首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.  相似文献   

3.
分离和研究疟疾感染蚊的差异表达基因 ,对阐明媒介与疟原虫之间相互作用及其分子机制尤为重要。利用已建立的斯氏按蚊感染约氏疟原虫的差减cDNA库的进行表达筛选 ,发现表达增高基因中有一个编码与黑腹果蝇泛素羧端水解酶高度同源蛋白的序列。相似性比较显示该编码序列在氨基酸水平与已知的冈比亚按蚊EST序列对应部位的同源性为 89% ,与果蝇和人类的同源性均为 63%。模拟Northern印迹的表达动态分析提示 ,感染后至少 1~ 7天内该基因在蚊体内的表达显著增高 ,与疟原虫发育动合子穿越蚊中肠壁和子孢子从卵囊向蚊眼涎腺移行等关键阶段相一致。目前对有关蚊天然免疫系统激活的泛素途径所知甚少 ,现有结果提示该基因与疟原虫感染相关 ,它的克隆和表达分析有可能推测其在疟原虫感染中所起的作用  相似文献   

4.
Mosquito mortality and the evolution of malaria virulence   总被引:1,自引:0,他引:1  
Abstract Several laboratory studies of malaria parasites (Plasmodium sp.) and some field observations suggest that parasite virulence, defined as the harm a parasite causes to its vertebrate host, is positively correlated with transmission. Given this advantage, what limits the continual evolution of higher parasite virulence? One possibility is that while more virulent strains are more infectious, they are also more lethal to mosquitoes. In this study, we tested whether the virulence of the rodent malaria parasite P. chabaudi in the laboratory mouse was correlated with the fitness of mosquitoes it subsequently infected. Mice were infected with one of seven genetically distinct clones of P. chabaudi that differ in virulence. Weight loss and anemia in infected mice were monitored for 16–17 days before Anopheles stephensi mosquitoes were allowed to take a blood meal from them. Infection virulence in mice was positively correlated with transmission to mosquitoes (infection rate) and weakly associated with parasite burden (number of oocysts). Mosquito survival fell with increasing oocyst burden, but there was no overall statistically significant relationship between virulence in mice and mosquito mortality. Thus, there was no evidence that more virulent strains are more lethal to mosquitoes. Both vector survival and fecundity depended on parasite clone, and contrary to expectations, mosquitoes fed on infections more virulent to mice were more fecund. The strong parasite genetic effects associated with both fecundity and survival suggests that vector fitness could be an important selective agent shaping malaria population genetics and the evolution of phenotypes such as virulence in the vector.  相似文献   

5.
The introduction of novel biochemical, genetic, molecular and cell biology tools to the study of insect immunity has generated an information explosion in recent years. Due to the biodiversity of insects, complementary model systems have been developed. The conceptual framework built based on these systems is used to discuss our current understanding of mosquito immune responses and their implications for malaria transmission. The areas of insect and vertebrate innate immunity are merging as new information confirms the remarkable extent of the evolutionary conservation, at a molecular level, in the signaling pathways mediating these responses in such distant species. Our current understanding of the molecular language that allows the vertebrate innate immune system to identify parasites, such as malaria, and direct the acquired immune system to mount a protective immune response is very limited. Insect vectors of parasitic diseases, such as mosquitoes, could represent excellent models to understand the molecular responses of epithelial cells to parasite invasion. This information could broaden our understanding of vertebrate responses to parasitic infection and could have extensive implications for anti-malarial vaccine development.  相似文献   

6.
A pervasive characteristic of parasite infections is their tendency to be overdispersed. Understanding the mechanisms underlying this overdispersed distribution is of key importance as it may impact the transmission dynamics of the pathogen. Although multiple factors ranging from environmental stochasticity to inter-individual heterogeneity may explain parasite overdispersion, parasite infection is also overdispersed in an inbred host population maintained under laboratory conditions, suggesting that other mechanisms are at play. Here, we show that the aggregated distribution of malaria parasites within mosquito vectors is partially explained by a temporal heterogeneity in parasite infectivity triggered by the bites of mosquitoes. Parasite transmission tripled between the mosquito''s first and last blood feed in a period of only 3 h. Surprisingly, the increase in transmission is not associated with an increase in parasite investment in production of the transmissible stage. Overall, we highlight that Plasmodium is capable of responding to the bites of mosquitoes to increase its own transmission at a much faster pace than initially thought and that this is partly responsible for overdispersed distribution of infection. We discuss the underlying mechanisms as well as the broader implications of this plastic response for the epidemiology of malaria.  相似文献   

7.
Parasites represent a major threat to all organisms which has led to the evolution of an array of complex and effective defence mechanisms. Common to both vertebrates and invertebrates are innate immune mechanisms that can be either constitutively expressed or induced on exposure to infection. In nature, we find that a combination of both induced and constitutive responses are employed by vertebrates, invertebrates and, to an extent, plants when they are exposed to a parasite. Here we use a simple within-host model motivated by the insect immune system, consisting of both constitutive and induced responses, to address the question of why both types of response are maintained so ubiquitously. Generally, induced responses are thought to be advantageous because they are only used when required but are too costly to maintain constantly, while constitutive responses are advantageous because they are always ready to act. However, using a simple cost function but with no a priori assumptions about relative costs, we show that variability in parasite growth rates selects for a strategy that combines both constitutive and induced defences. Differential costs are therefore not necessary to explain the adoption of both forms of defence. Clearly, hosts are likely to be challenged by variable parasites in nature and this is sufficient to explain why it is optimal to deploy both arms of the innate immune system.  相似文献   

8.
9.
10.
Zheng L 《Parassitologia》1999,41(1-3):181-184
The phenomenon of encapsulation of invading organisms is widespread in insects. Co-evolution has produced an intricate balance between the immune responses of the host and immune-suppressive (or immune-evading) properties of the parasite. Genome-wide genetic mapping revealed different loci in Anopheline mosquitoes were involved in melanotic encapsulation of different malaria parasites. Certain isolates of human malaria parasites can still suppress or avoid the immune response from refractory mosquitoes. Similar interactions with parasitoids were observed in Drosophila melanogaster. Species-specific encapsulation locus was identified for two parasitoids, respectively, and virulent strain of parasitoid can suppress the immune system of an otherwise resistant fruitfly. It is believed that the encapsulation loci in both mosquitoes and fruitfly may encode gene products that function at the early stages of parasite/parasitoid recognition or immediate signaling events. Future research on membrane receptor molecules and their roles in insect immunity will yield interesting insights into mosquito-parasite interactions.  相似文献   

11.
Malaria parasites have been shown to adjust their life history traits to changing environmental conditions. Parasite relapses and recrudescences—marked increases in blood parasite numbers following a period when the parasite was either absent or present at very low levels in the blood, respectively—are expected to be part of such adaptive plastic strategies. Here, we first present a theoretical model that analyses the evolution of transmission strategies in fluctuating seasonal environments and we show that relapses may be adaptive if they are concomitant with the presence of mosquitoes in the vicinity of the host. We then experimentally test the hypothesis that Plasmodium parasites can respond to the presence of vectors. For this purpose, we repeatedly exposed birds infected by the avian malaria parasite Plasmodium relictum to the bites of uninfected females of its natural vector, the mosquito Culex pipiens, at three different stages of the infection: acute (∼34 days post infection), early chronic (∼122 dpi) and late chronic (∼291 dpi). We show that: (i) mosquito-exposed birds have significantly higher blood parasitaemia than control unexposed birds during the chronic stages of the infection and that (ii) this translates into significantly higher infection prevalence in the mosquito. Our results demonstrate the ability of Plasmodium relictum to maximize their transmission by adopting plastic life history strategies in response to the availability of insect vectors.  相似文献   

12.
Industrialisation has elevated atmospheric levels of CO2 from original 280 ppm to current levels at 400 ppm, which is estimated to double by 2050. Although high atmospheric CO2 levels affect insect interactions with host plants, the impact of global change on plant defences in response to insect attack is not completely understood. Recent studies have made advances in elucidating the mechanisms of the effects of high CO2 levels in plant–insect interactions. New studies have proposed that gene regulation and phytohormones regulate resource allocation from photosynthesis to plant defences against insects. Biochemical and molecular studies demonstrated that both defensive hormones jasmonic acid (JA) and ethylene (ET) participate in modulating chemical defences against herbivores in plants grown under elevated CO2 atmosphere rather than changes in C:N ratio. High atmospheric CO2 levels increase vulnerability to insect damage by down‐regulating both inducive and constitutive chemical defences regulated by JA and ET. However, elevated CO2 levels increase the JA antagonistic hormone salicylic acid that increases other chemical defences. How plants grown under elevated CO2 environment allocate primary metabolites from photosynthesis to secondary metabolism would help to understand innate defences and prevent future herbivory in field crops. We present evidence demonstrating that changes in chemical defences in plants grown under elevated CO2 environment are hormonal regulated and reject the C:N hypothesis. In addition, we discuss current knowledge of the mechanisms that regulate plants defences against insects in elevated CO2 atmospheres.  相似文献   

13.
Malaria is the most significant vector‐borne disease and mostly affects people living in the lesser developed countries of tropical and sub‐tropical regions. Climate changes, rapid global transportation, immigration and invasion of exotic mosquito vectors bring the threat of introduction of the disease to developed nations. Sustainability of malaria control requires the discovery of therapeutic and prophylactic drugs, development of effective vaccines and control of vector mosquitoes. Drug development and vaccine research have been pursued aggressively over the past 20 years, and progress in novel approaches to vector control is now evident. Our long‐term objective is the production and utilization of strains of vector mosquitoes that are genetically refractory to the transmission of malaria parasites. These insects will be used to test the hypothesis that an increase in the frequency of a gene or allele that confers decreased vector competence to a population of mosquitoes will result in a reduction in the incidence and prevalence of malaria. Completed studies make it possible to develop strains of Anopheles mosquitoes expressing specific effector molecules that interfere completely with the transmission of the most lethal human malaria parasite, Plasmodium falciparum. Data are reviewed here that support the use of single‐chain monoclonal antibodies (scFv) that disable parasites in the midgut and hemolymph of transgenic mosquitoes.  相似文献   

14.
Insects' resistance to infectious agents is essential for their own survival and also for the health of the plant, animal and human populations with which they closely interact. Several of the major human diseases are spread by insects and are rapidly expanding as a result of the development of insecticide resistance in vectors and drug resistance in parasites. A vector insects' permissiveness to a pathogen, and hence the spread of the disease, will largely depend on the compatibility of the molecular interactions between the two species and the capability of the insect immune system to recognize and kill the pathogen. The innate immune system comprises a variety of components and mechanisms that can discriminate between different microorganisms and mount specific responses to control pathogenic infections. An impressive body of knowledge on the insects' innate immunity has been generated from studies in the model organism Drosophila. These studies are now guiding the exploration of the immune system in the vector mosquito of human malaria, Anopheles, and its implication in the elimination of parasites. Anopheles immune responses have been linked to parasite losses and some refractory mosquitoes can kill all parasites through specific defence mechanisms. The recently sequenced Drosophila and Anopheles genomes provide a detailed and comparative view on their immune gene repertoires that in combination with post-genomic analyses is used to further dissect the complex mechanisms of Plasmodium killing in the mosquito.  相似文献   

15.
One potential strategy for the control of malaria and other vector-borne diseases is the introduction into wild vector populations of genetic constructs that reduce vectorial capacity. An important caveat of this approach is that the genetic construct should have minimal fitness cost to the transformed vector. Previously, we produced transgenic Anopheles stephensi expressing either of two effector genes, a tetramer of the SM1 dodecapeptide or the phospholipase A2 gene (PLA2) from honeybee venom. Mosquitoes carrying either of these transgenes were impaired for Plasmodium berghei transmission. We have investigated the role of two effector genes for malaria parasite blockage in terms of the fitness imposed to the mosquito vector that expresses either molecule. By measuring mosquito survival, fecundity, fertility, and by running population cage experiments, we found that mosquitoes transformed with the SM1 construct showed no significant reduction in these fitness parameters relative to nontransgenic controls. The PLA2 transgenics, however, had reduced fitness that seemed to be independent of the insertion site of the transgene. We conclude that the fitness load imposed by refractory gene(s)-expressing mosquitoes depends on the effect of the transgenic protein produced in that mosquito. These results have important implications for implementation of malaria control via genetic modification of mosquitoes.  相似文献   

16.
G Dimopoulos  D Seeley  A Wolf    F C Kafatos 《The EMBO journal》1998,17(21):6115-6123
Six gene markers have been used to map the progress of the innate immune response of the mosquito vector, Anopheles gambiae, upon infection by the malaria parasite, Plasmodium berghei. In addition to four previously reported genes, the set of markers included NOS (a nitric oxide synthase gene fragment) and ICHIT (a gene encoding two putative chitin-binding domains separated by a polythreonine-rich mucin region). In the midgut, a robust response occurs at 24 h post-infection, at a time when malaria ookinetes traverse the midgut epithelium, but subsides at later phases of malaria development. In contrast, the salivary glands show no significant response at 24 h, but are activated in a prolonged late phase when sporozoites are released from the midgut into the haemolymph and invade the glands, between 10 and 25 days after blood feeding. Furthermore, the abdomen of the mosquito minus the midgut shows significant activation of immune markers, with complex kinetics that are distinct from those of both midgut and salivary glands. The parasite evidently elicits immune responses in multiple tissues of the mosquito, two of which are epithelia that the parasite must traverse to complete its development. The mechanisms of these responses and their significance for malaria transmission are discussed.  相似文献   

17.
Koella JC  Zaghloul L 《Parasitology》2008,135(13):1489-1496
An earlier mathematical model exploring the use of genetically manipulated mosquitoes for malaria control suggested that the prevalence of malaria is reduced significantly only if almost all mosquitoes become completely resistant to malaria. Central to the model was the 'cost of resistance': the reduction of a resistant mosquito's evolutionary fitness in comparison with a sensitive one's. Here, we consider the possibility of obtaining more optimistic outcomes by taking into account the epidemiological (in addition to the evolutionary) consequences of a cost of resistance that decreases the life-span of adult mosquitoes (the most relevant parameter for the parasite's epidemiology). There are two main results. First, if despite its cost, resistance is fixed in the population, increasing the cost of resistance decreases the intensity of transmission. However, this epidemiological effect is weak if resistance is effective enough to be considered relevant for control. Second, if the cost of resistance prevents its fixation, increasing it intensifies transmission. Thus, the epidemiological effect of the cost of resistance cannot compensate for the lower frequency of resistant mosquitoes in the population. Overall, our conclusion remains pessimistic: so that genetic manipulation can become a promising method of malaria control, we need techniques that enable almost all mosquitoes to be almost completely resistant to infection.  相似文献   

18.
Malaria kills millions of people every year, and new control measures are urgently needed. The recent demonstration that (effector) genes can be introduced into the mosquito germ line to diminish their ability to transmit the malaria parasite offers new hope toward the fight of the disease (Ito, J., Ghosh, A., Moreira, L. A., Wimmer, E. A. & Jacobs-Lorena, M. (2002) Nature, 417, 452-455). Because of the high selection pressure that an effector gene imposes on the parasite population, development of resistant strains is likely to occur. In search of additional antiparasitic effector genes, we have generated transgenic Anopheles stephensi mosquitoes that express the bee venom phospholipase A2 (PLA2) gene from the gut-specific and blood-inducible Anopheles gambiae carboxypeptidase (AgCP) promoter. Northern blot analysis indicated that the PLA2 mRNA is specifically expressed in the guts of transgenic mosquitoes with peak expression at approximately 4 h after blood ingestion. Western blot and immunofluorescence analyses detected PLA2 protein in the midgut epithelia of transgenic mosquitoes from 8 to 24 h after a blood meal. Importantly, transgene expression reduced Plasmodium berghei oocyst formation by 87% on average and greatly impaired transmission of the parasite to naive mice. The results indicate that PLA2 may be used as an additional effector gene to block the development of the malaria parasite in mosquitoes.  相似文献   

19.
20.
CTRP is essential for mosquito infection by malaria ookinetes   总被引:18,自引:0,他引:18       下载免费PDF全文
The malaria parasite suffers severe population losses as it passes through its mosquito vector. Contributing factors are the essential but highly constrained developmental transitions that the parasite undergoes in the mosquito midgut, combined with the invasion of the midgut epithelium by the malaria ookinete (recently described as a principal elicitor of the innate immune response in the Plasmodium-infected insect). Little is known about the molecular organization of these midgut-stage parasites and their critical interactions with the blood meal and the mosquito vector. Elucidation of these molecules and interactions will open up new avenues for chemotherapeutic and immunological attack of parasite development. Here, using the rodent malaria parasite Plasmodium berghei, we identify and characterize the first microneme protein of the ookinete: circumsporozoite- and TRAP-related protein (CTRP). We show that transgenic parasites in which the CTRP gene is disrupted form ookinetes that have reduced motility, fail to invade the midgut epithelium, do not trigger the mosquito immune response, and do not develop further into oocysts. Thus, CTRP is the first molecule shown to be essential for ookinete infectivity and, consequently, mosquito transmission of malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号