首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal changes in abundance of the testate amoeba Penardochlamys sp. and its food vacuole contents were investigated in relation to blooms of the cyanobacteria Microcystis spp. in a hypertrophic pond from April 1999 to March 2000. The behavior of the amoeba feeding on M. aeruginosa and M. wesenbergii was also observed in the laboratory. The amoeba was detectable from late May to November 1999 during the blooms of Microcystis spp. Cell densities of the amoeba fluctuated between 1.4 and 350 cells ml–1 with some sporadic peaks, which did not coincide with rapid decreases in the abundance of Microcystis spp. Food vacuoles contained only Microcystis cells; other prey items were not found, suggesting that this amoeba utilized only the cyanobacteria as food. The amoeba was frequently found attached to Microcystis colonies, but was not associated with other suspended particles. Observation of the amoeba feeding revealed the feeding mechanism and that the amoeba was able to graze on both species of Microcystis. These results suggest that the trophic coupling of these organisms is substantial, although grazing by the amoeba is not sufficient to regulate the dynamics of Microcystis populations in this hypertrophic pond.  相似文献   

2.
Despite its importance for bloom toxicity, the factors determining the population structure of cyanobacterial blooms are poorly understood. Here, we report the results of a two‐year field survey of the population dynamics of Microcystis blooms in a small hypertrophic urban pond. Microscopic enumeration of Microcystis and its predators and parasites was combined with pigment and microcystin analysis and denaturing gradient gel electrophoresis of the ITS rDNA region to assess population dynamics and structure. Two main Microcystis morpho‐ and ITS types were revealed, corresponding to M. aeruginosa and M. viridis. In both years, high population densities of naked amoebae grazing on Microcystis coincided with rapid decreases in Microcystis biomass. In one year, there was a shift from heavily infested M. aeruginosa to the less‐infested M. viridis, allowing the bloom to rapidly recover. The preference of amoebae for M. aeruginosa was confirmed by grazing experiments, in which several amoeba strains were capable of grazing down a strain of M. aeruginosa, but not of M. viridis. Zooplankton and chytrid parasites appeared to be of minor importance for these strong and fast reductions in Microcystis biomass. These findings demonstrate a strong impact of small protozoan grazers on the biomass and genetic structure of Microcystis blooms.  相似文献   

3.
Amoebae grazing can be an important loss factor for blooms of the common cyanobacterium Microcystis. Some Microcystis strains seem to be protected against amoebae grazing, but it is unclear whether this is achieved by their colony morphology or biochemically. These factors were investigated in grazing experiments using two Microcystis-grazing amoebae (Korotnevella sp. and Vannella sp.) and two Microcystis strains with differing colony morphology (aeruginosa and viridis morphotype) and different sensitivity to amoebae grazing. Amoebae did not increase in density and failed to reduce the growth rate of cultures of the amoebae insensitive viridis strain, irrespective of whether the Microcystis strain was colonial or unicellular. This suggests that the extended mucilage matrix surrounding viridis colonies is not the main defence mechanism against amoebae grazing. At the same time, the growth rate of both unicellular and colonial cultures of the amoebae-sensitive aeruginosa strain was heavily reduced by the growing amoebae. The addition of filtered viridis-conditioned medium to aeruginosa cultures significantly decreased both amoebae growth and its effect on aeruginosa growth rates, which indicates that extracellular compounds constitutively produced by viridis are at least partially responsible for their insensitivity to amoebae grazing. These results demonstrate the potential importance of chemical interactions between lower trophic levels (protists) for Microcystis bloom dynamics.  相似文献   

4.
《农业工程》2014,34(6):351-355
Water blooms in eutrophic waters have been serious environmental problems in recent years. To explore effective measures to control this issue has been an interest of research. Our current study was designed to investigate the effects of submerged macrophyte Najas minor All. exudates on the growth of four freshwater phytoplankton species, toxic Microcystis aeruginosa, toxic Anabaena flos-aquae, Chlorella pyrenoidosa and Scenedesmus obliquus as well as natural phytoplankton assemblages of pond water. We also conducted a reciprocal response between N. minor and toxic M. aeruginosa using coexistence experiments. Our results showed that: (1) N. minor exudates significantly inhibited the growth of toxic M. aeruginosa, toxic A. flos-aquae and S. obliquus, with M. aeruginosa being the most sensitive, followed by toxic A. flos-aquae, and S. obliquus the least. N. minor exudates did not show inhibitory effect on C. pyrenoidosa; (2) N. minor and toxic M. aeruginosa have reciprocal inhibitory effect, and the allelopathic interactions between the two different organisms are density dependent and affect their mutual growth; (3) N. minor exudates also can induce a decrease in chlorophyll a content and an inhibition in total dehydrogenase activity of the phytoplankton assemblages. Our present studies indicated the submerged macrophyte N. minor might be a potential useful tool to control phytoplankton blooms.  相似文献   

5.
Tadpoles of Rana grylio were raised as edible frogs in fishponds of Guanqiao in Wuhan City, Hubei, China, during cyanobacterial blooms from June to October. The dominant cyanobacterial species was Microcystis, which was found to be lethally toxic by intraperitoneal (i.p.) mouse bioassay. Little is known about the effect of tadpoles on toxic cyanobacterial blooms. To evaluate the potential of the tadpoles to graze on cyanobacterial blooms, the tadpoles were fed on Microcystis collected from the field in the laboratory. The Microcystis cells decreased from 1.19 × 107 cells mL?1 to 3.23 × 106 cells mL?1, with a sharp reduction of 73% of the initial Microcystis population observed in the first 24 h after introduction of the tadpoles. The ponds containing tadpoles had a markedly lower density of Microcystis than those lacking tadpoles. Tadpoles exposed to either cultured Microcystis aeruginosa (NIES–90, 2.768 µg microcystins mg–1 dw–1) cells or lysed M. aeruginosa cells grew well, however, indicating that they were unaffected by Microcystis toxins. We found a significant increase in tadpole body weight after feeding on either field Microcystis or cultured M. aeruginosa. The mean increase in individual body weight was 20 mg day?1 when fed on Microcystis from the pond, and 7 mg day?1 when fed on M. aeruginosa from culture. Our study strongly suggested that there is a direct trophic relationship between R. grylio tadpoles and toxic Microcystis blooms and they possess the potential to graze on toxic Microcystis. The results imply that R. grylio tadpoles may play an important ecological role in reducing toxic cyanobacterial blooms caused by Microcystis.  相似文献   

6.
Morphological evolution from a unicellular to multicellular state provides greater opportunities for organisms to attain larger and more complex living forms. As the most common freshwater cyanobacterial genus, Microcystis is a unicellular microorganism, with high phenotypic plasticity, which forms colonies and blooms in lakes and reservoirs worldwide. We conducted a systematic review of field studies from the 1990s to 2017 where Microcystis was dominant. Microcystis was detected as the dominant genus in waterbodies from temperate to subtropical and tropical zones. Unicellular Microcystis spp. can be induced to form colonies by adjusting biotic and abiotic factors in laboratory. Colony formation by cell division has been induced by zooplankton filtrate, high Pb2+ concentration, the presence of another cyanobacterium (Cylindrospermopsis raciborskii), heterotrophic bacteria, and by low temperature and light intensity. Colony formation by cell adhesion can be induced by zooplankton grazing, high Ca2+ concentration, and microcystins. We hypothesise that single cells of all Microcystis morphospecies initially form colonies with a similar morphology to those found in the early spring. These colonies gradually change their morphology to that of M. ichthyoblabe, M. wesenbergii and M. aeruginosa with changing environmental conditions. Colony formation provides Microcystis with many ecological advantages, including adaption to varying light, sustained growth under poor nutrient supply, protection from chemical stressors and protection from grazing. These benefits represent passive tactics responding to environmental stress. Microcystis colonies form at the cost of decreased specific growth rates compared with a unicellular habit. Large colony size allows Microcystis to attain rapid floating velocities (maximum recorded for a single colony, ∼ 10.08 m h−1) that enable them to develop and maintain a large biomass near the surface of eutrophic lakes, where they may shade and inhibit the growth of less‐buoyant species in deeper layers. Over time, accompanying species may fail to maintain viable populations, allowing Microcystis to dominate. Microcystis blooms can be controlled by artificial mixing. Microcystis colonies and non‐buoyant phytoplankton will be exposed to identical light conditions if they are evenly distributed over the water column. In that case, green algae and diatoms, which generally have a higher growth rate than Microcystis, will be more successful. Under such mixing conditions, other phytoplankton taxa could recover and the dominance of Microcystis would be reduced. This review advances our understanding of the factors and mechanisms affecting Microcystis colony formation and size in the field and laboratory through synthesis of current knowledge. The main transition pathways of morphological changes in Microcystis provide an example of the phenotypic plasticity of organisms during morphological evolution from a unicellular to multicellular state. We emphasise that the mechanisms and factors influencing competition among various close morphospecies are sometimes paradoxical because these morphospecies are potentially a single species. Further work is required to clarify the colony‐forming process in different Microcystis morphospecies and the seasonal variation in this process. This will allow researchers to grow laboratory cultures that more closely reflect field morphologies and to optimise artificial mixing to manage blooms more effectively.  相似文献   

7.
Diel changes in the frequency of dividing cells (FDC) of three Microcystis species were investigated in a small eutrophic pond from July to October 2005. The representative species was M. aeruginosa (Kütz.) Kütz., constituting 57%–86% of the Microcystis population throughout the study period, and the remainder were M. viridis (A. Braun) Lemmerm. and M. wesenbergii (Komárek) Komárek. The FDC of M. aeruginosa and M. wesenbergii increased in the daytime and fell in the nighttime in July and August, but this regular variation was not observed in September or October. The in situ specific growth rates of Microcystis species were estimated based on the assumption that the specific growth rate can be given as an absolute value of the derivative of FDC with respect to time. The calculated values were similar among species—0.15–0.38 · d?1 for M. aeruginosa, 0.14–0.63 · d?1 for M. viridis, and 0.18–0.61 · d?1 for M. wesenbergii. The specific growth rates in July and August slightly exceeded those in September and October. The analysis of the in situ specific growth rate of Microcystis indicated that recruitment of the benthic population or morphological change, rather than massive growth, was at least partly responsible for the dominance of M. aeruginosa in the study pond.  相似文献   

8.
1. To reveal the role of aquatic heterotrophic bacteria in the process of development of Microcystis blooms in natural waters, we cocultured unicellular Microcystis aeruginosa with a natural Microcystis‐associated heterotrophic bacterial community. 2. Unicellular M. aeruginosa at different initial cell densities aggregated into colonies in the presence of heterotrophic bacteria, while axenic Microcystis continued to grow as single cells. The specific growth rate, the chl a content, the maximum electron transport rate (ETRmax) and the synthesis and secretion of extracellular polysaccharide (EPS) were higher in non‐axenic M. aeruginosa than in axenic M. aeruginosa after cell aggregation, whereas axenic and non‐axenic M. aeruginosa displayed the same physiological characteristic before aggregation. 3. Heterotrophic bacterial community composition was analysed by PCR–denaturing gradient gel electrophoresis (PCR–DGGE) fingerprinting. The biomass of heterotrophic bacteria strongly increased in the coinoculated cultures, but the DGGE banding patterns in coinoculated cultures were distinctly dissimilar to those in control cultures with only heterotrophic bacteria. Sequencing of DGGE bands suggested that Porphyrobacter, Flavobacteriaceae and one uncultured bacterium could be specialist bacteria responsible for the aggregation of M. aeruginosa. 4. The production of EPS in non‐axenic M. aeruginosa created microenvironments that probably served to link both cyanobacterial cells and their associated bacterial cells into mutually beneficial colonies. Microcystis colony formation facilitates the maintenance of high biomass for a long time, and the growth of heterotrophic bacteria was enhanced by EPS secretion from M. aeruginosa. 5. The results from our study suggest that natural heterotrophic bacterial communities have a role in the development of Microcystis blooms in natural waters. The mechanisms behind the changes of the bacterial community and interaction between cyanobacteria and heterotrophic bacteria need further investigations.  相似文献   

9.
Seasonal variations in the cell volume, number of cells in a colony and trichome length of nine bloom-forming cyanobacteria species were investigated in a small eutrophic pond from May to November 2005. The main genera of cyanobacteria were Microcystis and Anabaena, which formed a dense bloom from July to August. M. aeruginosa, M. viridis and M. wesenbergii were present throughout the study period. M. viridis dominated the Microcystis population (39.2–67.1% of total biovolume) during the pre-blooming period, but M. aeruginosa and M. wesenbergii dominated after July. M. aeruginosa was the dominant species from July to November, constituting 49.0–93.2% of the Microcystis population. Each Microcystis species could always be identified from the cell volume and the number of cells in a colony. The numbers of cells in colonies of M. aeruginosa, M. viridis and M. wesenbergii were in the ranges 37–444, 28–143 and 50–264, respectively. The Anabaena population consisted of three species—A. crassa, A. flos-aquae and A. reniformis. A. crassa and A. flos-aquae were typically present at higher densities than A. reniformis. These species also showed distinctive cell volumes. The number of cells in colonies of A. crassa, A. flos-aquae and A. reniformis were in the ranges 19–178, 18–113 and 29–143, respectively. Planktothrix raciborskii and Raphidiopsis mediterranea appeared in August and Aphanizomenon flos-aquae increased from late October, although these species were less abundant. Cell volumes of Microcystis and Anabaena and trichome length of P. raciborskii were positively correlated with water temperature. Small colonies of Microcystis and Anabaena remained small during the bloom period. In contrast, the trichome length of P. raciborskii seemed to depend more strongly on growth conditions.  相似文献   

10.
As a part of a whole-lake, long-term experiment in biomanipulation in. the hypertrophic Bautzen reservoir (G.D.R.), during three years (1984–1986) the dynamics of mouse-related LD 50 of Microcystis aeruginosa was compared with the biomass development of this blue-green and the grazing pressure exerted by Daphnia galeata. Since the three summer averages of the biomass of D. galeata revealed strong differences due to decreasing predation activity of fish from 1984 to 1986, the effects of different grazing pressure on Microcystis toxicity could be investigated under field conditions. Microcystis was nontoxic at the beginning of the growing season and developed high toxicity during its first strong biomass increase in summer in all three years. But this decrease of the LD 50 together with the first biomass increase of the season is found in quite different periods in different years (1984: August, 1985: July, 1986: June). It is obvious that the higher the mean effective filtration rate of D. galeata during summer is found the faster the toxicity of Microcystis is formed. If these observations are combined with findings of other authors, the conclusion can be drawn that the development of toxic Microcystis blooms seems to be promoted by a combination of five conditions: (1) Presence of a mixture of toxic and nontoxic Microcystis strains at the beginning of the growing season even if the portion of toxic strains is very low, (2) physical and chemical growth conditions which favour Microcystis over other phytoplankton, (3) high grazing pressure by zooplankton on edible food particles over a rather long period, (4) patchy distribution of the different Microcystis strains if nonselective filtrators such as Daphnia dominate the zooplankton, and (5) absence of defense mechanisms of Microcystis against grazing which are not coupled with toxicity (e.g. large colony size). These conclusions contribute to a better understanding of the possibilities and limits of in-lake eutrophication control by biomanipulation and emphasize the need to combine top-down and bottom-up control mechanisms in eutrophic and hypertrophic waters.  相似文献   

11.
Cyanobacterial species commonly occur in the phytoplankton of freshwater lakes and sometimes develop as toxin-producing blooms. Microcystis is one of the most common genera of freshwater cyanobacteria and is often the dominating phytoplankton of eutrophic lakes all over the world. In eutrophic lakes, large amounts of Microcystis may overwinter in the sediment and re-inoculate the water column in spring. In most cases, the overwintering pelagic population—if it exists—is small, and its role in re-inoculation has not been clear yet. In December 2005, we found large amounts of Microcystis on the surface, frozen in the ice cover in a eutrophic pond (Pond Hármashegy, Hungary). We identified the Microcystis species and investigated the viability and the toxicity of the frozen cells. The dominant species in the bloom samples was Microcystis viridis. Viability tests showed that the colonies isolated from the ice cover were composed of living cells. The isolated strain was found toxic, we analyzed the microcystin composition in the frozen planktonic Microcystis mass; in the investigated samples microcystin-RR was the main cyanotoxin.  相似文献   

12.
The dynamics of planktonic cyanobacteria in eutrophicated freshwaters play an important role in formation of annual summer blooms, yet overwintering mechanisms of these water bloom forming cyanobacteria remain unknown. The responses to darkness and low temperature of three strains (unicellular Microcystis aeruginosa FACHB-905, colonial M. aeruginosa FACHB-938, and a green alga Scenedesmus quadricauda FACHB-45) were investigated in the present study. After a 30-day incubation under darkness and low temperature, cell morphology, cell numbers, chlorophyll a, photosynthetic activity (ETRmax and I k), and malodialdehyde (MDA) content exhibited significant changes in Scenedesmus. In contrast, Microcystis aeruginosa cells did not change markedly in morphology, chlorophyll a, photosynthetic activity, and MDA content. The stress caused by low temperature and darkness resulted in an increase of the antioxidative enzyme-catalase (CAT) in all three strains. When the three strains re-grew under routine cultivated condition subjected to darkness and low temperature, specific growth rate of Scenedesmus was lower than that of Microcystis. Flow cytometry (FCM) examination indicated that two distinct types of metabolic response to darkness and low temperature existed in the three strains. The results from the present study reveal that the cyanobacterium Microcystis, especially colonial Microcystis, has greater endurance and adaptation ability to the stress of darkness and low temperature than the green alga Scenedesmus. Handling editor: D. Hamilton  相似文献   

13.
Testate amoebae (Protozoa) were studied in spring, summer, and fall from the same microhabitats in a small Sphagnum-dominated peatland in southern Ontario, Canada. A total of 32 sampling stations were established in two wetland plant communities, 19 in an open Ericaceae low-shrub community and 13 in a closed Picea mariana and Larix laricina swamp community. Sphagnum was collected in each station for analysis of testate amoebae and measurement of soil water content parameters and water table depth in May, August, and October 2001. pH and dissolved oxygen of the groundwater under the Sphagnum were measured also. A total of 52 taxa including the rotifer, Habrotrocha angusticollis, were identified. Soil water content and water table variables emerged as the primary factors separating testate amoebae between the open bog/fen community and swamp community. Testate amoebae in the open bog/fen community showed a clear separation between the May sampling period and the August and October sampling periods. Sampling stations in May had much higher water table and were wetter than those in August and October. Conversely, testate amoebae in the swamp community did not show a clear difference between sampling periods. Soil moisture and water tables appear to be more constant in the swamp communities. Biological factors or other microscale environmental factors may need to be considered to explain seasonal changes in testate amoebae. A greater understanding of relationships between testate amoebae and microenvironmental factors is necessary to track seasonality in testate amoebae distributions.  相似文献   

14.
The ecology of peatland testate amoebae is well studied along broad gradient from very wet (pool) to dry (hummock) micro-sites where testate amoebae are often found to respond primarily to the depth to water table (DWT). Much less is known on their responses to finer-scale gradients, and nothing is known of their possible response to phenolic compounds, which play a key role in carbon storage in peatlands. We studied the vertical (0–3, 3–6, and 6–9 cm sampling depths) micro-distribution patterns of testate amoebae in the same microhabitat (Sphagnum fallax lawn) along a narrow ecological gradient between a poor fen with an almost flat and homogeneous Sphagnum carpet (fen) and a “young bog” (bog) with more marked micro-topography and mosaic of poor fen and bog vegetation. We analyzed the relationships between the testate amoeba data and three sets of variables (1) “chemical” (pH, Eh potential, and conductivity), (2) “physical” (water temperature, altitude, i.e., Sphagnum mat micro-topography, and DWT), and (3) phenolic compounds in/from Sphagnum (water-soluble and primarily bound phenolics) as well as the habitat (fen/bog) and the sampling depth. Testate amoeba Shannon H′ diversity, equitability J of communities, and total density peaked in lower parts of Sphagnum, but the patterns differed between the fen and bog micro-sites. Redundancy analyses revealed that testate amoeba communities differed significantly in relation to Eh, conductivity, water temperature, altitude, water-soluble phenolics, habitat, and sampling depth, but not to DWT, pH, or primarily bound phenolics. The sensitivity of testate amoebae to weak environmental gradients makes them particularly good integrators of micro-environmental variations and has implications for their use in paleoecology and environmental monitoring. The correlation between testate amoeba communities and the concentration of water-soluble phenolic suggests direct (e.g., physiological) and/or indirect (e.g., through impact on prey organisms) effects on testate amoebae, which requires further research.  相似文献   

15.
We investigated the relationships between testate amoebae (Arcellinida, Euglyphida), vegetation and water chemistry along environmental gradients in minerotrophic peatlands (fens) in western Poland. We hypothesized that: a) hydrochemistry significantly influences structure of testate amoeba communities, and b) testate amoeba communities are more closely correlated with the hydrochemical variables (environment) than with the vegetation data. Testate amoeba communities and vegetation from 71 sample plots were investigated together with the hydro‐chemistry and hydrology based on 16 environmental variables and vegetation composition. Testate amoeba communities revealed a distinctive poor‐rich gradient in analysed fens. Mineral‐rich habitats, which were dominated by brown mosses, were preferred by a higher number of taxa than acidic habitats, which were dominated by Sphagnum. We recorded a total of 107 testate amoebae taxa. The average species richness of testate amoebae for brown mosses was higher (20) than for Sphagnum (13). We found that testate amoebae communities were similarly correlated with vascular plants, mosses and environmental parameters. Results of direct ordination demonstrate that hydrology, pH, Mg2+ and sodium remain the most important environmental control for the entire data set. CCA showed that in case of brown mosses hydrology, sodium and oxygen affect testate amoeba communities significantly whereas in Sphagnum only sodium emerge as most significant determining testate amoeba assemblages. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Phytoplankton is sensitive to rapidly increasing temperature in spring. However, studies on the effect of temperature on phytoplankton have mainly focused on constant temperatures. It is necessary to clarify the determining parameters of phytoplankton shifts during temperature increases, as temperatures are predicted to fluctuate more intensively and frequently in the future. In the study, we analyzed the responses of photosynthetic properties and growth in a cyanobacterium (Microcystis aeruginosa) and a green alga (Chlorella pyrenoidosa), the dominant species in Taihu, to rapid increasing‐temperature process in the laboratory and in the field. The results show that gradually increasing temperature inhibited photosynthesis and the growth of C. pyrenoidosa and had almost no effect on M. aeruginosa. Elevated increasing temperature range also had more significant effects on the photosynthetic properties and growth rates of C. pyrenoidosa than those of M. aeruginosa in the laboratory and in the field. All of these results suggest that the photosynthetic performance of M. aeruginosa is more suitable to gradually increasing temperature and relatively strong temperature variations than that of C. pyrenoidosa, which might partially contribute to Microcystis excluding Chlorella competitively in aquatic ecosystem. Our findings point out the possible importance of the rapid and dramatic increasing‐temperature process to the formation of cyanobacterial blooms.  相似文献   

17.
Testate amoebae are a group of moisture-sensitive, shell-producing protozoa that have been widely used as indicators of changes in mean water-table depth within oligotrophic peatlands. However, short-term environmental variability (i.e., sub-annual) also probably influences community composition. The objective of this study was to assess the potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum-dominated peatlands. Testate amoebae and environmental conditions, including hourly measurements of relative humidity within the upper centimeter of the peatland surface, were examined throughout the 2008 growing season at 72 microsites within 11 peatlands of Pennsylvania and Wisconsin, USA. Relationships among testate amoeba communities, vegetation, depth to water table, pH, and an index of short-term environmental variability (EVI), were examined using nonmetric multidimensional scaling and correlation analysis. Results suggest that EVI influences testate amoeba communities, with some taxa more abundant under highly variable conditions (e.g., Arcella discoides, Difflugia pulex, and Hyalosphenia subflava) and others more abundant when environmental conditions at the peatland surface were relatively stable (e.g., Archerella flavum and Bullinularia indica). The magnitude of environmental variability experienced at the peatland surface appears to be primarily controlled by vegetation composition and density. In particular, sites with dense Sphagnum cover had lower EVI values than sites with loose-growing Sphagnum or vegetation dominated by vascular plants and/or non-Sphagnum bryophytes. Our results suggest that more environmental information may be inferred from testate amoebae than previously recognized. Knowledge of relationships between testate amoebae and short-term environmental variability should lead to more detailed and refined environmental inferences.  相似文献   

18.
Cyanobacteria blooms caused by species such as Microcystis have become commonplace in many freshwater ecosystems. Although phosphorus (P) typically limits the growth of freshwater phytoplankton populations, little is known regarding the molecular response of Microcystis to variation in P concentrations and sources. For this study, we examined genes involved in P acquisition in Microcystis including two high-affinity phosphate-binding proteins (pstS and sphX) and a putative alkaline phosphatase (phoX). Sequence analyses among ten clones of Microcystis aeruginosa and one clone of Microcystis wesenbergii indicates that these genes are present and conserved within the species, but perhaps not the genus, as phoX was not identified in M. wesenbergii. Experiments with clones of M. aeruginosa indicated that expression of these three genes was strongly upregulated (50- to 400-fold) under low inorganic P conditions and that the expression of phoX was correlated with alkaline phosphatase activity (p < 0.005). In contrast, cultures grown exclusively on high levels of organic phosphorus sources (adenosine 5′-monophosphate, β-glycerol phosphate, and d-glucose-6-phosphate) or under nitrogen-limited conditions displayed neither high levels of gene expression nor alkaline phosphatase activity. Since Microcystis dominates phytoplankton assemblages in summer when levels of inorganic P (Pi) are often low and/or dominate lakes with low Pi and high organic P, our findings suggest this cyanobacterium may rely on pstS, sphX, and phoX to efficiently transport Pi and exploit organic sources of P to form blooms.  相似文献   

19.
Previous polyphasic analyses of five morphospecies of the water‐bloom‐forming cyanobacterial genus Microcystis, Microcystis aeruginosa (Kützing) Lemmermann (=Microcystis aeruginosa (Kützing) Kützing), Microcystis ichthyoblabe Kützing, Microcystis novacekii (Komárek) Compère, Microcystis viridis (A. Braun) Lemmermann, and Microcystis wesenbergii (Komárek) Komárek in Kondratieva, have shown them to be conspecific and they have been proposed to be included under the binomial Microcystis aeruginosa (Kützing) Lemmermann. However, several morphospecies from tropical regions, such as Microcystis bengalensis Banerji, Microcystis panniformis Komárek, Komárková‐Legnerová, Sant'anna, Azevedo & Senna, Microcystis protocystis Crow, Microcystis pseudofilamentosa Crow, Microcystis ramosa Bharadwaya, and Microcystis robusta (Clark) Nygaard, have never been analyzed biochemically or phylogenetically; consequently, their taxonomic status is uncertain. To resolve this issue, we collected 57 strains of Microcystis from Vietnam for taxonomic analysis using a polyphasic approach. Strains were assigned to the six tropical morphospecies listed above or to four morphospecies with cosmopolitan distributions (M. aeruginosa, M. ichthyoblabe, M. novacekii, and M. wesenbergii). Several strains produced colony variants in different culture media; some of these variants had forms that overlapped with those of other morphospecies. Cell diameters varied widely between strains (2.6–9.3 µm) and were unrelated to morphospecies discrimination criteria. Strains of the 10 morphospecies examined had similar fatty acid compositions and closely similar 16S rRNA gene sequences (>99.2% similar). Phylogenetic analyses using 16S rRNA gene and 16S–23S internal transcribed spacer sequences did not identify any clear separations corresponding to morphospecies concepts or microcystin‐producing abilities. Thus, the six tropical morphospecies (M. bengalensis, M. panniformis, M. protocystis, M. pseudofilamentosa, M. ramosa, and M. robusta) are not natural taxonomic units within the genus Microcystis and should be included under M. aeruginosa.  相似文献   

20.
有壳变形虫(testate amoebae)的演化历史最早可追溯至新元古代早期, 以该时期北美、华北、挪威以及澳洲等多个地区浅海相碳酸盐岩、页岩中发现的瓶状微体化石(vase-shaped microfossils)为标志。此前认为, 显生宙的有壳变形虫最早出现在早泥盆世。长期以来, 早古生代的地层中未发现这类原生生物的明确化石证据。本研究通过对岩石样品进行常规孢粉酸泡分析处理和切磨岩石薄片, 获取原位保存的化石标本的技术方法, 从贵州东部剑河县交榜剖面出露的寒武系杷榔组(第2统第4阶)中获得数枚有壳变形虫(testate amoebae)化石标本。基于标本的显微形态特征, 并结合激光拉曼光谱等研究, 对原先记述为疑源类的Plagasphaera balangensisP. sp. A两形态种进行重新认识和描述。由于它们在结构和形态上与一些现生的鳞壳虫目(Euglyphida)有壳变形虫极为相似, 因此将先前定为疑源类的Plagasphaera balangensisP. sp. A两形态属、种名, 分别修订为Palaeoassulina balangensis gen. et sp. nov.和?Palaeoassulina sp. A。该发现不仅将显生宙有壳变形虫的原有化石记录从晚古生代泥盆纪向前延伸至寒武纪早期, 还为调查研究有壳变形虫的系统演化提供关键的生物化石证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号