首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxiredoxin (PRx) exhibits thioredoxin-dependent peroxidase activity and constitutes a family of proteins. Four members of genes from rat tissues were isolated by PCR using degenerated primers based on the sequences which encode a pair of highly conserved Cys-containing domains, and were then cloned to full-length cDNAs. These included two genes which have previously been isolated in rats, PRx I and PRx II, and two rat homologues of PRx III and PRx IV. We showed, for the first time, the simultaneous expression of all four genes in various rat tissues by Northern blotting. Since a discrepancy exists regarding cellular distribution, we further characterized PRx IV by expressing it in COS-1 cells. This clearly demonstrates that PRx IV is a secretory form and functions within the extracellular space.  相似文献   

2.
3.
Cells from patients with Fanconi anemia (FA), an inherited disorder that includes bone marrow failure and cancer predisposition, have increased sensitivity to oxidative stress through an unknown mechanism. We demonstrate that the FA group G (FANCG) protein is found in mitochondria. Wild-type but not G546R mutant FANCG physically interacts with the mitochondrial peroxidase peroxiredoxin-3 (PRDX3). PRDX3 is deregulated in FA cells, including cleavage by a calpainlike cysteine protease and mislocalization. FA-G cells demonstrate distorted mitochondrial structures, and mitochondrial extracts have a sevenfold decrease in thioredoxin-dependent peroxidase activity. Transient overexpression of PRDX3 suppresses the sensitivity of FA-G cells to H2O2, and decreased PRDX3 expression increases sensitivity to mitomycin C. Cells from the FA-A and -C subtypes also have PRDX3 cleavage and decreased peroxidase activity. This study demonstrates a role for the FA proteins in mitochondria witsh sensitivity to oxidative stress resulting from diminished peroxidase activity. These defects may lead to apoptosis and the accumulation of oxidative DNA damage in bone marrow precursors.  相似文献   

4.
Under secondary metabolic conditions the white rot basidiomycete Phanerochaete chrysosporium mineralizes 2,4-dichlorophenol (I). The pathway for the degradation of 2,4-dichlorophenol (I) was elucidated by the characterization of fungal metabolites and of oxidation products generated by purified lignin peroxidase and manganese peroxidase. The multistep pathway involves the oxidative dechlorination of 2,4-dichlorophenol (I) to yield 1,2,4,5-tetrahydroxybenzene (VIII). The intermediate 1,2,4,5-tetrahydroxybenzene (VIII) is ring cleaved to produce, after subsequent oxidation, malonic acid. In the first step of the pathway, 2,4-dichlorophenol (I) is oxidized to 2-chloro-1,4-benzoquinone (II) by either manganese peroxidase or lignin peroxidase. 2-Chloro-1,4-benzoquinone (II) is then reduced to 2-chloro-1,4-hydroquinone (III), and the latter is methylated to form the lignin peroxidase substrate 2-chloro-1,4-dimethoxybenzene (IV). 2-Chloro-1,4-dimethoxybenzene (IV) is oxidized by lignin peroxidase to generate 2,5-dimethoxy-1,4-benzoquinone (V), which is reduced to 2,5-dimethoxy-1,4-hydroquinone (VI). 2,5-Dimethoxy-1,4-hydroquinone (VI) is oxidized by either peroxidase to generate 2,5-dihydroxy-1,4-benzoquinone (VII) which is reduced to form the tetrahydroxy intermediate 1,2,4,5-tetrahydroxybenzene (VIII). In this pathway, the substrate is oxidatively dechlorinated by lignin peroxidase or manganese peroxidase in a reaction which produces a p-quinone. The p-quinone intermediate is then recycled by reduction and methylation reactions to regenerate an intermediate which is again a substrate for peroxidase-catalyzed oxidative dechlorination. This unique pathway apparently results in the removal of both chlorine atoms before ring cleavage occurs.  相似文献   

5.
Our objective was to study if the phycobiliproteins of the cyanobacterium Pseudanabanea tenuis rich in phycoerythrin protect renal cells against mercury-caused oxidative stress and cellular damage in the kidney. We used 40 male mice that were assigned into five groups: a control group that received phosphate buffer (PB) and saline and four treatment groups which received either PB+HgCl2, PB+phycobiliproteins, or HgCl2+phycobiliproteins. The kidneys of the mice were used to determine lipid peroxidation and quantification of reactive oxygen species, oxidized glutathione, and peroxidase activities (catalase and glutathione peroxidase) and were also examined histologically. Our results demonstrated that HgCl2 causes oxidative stress and cellular damage and that all doses of phycobiliproteins prevented the increase of oxidative markers and partially protected against HgCl2-caused cell damage. This is the first report which applied phycobiliproteins of P. tenuis rich in c-phycoerythrin, like antioxidants against mercury chloride-caused oxidative stress and renal damage.  相似文献   

6.
A family of proteins with thioredoxin (TRx)-dependent peroxidase activity, referred to as peroxiredoxins (PRx), has been identified in many species. The sixth member of this family, PRxVI, contains only one conserved cysteine residue, while other members contain additional cysteines. We have isolated a cDNA for rat PRxVI and constructed a large scale baculovirus system to produce the recombinant protein. The protein was purified by a simple two-step procedure utilizing ion-exchange and gel-filtration chromatography. The purified PRxVI exhibited a low level of glutathione-dependent peroxidase but not TRx-dependent activity. PRxVI expression was the highest in lung, followed by brain, kidney, heart, testis, etc. as judged by Northern and Western blot analyses using a rabbit antibody to the purified PRxVI. Immunohistochemical analyses showed strong staining in the epithelium of the bronchus and bronchioles in lung and in the epithelial cells of kidney tubules. In addition, Sertoli cells in testis and islet of Langerhans cells in pancreas were strongly stained. The developmental changes of PRxVI expression in lung and kidney were low in the prenatal stage but induced postnatally. Moreover, intraperitoneal administration of chloroform induced PRxVI mRNA in kidney. When the distribution and the induced expression of PRxVI under conditions of oxidative stress are considered, a physiological role of it as an antioxidative enzyme is indicated.  相似文献   

7.
The mechanism of entry of vaccinia virus (VV) into cells is still a poorly understood process. A 14-kDa protein (encoded by the A27L gene) in the envelope of intracellular mature virus (IMV) has been implicated in virus-cell attachment, virus-cell fusion, and virus release from cells. We have previously described the structural organization of the VV 14-kDa protein, consisting of a triple-stranded coiled-coil region responsible for oligomer formation and a predicted Leu zipper-like third alpha helix with an important role in the interaction with a 21-kDa membrane protein (encoded by the A17L gene) thought to anchor the 14-kDa protein to the envelope of IMV (M.-I. Vázquez, G. Rivas, D. Cregut, L. Serrano, and M. Esteban, J. Virol. 72:10126-10137, 1998). To identify the functional domains important for virus entry and release, we have generated VV recombinants containing a copy of the A27L gene regulated by the lacI operator-repressor system of Escherichia coli (VVIndA27L) in the thymidine kinase locus and a mutant form of the A27L gene in the hemagglutinin locus but expressed constitutively under the control of an early-late VV promoter. Cells infected with a VV recombinant that expresses a mutant 14-kDa form lacking the first 29 amino acids at the N terminus failed to form extracellular enveloped virus (EEV). Fusion-from-without assays with purified virus confirmed that the fusion process was mediated by the 14-kDa protein and the fusion domain to be contained within amino acids 29 to 43 of the N-terminal region. Competitive inhibition of the infection process with soluble heparin and synthetic peptides and in vitro experiments with purified mutant proteins identified the heparin binding domain within amino acids 21 to 33, suggesting that this domain is involved in virus-cell binding via heparan sulfate. Thus, the N terminus of the 14-kDa protein contains a heparin binding domain, a fusion domain, and a domain responsible for interacting with proteins or lipids in the Golgi stacks for EEV formation and virus spread.  相似文献   

8.
Protein oxidation has been linked to accelerated aging and is a contributing factor to many diseases. Methionine residues are particularly susceptible to oxidation, but the resulting mixture of methionine R-sulfoxide (Met-RO) and methionine S-sulfoxide (Met-SO) can be repaired by thioredoxin-dependent enzymes MsrB and MsrA, respectively. Here, we describe a knock-out mouse deficient in selenoprotein MsrB1, the main mammalian MsrB located in the cytosol and nucleus. In these mice, in addition to the deletion of 14-kDa MsrB1, a 5-kDa selenoprotein form was specifically removed. Further studies revealed that the 5-kDa protein occurred in both mouse tissues and human HEK 293 cells; was down-regulated by MsrB1 small interfering RNA, selenium deficiency, and selenocysteine tRNA mutations; and was immunoprecipitated and recognized by MsrB1 antibodies. Specific labeling with (75)Se and mass spectrometry analyses revealed that the 5-kDa selenoprotein corresponded to the C-terminal sequence of MsrB1. The MsrB1 knock-out mice lacked both 5- and 14-kDa MsrB1 forms and showed reduced MsrB activity, with the strongest effect seen in liver and kidney. In addition, MsrA activity was decreased by MsrB1 deficiency. Liver and kidney of the MsrB1 knock-out mice also showed increased levels of malondialdehyde, protein carbonyls, protein methionine sulfoxide, and oxidized glutathione as well as reduced levels of free and protein thiols, whereas these parameters were little changed in other organs examined. Overall, this study established an important contribution of MsrB1 to the redox control in mouse liver and kidney and identified a novel form of this protein.  相似文献   

9.
We have assigned the biosynthetic processing steps of cathepsin D to intracellular compartments which are involved in its transport to lysosomes in HepG2 cells. Cathepsin D was synthesized as a 51-kDa proenzyme. After formation of 51-55-kDa intermediates due to processing of N-linked oligosaccharides, procathepsin D was proteolytically processed to an intermediate 44-kDa and the mature 31-kDa enzyme. The intersection of the biosynthetic pathway of cathepsin D with the endocytic pathway was labeled with horseradish peroxidase and monitored biochemically by 3,3'-diaminobenzidine cytochemistry. Horseradish peroxidase was used either as a fluid-phase marker to label the entire endocytic pathway or conjugated to transferrin (Tf) to label endosomes only. Directly after biosynthesis cathepsin D was accessible neither to horseradish peroxidase nor Tf-horseradish peroxidase. Newly synthesized 51-55-kDa species of cathepsin D present in the trans-Golgi reticulum were accessible to both horseradish peroxidase and Tf-horseradish peroxidase. The accessibility of trans-Golgi reticulum to both endocytosed horseradish peroxidase and Tf-horseradish peroxidase was monitored by colocalization with a secretory protein, alpha 1anti-trypsin. The proteolytic processing of 51-55-kDa to 44-kDa cathepsin D occurred in compartments which were fully accessible to fluid-phase horseradish peroxidase. Tf-horseradish peroxidase had access to only 20% of 44-kDa cathepsin D while it had no access to 31-kDa cathepsin D. In contrast, the 31-kDa species was completely accessible to fluid-phase horseradish peroxidase. We conclude that proteolytic processing of 51-55-kDa to 44-kDa cathepsin D occurs in endosomes, whereas the processing of 44-31-kDa cathepsin D takes place in lysosomes.  相似文献   

10.
11.
The presence of glutathione peroxidase activity is reported for the first time for a wild type strain of Saccharomyces cerevisiae. Both forms of enzyme, i.e. that specifically active toward H2O2 alone and that decomposing also organic peroxides, were found to be present. The H2O2 specific form disappeared when cells were grown in the absence of oxygen, while the other form was much increased under the same conditions. Addition of copper to the culture greatly increased both forms. The results show that glutathione peroxidase is to be included, as an important component that is also highly responsive to oxidative environments, in the enzyme defense system of yeast against oxidative damage.  相似文献   

12.
Eukaryotic typical 2-Cys type peroxiredoxin (Prx) is inactivated by hyperoxidation of the peroxidatic cysteine to a sulphinic acid in a catalytic cycle-dependent manner. This inactivation process has been well documented for cytosolic isoforms of Prx. However, such a hyperoxidative inactivation has not fully been investigated in Prx-4, a secretable endoplasmic reticulum-resident isoform, in spite of being a typical 2-Cys type, and details of this process are reported herein. As has been observed in many peroxiredoxins, the peroxidase activity of Prx-4 was almost completely inhibited in the reaction with t-butyl hydroperoxide. On the other hand, when H(2)O(2) was used as the substrate, the peroxidase activity significantly remained after oxidative damage. In spite of these different consequences, mass spectrometric analyses indicated that both reactions resulted in the same oxidative damage, i.e. sulphinic acid formation at the peroxidatic cysteine, suggesting that another cysteine in the active site confers the peroxidase activity. As suggested by the analyses using cysteine-substituted mutants sulphinic acid formation at the peroxidatic cysteine may play a role in the development of the possible alternative mechanism, thereby sustaining the peroxidase activity that prefers H(2)O(2).  相似文献   

13.
Singlet oxygen ((1)O(2)) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. A soluble protein from Saccharomyces cerevisiae specifically provides protection against a thiol-containing metal-catalyzed oxidation system (thiol/Fe(3+)/O(2)) but not against an oxidation system without thiol. This 25 kDa protein acts as a peroxidase but requires the NADPH-dependent thioredoxin system or a thiol-containing intermediate, and was named thioredoxin peroxidase (TPx). The role of TPx in the cellular defense against oxidative stress induced by singlet oxygen was investigated in Escherichia coli containing an expression vector with a yeast genomic DNA fragment that encodes TPx and mutant in which the catalytically essential amino acid cysteine (Cys-47) has been replaced with alanine by a site-directed mutagenesis. Upon exposure to methylene blue and visible light, which generates singlet oxygen, there was a distinct difference between the two strains in regard to growth kinetics, viability, the accumulation of oxidized proteins and lipids, and modulation of activities of superoxide dismutase and catalase. The results suggest that TPx may play an important protective role in a singlet oxygen-mediated cellular damage.  相似文献   

14.
Peroxidases of the peroxiredoxin (Prx) family contain a Cys residue that is preceded by a conserved sequence in the NH(2)-terminal region. A new type of mammalian Prx, designated PrxV, has now been identified as the result of a data base search with this conserved Cys-containing sequence. The 162-amino acid PrxV shares only approximately 10% sequence identity with previously identified mammalian Prx enzymes and contains Cys residues at positions 73 and 152 in addition to that (Cys(48)) corresponding to the conserved Cys. Analysis of mutant human PrxV proteins in which each of these three Cys residues was individually replaced with serine suggested that the sulfhydryl group of Cys(48) is the site of oxidation by peroxides and that oxidized Cys(48) reacts with the sulfhydryl group of Cys(152) to form an intramolecular disulfide linkage. The oxidized intermediate of PrxV is thus distinct from those of other Prx enzymes, which form either an intermolecular disulfide or a sulfenic acid intermediate. The disulfide formed by PrxV is reduced by thioredoxin but not by glutaredoxin or glutathione. Thus, PrxV mutants lacking Cys(48) or Cys(152) showed no detectable thioredoxin-dependent peroxidase activity, whereas mutation of Cys(73) had no effect on activity. Immunoblot analysis revealed that PrxV is widely expressed in rat tissues and cultured mammalian cells and is localized intracellularly to cytosol, mitochondria, and peroxisomes. The peroxidase function of PrxV in vivo was demonstrated by the observations that transient expression of the wild-type protein, but not that of the Cys(48) mutant, in NIH 3T3 cells inhibited H(2)O(2) accumulation and activation of c-Jun NH(2)-terminal kinase induced by tumor necrosis factor-alpha.  相似文献   

15.
We have examined the molecular interactions of avian neural crest cells with fibronectin and laminin in vitro during their initial migration from the neural tube. A 105-kDa proteolytic fragment of fibronectin encompassing the defined cell-binding domain (65 kDa) promoted migration of neural crest cells to the same extent as the intact molecule. Neural crest cell migration on both intact fibronectin and the 105-kDa fragment was reversibly inhibited by RGD-containing peptides. The 11.5-kDa fragment containing the RGDS cell attachment site was also able to support migration, whereas a 50-kDa fragment corresponding to the adjacent N-terminal portion of the defined cell-binding domain was unfavorable for neural crest cell movement. In addition to the putative "cell-binding domain," neural crest cells were able to migrate on a 31-kDa fragment corresponding to the C-terminal heparin-binding (II) region of fibronectin, and were inhibited in their migration by exogenous heparin, but not by RGDS peptides. Heparin potentiated the inhibitory effect of RGDS peptides on intact fibronectin, but not on the 105-kDa fragment. On substrates of purified laminin, the extent of avian neural crest cell migration was maximal at relatively low substrate concentrations and was reduced at higher concentrations. The efficiency of laminin as a migratory substrate was enhanced when the glycoprotein occurred complexed with nidogen. Moreover, coupling of the laminin-nidogen complex to collagen type IV or the low density heparan sulfate proteoglycan further increased cell dispersion, whereas isolated nidogen or the proteoglycan alone were unable to stimulate migration and collagen type IV was a significantly less efficient migratory substrate than laminin-nidogen. Neural crest cell migration on laminin-nidogen was not affected by RGDS nor by YIGSR-containing peptides, but was reduced by 35% after addition of heparin. The predominant motility-promoting activity of laminin was localized to the E8 domain, possessing heparin-binding activity distinct from that of the N-terminal E3 domain. Migration on the E8 fragment was reduced by greater than 70% after addition of heparin. The E1' fragment supported a minimal degree of migration that was RGD-sensitive and heparin-insensitive, whereas the primary heparin-binding E3 fragment and the cell-adhesive P1 fragment were entirely nonpermissive for cell movement.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The catalytic subunits of bovine platelet protein phosphatases were separated into three distinct forms by chromatography on heparin-Sepharose. Each phosphatase was further purified to apparent homogeneity as judged in sodium dodecyl sulfate-polyacrylamide gel yielding single protein bands of 37, 41, and 36 kDa. The 37-kDa phosphatase was excluded from heparin-Sepharose and preferentially dephosphorylated the alpha-subunit of phosphorylase kinase. It was stimulated by polycations (polybrene or histone H1) and was inhibited by okadaic acid (IC50 = 0.3 nM), but its activity was not influenced by inhibitor-2 or heparin. The 41-kDa phosphatase was eluted from heparin-Sepharose by 0.20-0.25 M NaCl and preferentially dephosphorylated the beta-subunit of phosphorylase kinase. It was stimulated by polycations and inhibited by okadaic acid (IC50 = 2 nM), but its activity was not affected by inhibitor-2 or heparin. The 36-kDa phosphatase was eluted from heparin-Sepharose by 0.45-0.50 M NaCl and preferentially dephosphorylated the beta-subunit of phosphorylase kinase. It was inhibited by inhibitor-2, heparin, histone H1, and okadaic acid (IC50 = 70 nM). The 37- and 36-kDa phosphatases can be classified as type-2A and type-1 enzymes, respectively. The 41-kDa phosphatase does not precisely fit the criteria of either type, showing only partial similarities to both type-1 and type-2A enzymes and it may represent a novel type of protein phosphatase in bovine platelets.  相似文献   

17.
18.
C N Rao  N A Kefalides 《Biochemistry》1990,29(29):6768-6777
A recently described procedure of reduction and carboxymethylation followed by heparin-Sepharose chromatography [Arumugham et al. (1988) Connect. Tissue Res. 18, 135-147] was used to characterize high-affinity heparin binding fragments of the laminin "A" chain. Two laminin fragments of Mr 53K and 43K selectively bound to the heparin-Sepharose column from the chymotrypsin digest of laminin, indicating that these fragments originate from the "A" chain. Without reduction and carboxymethylation but in the presence of 2.0 M urea, the heparin-Sepharose-bound material from the chymotrypsin laminin digest contains all the attachment-promoting activity for normal mouse mammary epithelial cells. The reduced 200-kDa intact three short arm fragment, fragments of Mr 70K-160K obtained either from laminin or from the reduced 200-kDa three short arm fragment, and the 53-kDa heparin binding fragment were all inactive in promoting the adhesion of mouse mammary epithelial cells. The mammary epithelial cell adhesion and spreading properties of laminin are associated with the high-affinity heparin binding 43-kDa fragment. The mammary epithelial cells attach to the 43-kDa fragment substrate and synthesize laminin, collagen type IV, and desmoplankins I and II as are the cells attached to laminin substrate and to the cells grown on tissue culture dishes. The biologically active 43-kDa fragment is generated from laminin, but not from the three short arm fragment. These results suggest that normal mouse mammary epithelial cells interact with laminin through a single site which is present in the 43-kDa heparin binding fragment located on the long arm of the "A" chain.  相似文献   

19.
We used a proteomic approach to identify proteins that associate with keratins 8 or 18 (K8/K18) in a pervanadate-dependent manner. Pervanadate triggers Ran-K8/K18 binding and a gel-migration-shift of Ran from 25 to 27 kDa, which does not occur upon exposure to H2O2 or vanadate or if pervanadate is excluded during cell solubilization. Generation of 27-kDa Ran is not related to hyperphosphorylation, is heat-insensitive, but occurs upon conversion of Ran cysteines to cysteic acid. The pervanadate-mediated Ran cysteine --> cysteic acid oxidation and its related gel migration shift affects other proteins including actin. Mutation of the three Ran cysteines (Cys-85, -112, and -120) showed that Ran Cys-112 oxidation generates 27-kDa Ran and accounts for its keratin binding. Proteasome inhibition accentuates Ran-keratin binding after cell exposure to pervanadate. Therefore, cell-free exposure to pervanadate causes cysteine to cysteic acid oxidation of Ran and several other proteins and Ran-K8/K18 association. In cells, stabilization of oxidized Ran by proteasome inhibition promotes Ran-keratin interaction. Keratin sequestration of oxidized Ran may provide a back-up protective mechanism in some cases of oxidative injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号