The ability of glucose to reverse the effects of dinitrophenol on amino acid uptake in Ehrlich cells is a function of pH. At pH 6.0, the presence of glucose does not reverse the inhibitory action of the uncoupler. Nearly complete restoration occurs with glucose at pH 7.4. At pH 8, the presence of glucose may cause a modest increase in amino acid uptake in presence of dinitrophenol. At all pH values, glucose restores ATP and cellular K+ to the control levels at the same pH. Although the cytoplasmic pH changes with changes in the external pH, the cell interior is more alkaline than the medium near pH 6.0 and more acid than the medium at pH 7.8 even after 45 min incubation at 37 degrees C. With dinitrophenol and in presence of glucose the difference in pH between the medium and the cell is minimal at both pH 6.0 and 7.8.  相似文献   

11.
Enzymes from extremophiles operate at conditions that are different from their ‘normal’ counterparts, and are therefore a useful extension of the enzyme toolbox. In this paper, the direct glucosylation reaction mediated by a hyperthermophilic β-glucosidase from Pyrocuccus furiosus was investigated. Hexanol was successfully coupled to glucose with this enzyme. A preliminary study was conducted to improve the product yield. A maximum product concentration of 12.9 g.l−1 was attainable by increasing the glucose concentration to the maximum solubility of 2000 g.(kg buffer solution)−1 at the reaction temperature. The highest glucose based yield of 2.64% was achieved with a glucose concentration of 900 g.(kg buffer solution)−1 at a reaction temperature of 65°C and a pH of 6.0. Performing the reaction at higher pH and temperature led to lower product concentrations. This was caused by deactivation of the enzyme accompanied by browning of the reaction mixture. A pH of 4.4 did have a negative effect on both the storage and the operational stability of the enzyme.  相似文献   

12.
The nitrogenase (acetylene reductase) activity in monolithic and minced peat samples was found to be low, no more than 0.014-0.022 mg N/(kg h). Incorporation of the 15N2 isotope into organic compounds of peat soil was from 2.71-8.13 mg N/kg over 15 days. The nitrogen-fixing activity was the highest in a 10-20 cm layer of soil and much lower in the upper (under green moss) and deeper (20-30 cm) layers. The addition of glucose to soil samples stimulated nitrogen fixation considerably after 18-26 h. The maximum nitrogenase activity (3.5-3.8 mg N/(kg h)) observed after 60-70 h coincided with the peak of respiratory activity. A repeated addition of glucose after its exhaustion increased nitrogenase activity without a lag period to 8.5 mg N/(kg h). Investigation of the effect of environmental factors (temperature, pH, aeration, and light intensity) on potential nitrogen-fixing activity in peat samples revealed that nitrogen fixation could proceed in a wide range of pH values (from 3.0 to 7.5) and temperatures (from 5 to 35 degrees C). The nitrogen-fixing bacteria belonging to different trophic groups were enumerated by using nitrogen-free media with pH values and mineralization levels close to those in situ. In samples of peat soil, diazotrophic methanol-utilizing bacteria prevailed (2.0-2.5 x 10(6) cells/g); the second largest group was facultatively anaerobic bacteria of the family Enterobacteriaceae.  相似文献   

13.
Most species of lactic acid bacteria decarboxylate l-malate to lactate and CO(2) if an energy source such as glucose is present. A proton is taken up in the reaction, which prevents pH decreases in the growth medium caused by lactic acid production from glucose fermentation. MRS broth (pH 7.0) (Difco Laboratories) containing 10 mM glucose and various concentrations of l-malate (0, 25, 50, 75, and 100 mM) was used to cultivate Lactobacillus plantarum. After 72 h at 37 degrees C, all malate was decarboxylated and all glucose was fermented, with resultant final pH values of 4.5, 6.3, 6.9, 7.3, and 7.5, respectively. When d-malate (which cannot be decarboxylated) was substituted for l-malate, the final pH values were 4.5, 5.2, 5.6, 5.8, and 5.9. By varying the ratios of glucose to l-malate in the growth medium, it was possible to obtain pH values which were lower, the same, or higher than the initial pH values. In contrast, buffers such as phosphate only retard decreases in pH. l-Malate, when compared with K(2)PO(4) on an equal molar basis, provided greater resistance to decreases in pH. Higher specific growth rates were observed for L. plantarum and Leuconostoc mesenteroides when l-malate rather than K(2)PO(4) was incorporated into the growth medium.  相似文献   

14.
The ability of glucose to reverse the effects of dinitrophenol on amino acid uptake in Ehrlich cells is a function of pH. At pH 6.0, the presence of glucose does not reverse the inhibitory action of the uncoupler. Nearly complete restoration occurs with glucose at pH 7.4. At pH 8, the presence of glucose may cause a modest increase in amino acid uptake in presence of dinitrophenol. At all pH values, glucose restores ATP and cellular K+ to the control levels at the same pH. Although the cytoplasmic pH changes with changes in the external pH, the cell interior is more alkaline than the medium near pH 6.0 and more acid than the medium at pH 7.8 even after 45 min incubation at 37°C. With dinitrophenol and in presence of glucose the difference in pH between the medium and the cell is minimal at both pH 6.0 and 7.8.  相似文献   

15.
Summary Growth, substrate utilization and product formation were studied in batch cultures of a Leuconostoc oenos strain. The effect of various culture conditions, i.e. pH-control at different values and various initial concentrations of malate and glucose, on growth and metabolism were investigated. Addition of malate resulted in a marked stimulation of growth, with only a slight increase in final biomass but a high conversion yield of glucose. Under pH control this stimulation was much greater than could be accounted for from changes in pH profile resulting from malate utilization. The specific rate of malate utilization was maximal at pH 4.0 whereas the specific rate of glucose consumption was highest at pH 5.5. During co-metabolism of malic acid and glucose, substrate utilization and product formation agreed with the stoichiometric relationships of the malo-lactic reaction and the heterolactic fermentation of glucose. Offsprint requests to: A. Pareilleux  相似文献   

16.
Hepatocytes from rats deprived of food for 48 h synthesized glucose and urea from glutamine at a rate which, at pH 7.3, was markedly stimulated (175-250%) by dibutyryl cAMP, phenylephrine, and norepinephrine, in agreement with previous investigators. These effectors also stimulated respiration, elevating ATP production by the amount required for the increase in glucose and urea synthesis. Both the basal and stimulated rates were strongly pH dependent with maxima in the region of pH 7.2-7.6 (urea synthesis) and 7.2-7.5 (glucose synthesis) and declined rapidly on either side of these pH values. The inhibitions at acid and alkaline pH were neither due to lack of energy nor to limitation in glutamine uptake. The intracellular concentrations of aspartate, glutamate, and glutamine were lower at pH 6.7 than at pH 7.3 and were differently affected by dibutyryl cAMP and phenylephrine at the two pH values investigated. When calcium was omitted from the suspending medium, the basal rates of glucose and urea production were decreased as was stimulation by the effectors, phenylephrine completely, and the others partially. The stimulations by phenylephrine and dibutyryl cAMP were additive under all conditions tested. The pattern of metabolite changes indicates that although both effectors stimulated glutaminase and increased supply of aspartate to the argininosuccinate synthetase, dibutyryl cAMP gave greater activation of glutaminase whereas the adrenergic agonists gave greater stimulation of later steps on the biosynthetic pathways. It may be physiologically important than at acid pH both ureagenesis and gluconeogenesis are severely suppressed and cannot be effectively stimulated by the major hormonal regulators of these pathways.  相似文献   

17.
Summary The effect of pH on the production of citric and gluconic acid, from beet molasses byAspergillus niger, was studied using continuous culture. At pH values above 2.5 gluconic acid was the major product, citric acid being the predominant product at low pH values. The optimum specific activities of citrate synthase, aconitase, NAD-linked isocitrate dehydrogenase, and NADP-linked isocitrate dehydrogenase occurred at pH 4 and of glucose oxidase at pH 5.  相似文献   

18.
pH及流加葡萄糖对酵母分批发酵生产谷胱甘肽的影响   总被引:1,自引:0,他引:1  
在5 L的发酵罐中研究了pH及流加葡萄糖对酵母分批发酵生产谷胱甘肽(GSH)的影响。实验考察了不同浓度的流加葡萄糖和不同的恒pH值的分批发酵对于酵母生产GSH产量的变化。实验结果表明,当pH值控制为5.0,流加葡萄糖流速为5g.L-1.h-1,连续流加30 h,可使GSH产量最高,与之前未流加葡萄糖和控制pH相比,其产量提高了6倍。  相似文献   

19.
The pH dependence of exchange transport of glucose in human erythrocytes   总被引:1,自引:0,他引:1  
In glucose exchange transport into red blood cells the rate of glucose uptake showed two pH dependent maxima, with the larger at approximately pH 7.5 and the smaller one at pH 3. In the studied pH range the relation between the rate of glucose uptake and the substrate concentration followed Michaelis-Menten kinetics. While the maximal velocity (V) reflected the pH changes of the media, the Michaelis constant (Km) remained constant. The dissociation constants of the groups of the free carrier and the carrier-glucose complex were the same. The pK of the acidic group was 5.2 and of the basic group 9.5. Glucose was not bound to groups of the carrier which dissociated protons in the pH range of three to nine. By rearranging the equation for the pH dependence of the relative influx a more definitive graphic determination of the pK values was produced.  相似文献   

20.
6,7-Dideoxy-D-gluco-heptonic-7-phosphonic acid, the isosteric phosphonate analogue of gluconate 6-phosphate, was prepared by incubation of the corresponding analogue of glucose 6-phosphate with glucose 6-phosphate dehydrogenase and NADP+ in the presence of an enzyme NADPH-NADP+ recycling system. The analogue of gluconate 6-phosphate is a substrate for yeast gluconate 6-phosphate dehydrogenase, showing Michaelis-Menten kinetics at pH 7.5 and 8.0. At both pH values the Km values are approx. 3-fold higher and the Vmax. values approx. 7-fold lower than those of the natural substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号