首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsatellite analysis of Aegilops tauschii germplasm   总被引:8,自引:0,他引:8  
The highly polymorphic diploid grass Aegilops tauschii isthe D-genome donor to hexaploid wheat and represents a potential source for bread wheat improvement. In the present study microsatellite markers were used for germplasm analysis and estimation of the genetic relationship between 113 accessions of Ae. tauschii from the gene bank collection at IPK, Gatersleben. Eighteen microsatellite markers, developed from Triticum aestivum and Ae. tauschii sequences, were selected for the analysis. All microsatellite markers showed a high level of polymorphism. The number of alleles per microsatellite marker varied from 11 to 25 and a total of 338 alleles were detected. The number of alleles per locus in cultivated bread wheat germplasm had previously been found to be significantly lower. The highest levels of genetic diversity for microsatellite markers were found in accessions from the Caucasian countries (Georgia, Armenia and the Daghestan region of Russia) and the lowest in accessions from the Central Asian countries (Uzbekistan and Turkmenistan). Genetic dissimilarity values between accessions were used to produce a dendrogram of the relationships among the accessions. The result showed that all of the accessions could be distinguished and clustered into two large groups in accordance with their subspecies taxonomic classification. The pattern of clustering of the Ae. tauschii accessions is according to their geographic distribution. The data suggest that a relatively small number of microsatellites can be used to estimate genetic diversity in the germplasm of Ae. tauschii and confirm the good suitability of microsatellite markers for the analysis of germplasm collections. Received: 8 September 1999 / Accepted: 7 October 1999  相似文献   

2.
3.
Transformation with large DNA molecules enables multiple genes to be introduced into plants simultaneously to produce transgenic plants with complex phenotypes. In this study, a large DNA fragment (ca. 100 kb) containing a set of Aegilops tauschii hardness genes was introduced into rice plants using a novel transformation method, called bioactive beads-mediated transformation. Nine transgenic rice plants were obtained and the presence of transgenes in the rice genome was confirmed by PCR and FISH analyses. The results suggested that multiple transgenes were successfully integrated in all transgenic plants. The expression of one of the transgenes, puroindoline b, was confirmed at the mRNA and protein levels in the T2 generation. Our study clearly demonstrates that the bioactive bead method is capable of producing transgenic rice plants carrying large DNA fragments. This method will facilitate the production of useful transgenic plants by introducing multiple genes simultaneously.  相似文献   

4.
Hexaploid wheat (Triticum aestivum L.) originated about 8,000 years ago from the hybridization of tetraploid wheat with diploid Aegilops tauschii Coss. containing the D-genome. Thus, the bread wheat D-genome is evolutionary young and shows a low degree of polymorphism in the bread wheat gene pool. To increase marker density around the durable leaf rust resistance gene Lr34 located on chromosome 7DS, we used molecular information from the orthologous region in rice. Wheat expressed sequence tags (wESTs) were identified by homology with the rice genes in the interval of interest, but were monomorphic in the ‘Arina’ × ‘Forno’ mapping population. To derive new polymorphic markers, bacterial artificial chromosome (BAC) clones representing a total physical size of ∼1 Mb and belonging to four contigs were isolated from Ae. tauschii by hybridization screening with wheat ESTs. Several BAC clones were low-pass sequenced, resulting in a total of ∼560 kb of sequence. Ten microsatellite sequences were found, and three of them were polymorphic in our population and were genetically mapped close to Lr34. Comparative analysis of marker order revealed a large inversion between the rice genome and the wheat D-genome. The SWM10 microsatellite is closely linked to Lr34 and has the same allele in the three independent sources of Lr34: ‘Frontana’, ‘Chinese Spring’, and ‘Forno’, as well in most of the genotypes containing Lr34. Therefore, SWM10 is a highly useful marker to assist selection for Lr34 in breeding programs worldwide.  相似文献   

5.
A novel synthetic cry2A* gene was introduced into the elite indica rice restorer line Minghui 63 by Agrobacterium-mediated transformation. A total of 102 independent transformants were obtained. Among them, 71 transformants were positive cry2A* plants according to PCR analysis. Four highly insect-resistant lines with single-copy insertion (designated as 2A-1, 2A-2, 2A-3, and 2A-4) were selected based on field assessment and Southern blot analysis in the T1 generation. All four transgenic lines showed Mendelian segregation by seed germination on 1/2 MS medium containing Basta. Homozygous transgenic plants were selected according to germination ratio (100%) in the T2 generation. Cry2A* protein concentrations were determined in homozygous transgenic lines, their derived hybrids, and their backcross offspring. The Cry2A* protein concentrations of four homozygous transgenic lines ranged from 9.65 to 12.11 μg/g of leaf fresh weight. There was little variation in the hybrids and backcross offspring. Insect bioassays were conducted in both the laboratory and field. All four transgenic lines were significantly resistant to lepidopteran rice pests. These cry2A* transgenic lines can be used to produce insect-resistant hybrids and serve as a resistant source for the development of two-toxin Bt rice.  相似文献   

6.
A rice chitinase cDNA (RCC2) driven by the CaMV 35S promoter was introduced into cucumber (Cucumis sativus L.) through Agrobacterium mediation. More than 200 putative transgenic shoots were regenerated and grown on MS medium supplemented with 100 mg/l kanamycin. Sixty elongated shoots were examined for the presence of the integrated RCC2 gene and subsequently confirmed to have it. Of these, 20 were tested for resistance against gray mold (Botrytis cinerea) by infection with the conidia: 15 strains out of the 20 independent shoots exhibited a higher resistance than the control (non-transgenic plants). Three transgenic cucumber strains (designated CR29, CR32 and CR33) showed the highest resistance against B. cinerea: the spread of disease was inhibited completely in these strains. Chitinase gene expression in highly resistant transgenic strains (CR32 and CR33) was compared to that of a susceptible transgenic strain (CR20) and a control. Different responses for disease resistance were observed among the highly resistant strains. CR33 inhibited appressoria formation and penetration of hyphae. Although CR32 permitted penetration of hyphae, invasion of the infection hyphae was restricted. Furthermore, progenies of CR32 showed a segregation ratio of 3:1 (resistant:susceptible). As the disease resistance against gray mold was confirmed to be inheritable, these highly resistant transgenic cucumber strains would serve as good breeding materials for disease resistance. Received: 31 March 1996 / Revision received: 2 July 1997 / Accepted: 18 July 1997  相似文献   

7.
8.
节节麦的酯酶同工酶分析   总被引:4,自引:1,他引:4  
对 30份不同来源的节节麦进行 4个时期的酯酶同工酶分析。结果表明 :不同来源节节麦的酯酶同工酶存在较大差异 ,共分成 1 5种基本类型。我国黄河流域的 1 0份节节麦被划分为 2个基本类型 ,但二者关系极为相近 ;新疆节节麦与之有一定差异 ,但在相似系数≤ 0 .82 0时可视为一类。所有材料在 4个时期之间没有出现一个完全相同的酶带类型 ,说明酯酶同工酶随发育时期而不断变化。  相似文献   

9.
粗山羊草(Aegilops tauschii)中Pinb基因的克隆和表达分析   总被引:1,自引:0,他引:1  
puroindoline a(Pina)和puroindoline b(Pinb)是控制小麦籽粒硬度的主效基因。根据已报道的小麦Pinb基因的保守序列,设计合成了一对特异性引物,对粗山羊草Aegilops tauschii(DD)的基因组DNA进行Pinb基因扩增、克隆和序列分析,发现了一个新型Pinb等位基因。该基因长447 bp,编码148个氨基酸残基,具有麦类作物PinB蛋白所特有的WPTKWWK色氨酸结构域和10个半胱氨酸所形成的5个二硫键结构。与软粒小麦cv.Capitole的Pinb-D1a相比较,该基因含有14个氨基酸变异位点,其中包括一个紧邻色氨酸结构域的变异位点(Val66Phe),其核苷酸和氨基酸同源性分别为93.3%和90.5%。RT-PCR和Western Blot证实了Pinb基因在籽粒胚乳中的表达。Southern Blot分析结果表明,粗山羊草中Pinb基因为单拷贝。研究结果表明,粗山羊草中包含着与小麦差异较大的籽粒硬度控制基因,对此基因的进一步研究将加深对小麦籽粒硬度形成分子机制的了解。  相似文献   

10.
About 25,000 rice T-DNA insertional mutant lines were generated using the vector pCAS04 which has both promoter-trapping and activation-tagging function. Southern blot analysis revealed that about 40% of these mutants were single copy integration and the average T-DNA insertion number was 2.28. By extensive phenotyping in the field, quite a number of agronomically important mutants were obtained. Histochemical GUS assay with 4,310 primary mutants revealed that the GUS-staining frequency was higher than that of the previous reports in various tissues and especially high in flowers. The T-DNA flanking sequences of some mutants were isolated and the T-DNA insertion sites were mapped to the rice genome. The flanking sequence analysis demonstrated the different integration pattern of the right border and left border into rice genome. Compared with Arabidopsis and poplar, it is much varied in the T-DNA border junctions in rice.  相似文献   

11.
J D Faris  B Laddomada  B S Gill 《Genetics》1998,149(1):319-327
Distorted segregation ratios of genetic markers are often observed in progeny of inter- and intraspecific hybrids and may result from competition among gametes or from abortion of the gamete or zygote. In this study, 194 markers mapped in an Aegilops tauschii F2 population were surveyed for distorted segregation ratios. Region(s) with skewed segregation ratios were detected on chromosomes 1D, 3D, 4D, and 7D. These distorter loci are designated as QSd.ksu-1D, QSd. ksu-3D, QSd.ksu-4D, and QSd.ksu-7D. Three regions of segregation distortion identified on chromosome 5D were analyzed in two sets of reciprocal backcross populations to analyze the effect of sex and cytoplasm on segregation distortion. Extreme distortion of marker segregation ratios was observed in populations in which the F1 was used as the male parent, and ratios were skewed in favor of TA1691 alleles. There was some evidence of differential transmission caused by nucleo-cytoplasmic interactions. Our results agree with other studies stating that loci affecting gametophyte competition in male gametes are located on 5DL. The distorter loci on 5DL are designated as QSd.ksu-5D.1, QSd.ksu-5D.2, and QSd.ksu-5D.3.  相似文献   

12.
 Polymorphism in the lengths of restriction fragments at 53 single-copy loci, the rRNA locus Nor3, and the high-molecular-weight glutenin locus Glu1 was investigated in the D genome of hexaploid Triticum aestivum and that of Aegilops tauschii, the source of the T. aestivum D genome. The distribution of genetic variation in Ae. tauschii suggests gene flow between Ae. tauschii ssp. strangulata and ssp. tauschii in Iran but less in Transcaucasia. The “strangulata” genepool is wider than it appears on the basis of morphology and includes ssp. strangulata in Transcaucasia and southeastern (SE) Caspian Iran and ssp. tauschii in north-central Iran and southwestern (SW) Caspian Iran. In the latter region, Ae. tauschii morphological varieties ‘meyeri’ and ‘typica’ are equidistant to ssp. strangulata in Transcaucasia, and both belong to the “strangulata” genepool. A model of the evolution of Ae. tauschii is presented. On the geographic region basis, the D genomes of all investigated forms of T. aestivum are most closely related to the “strangulata” genepool in Transcaucasia, Armenia in particular, and SW Caspian Iran. It is suggested that the principal area of the origin of T. aestivum is Armenia, but the SW coastal area of the Caspian Sea and a corridor between the two areas may have played a role as well. Little genetic differentiation was found among the D genomes of all investigated free-threshing and hulled forms of T. aestivum, and all appear to share a single D-genome genepool, in spite of the fact that several Ae. tauschii parents were involved in the evolution of T. aestivum. Received: 17 November 1997 / Accepted: 17 March 1998  相似文献   

13.
Genes for an isoamylase-like debranching enzyme have been isolated from rice and Aegilops tauschii, the donor of the D genome to wheat. The structures of the genes are very similar to each other and to the maize SU1 isoamylase gene and consist of 18 exons spread over approximately 7.5 kb. Southern analysis and fluorescent in situ hybridization showed the Ae. tauschii gene to be located in the proximal region of the short arm of chromosome 7D, thus showing synteny with the localization of the rice isoamylase gene on rice chromosome 8. Analysis of the expression pattern of wheat sugary isoamylase genes indicates that they are strongly expressed in the developing endosperm 6 days after flowering. Three distinct Sugary-type cDNA sequences were isolated from the wheat endosperm that are likely to correspond to the products of the three genomes. The deduced amino acid sequence of rice and wheat Sugary-type isoamylase is compared with other sequences available in the database and the results demonstrate that there are three types of isoamylase sequences in plants: those containing 18 exons (the Sugary-type isoamylase gene), those containing 21 exons, and those containing only 1 exon. It is possible that different combinations of isoamylase genes are expressed in different tissues.  相似文献   

14.
The ancestral shared synteny concept has been advocated as an approach to positionally clone genes from complex genomes. However, the unified grass genome model and the study of grasses as a single syntenic genome is a topic of considerable controversy. Hence, more quantitative studies of cereal colinearity at the sequence level are required. This study compared a contiguous 300-kb sequence of the barley (Hordeum vulgare) genome with the colinear region in rice (Oryza sativa). The barley sequence harbors genes involved in endosperm texture, which may be the subject of distinctive evolutionary forces and is located at the extreme telomeric end of the short arm of chromosome 5H. Comparative sequence analysis revealed the presence of five orthologous genes and a complex, postspeciation evolutionary history involving small chromosomal rearrangements, a translocation, numerous gene duplications, and extensive transposon insertion. Discrepancies in gene content and microcolinearity indicate that caution should be exercised in the use of rice as a surrogate for map-based cloning of genes from large genome cereals such as barley.  相似文献   

15.
In plant genomes, there exist discrete regions rich in CpG dinucleotides, namely CpG clusters. In rice, most of these CpG clusters are associated with genes. Rice genes are grouped into one of the five classes according to the position of an associated CpG cluster. Among them, class 1 genes, which harbor a CpG cluster at the 5′-terminus, share similarities with human genes having CpG islands. In the present study, by analyzing plant genome sequence data, primarily from rice, we investigated the chromosomal distribution of genes of each class, mainly class 1 genes. Class 1 genes were not uniformly distributed across the rice genome, but were clustered into discrete chromosomal segments. EST-based analysis of the distribution of expressed genes indicates that this segmental distribution of class 1 genes caused a preferential distribution of expressed genes within class 1 gene-rich segments. We then compared the methylation status of genes of each class to examine the possibility that differential DNA methylation, if any, is relevant to the observed differential expression level of genes inside and outside the class 1 segments. The difference in the methylation level between these genes was revealed to be fairly small, which does not support the above-mentioned possibility. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

16.
DONG DONG  ZHONG  CHEN  JIE  LI  TING  CHEN  FENG  QUN CUI  DANG 《Journal of genetics》2015,94(3):453-459
Journal of Genetics - To investigate allelic variation of Myb10-1 genes in Chinese wheat and to examine its association with germination level in wheat, a total of 582 Chinese bread wheat cultivars...  相似文献   

17.
We isolated a rice gene (denoted YK1), which showed78 percent amino acid sequence homology to the maize HM1gene. A chimeric gene consisting of a promoter and first intron of maizeubiquitin gene and the cDNA of YK1 was introduced intorice via Agrobacterium mediated transformation. Transgenic riceplants overexpressing this chimeric gene were resistant to rice blast(Magnaporthe grisea) disease, which is one of the mostserious pathogens in rice. Furthermore, the same transgenic plants conferredhigh tolerance to several abiotic stresses such as NaCl, UV-C, submergence, andhydrogen peroxide.  相似文献   

18.
Transgenic rice plants have been regenerated by somatic embryogenesis from cell suspension derived protoplasts electroporated with plasmid carrying the NPTII gene under the control of the 35S promoter from cauliflower mosaic virus. Heat shock of protoplasts prior to electroporation maximised the throughput of kanamycin resistant colonies. Omission of kanamycin from the medium for plant regeneration was essential for the recovery of transgenic rice plants carrying the NPTII gene. This report of the production of kanamycin resistant transgenic rice plants establishes the use of protoplasts for rice genetic engineering.Abbreviations NPTII neomycin phosphotransferase - SDS sodium dodecyl sulphate  相似文献   

19.
Transgenic rice plants have been regenerated from kanamycin-resistant callus of Oryza sativa (cv. Taipei 309) derived from protoplasts electroporated with pCaMVNEO carrying the neomycin phosphotransferase II ( nptII ) gene. Of 6 randomly selected plants, all contained the nptll gene, but only 2 plants expressed NPTII activity. The transgenic plants were significantly shorter, produced fewer tillers, took longer to flower and had reduced fertility compared to non-transformed protoplastderived plants. Fifty-six seeds collected from one transgenic plant expressing NPTII activity germinated on medium containing kanamycin sulphate to give 16 green, first seed generation (R1) plants. The latter could be divided into 3 groups: (i) Plants which set seed, had normal floret morphology and produced a total of 76 seeds; (ii) Plants which flowered, but which failed to set seed; (iii) Plants which failed to flower, were shorter and had significantly fewer tillers than plants of groups (i) and (ii). The nptII gene was present in all transgenic R1 plants, but only 8 plants expressed the gene. Phenotypic characteristics, observed in transgenic R1 plants were also seen in the transforned R2 plants. These included reduced stature, a longer vegetative phase and reduced fertility compared to non-transformed plants.  相似文献   

20.
节节麦×大麦杂种胚再生植株的细胞遗传学研究   总被引:1,自引:1,他引:1  
以节节麦(2n=14)为母本和大麦(2n=14)进行杂交,两组合平均结实率为31 .11%。对31个幼胚进行愈伤组织诱导培养,其中2个形成全能性愈伤组织进而分化出再生杂种植株。细胞学观察表明,杂种胚再生植株均是染色体加倍的节节麦-大麦双二倍体(2n=28)或染色体再加倍的多倍体。节节麦-大麦双二倍体在减数分裂中期Ⅰ染色体配对平均构型为14.79Ⅰ+1.95Ⅱ+ 4.53Ⅱ′+0.01Ⅲ,表现为自交不育。杂种胚再生植株染色体数目再加倍的多倍体有少数产生了自交种子。 Abstract:Hybridizations between Aegilops tauschii(2n=14)and Hordeum vulgare(2n=14)were made using Ae.tauschii as female.The mean frequency of seed set was 31.11% in two cross combinations,13 hybrid embryos were cultured for inducing callus,of which 2 produced totipotent callus,and plants were regenerated from them.These plants were Ae.tauschii-H.vulgare amphidiploids with doubling chromosome number(2n=28)and octoploids with repeatedly doubling chromosome number(2n=50~56).The Ae.tauschii-H.vulgare amphidiploids were sterile and their average chromosome pairing at MI were 14.79I+1.95II+4.53II′+0.01III.Some octoploid(2n=56)plants produced seeds after selfing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号