首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Siotone (ST) is a herbal formulation comprising of Withania somnifera, Ocimum sanctum, Asparagus racemosus, Tribulus terristris and shilajit, all of which are classified in Ayurveda as rasayanas which are reputed to promote physical and mental health, improve defence mechanisms of the body and enhance longevity. These attributes are similar to the modern concept of adaptogenic agents, which are, known to afford protection of the human physiological system against diverse stressors. The present study was undertaken to investigate the adaptogenic activity of ST against chronic unpredictable, but mild, footshock stress induced perturbations in behaviour (depression), glucose metabolism, suppressed male sexual behaviour, immunosuppression and cognitive dysfunction in CF strain albino rats. Gastric ulceration, adrenal gland and spleen weights, ascorbic acid and corticosterone concentrations of adrenal cortex, and plasma corticosterone levels, were used as the stress indices. Panax ginseng (PG) was used as the standard adaptogenic agent for comparison. Additionally, rat brain levels of tribulin, an endogenous endocoid postulated to be involved in stress, were also assessed in terms of endogenous monoamine oxidase (MAO) A and MAOB inhibitory activity. Chronic unpredictable footshock induced marked gastric ulceration, significant increase in adrenal gland weight and plasma corticosterone levels, with concomitant decreases in spleen weight, and concentrations of adrenal gland ascorbic acid and corticosterone. These effects were attenuated by ST (50 and 100 mg/kg, p.o.) and PG (100 mg/kg, p.o.), administered once daily over a period of 14 days, the period of stress induction. Chronic stress also induced glucose intolerance, suppressed male sexual behaviour, induced behavioural depression (Porsolt's swim despair test and learned helplessness test) and cognitive dysfunction (attenuated retention of learning in active and passive avoidance tests), and immunosuppression (leucocyte migration inhibition and sheep RBC challenged increase in paw oedema in sensitized rats). All these chronic stress-induced perturbations were attenuated, dose-dependently by ST (50 and 100 mg/kg, p.o.) and PG (100 mg/kg, p.o.). Chronic stress-induced increase in rat brain tribulin activity was also reversed by these doses of ST and by PG. The results indicate that ST has significant adaptogenic activity, qualitatively comparable to PG, against a variety of behavioural, biochemical and physiological perturbations induced by unpredictable stress, which has been proposed to be a better indicator of clinical stress than acute stress parameters. The likely contribution of the individual constituents of ST in the observed adaptogenic action of the polyherbal formulation, have been discussed.  相似文献   

2.
Sialic acids play important roles in various biological functions. In the brain, evidence suggests that sialylation of glycoproteins and glycolipids affects neural plasticity. While the 18 sialyltransferase isoenzymes (STs) identified to date synthesize individual sialyl-oligosaccharide structures, they each exhibit activity toward more than one substrate and can overlap in their specificity. Therefore, the distribution of STs is a secondary factor in the study of specific sialylation. Here, seven STs; ST3Gal I-IV, ST8Sia IV, ST6Gal I and ST6GalNAc II, the expressions of which were identified in the adult hippocampus by RT-PCR, showed diverse localization patterns in the hippocampus on in situ hybridization, suggesting that the individual cells expressed relevant STS: Furthermore, to assay activity-related changes in ST expression, we used amygdaloid-kindling among models of neural plasticity. Differential expression of the STs participating in the kindling, notably, up-regulation of ST3Gal IV and ST6GalNAc II mRNAs, and down-regulation of ST3Gal I and ST8Sia IV mRNAs, were observed in the hippocampus following kindled seizures. These results indicate that ST expressions are regulated by physiological activity and may play a role in neural plasticity.  相似文献   

3.
Chronic oxidative stress plays an important role in depression. The aim of present study was to examine the stress-induced changes in serum corticosterone (CORT) levels, cytosolic protein carbonyl groups, malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO) and total superoxide dismutase (SOD) activity in the prefrontal cortex versus hippocampus of male Wistar rats exposed to acute (2 h of immobilization or cold), chronic (21d of social isolation) stress, and their combination (chronic + acute stress). The subcellular distribution of nuclear factor-κB (NF-κB) and cytosolic cyclooxygenase 2 (COX-2) protein expressions were also examined. Depressive- and anxiety-like behaviors were assessed via the forced swim, sucrose preference, and marble burying tests in chronically isolated rats. Although both acute stressors resulted in elevated CORT, increased MDA in the prefrontal cortex and NF-κB activation accompanied by increased NO in the hippocampus were detected only following acute cold stress. Chronic isolation resulted in no change in CORT levels, but disabled appropriate response to novel acute stress and led to depressive- and anxiety-like behaviors. Increased oxidative/nitrosative stress markers, likely by NF-κB nuclear translocation and concomitant COX-2 upregulation, associated with decreased SOD activity and GSH levels, suggested the existence of oxidative stress in the prefrontal cortex. In contrast, hippocampus was less susceptible to oxidative damage showing only increase in protein carbonyl groups and depleted GSH. Taken together, the prefrontal cortex seems to be more sensitive to oxidative stress than the hippocampus following chronic isolation stress, which may be relevant for further research related to stress-induced depressive-like behavior.  相似文献   

4.
Abstract: Activity of the stress protein, heme oxygenase-1 (hsp32; HO-1), produces carbon monoxide (CO), the potential messenger molecule for excitatory N -methyl- d -aspartate receptor-mediated events, in the hippocampus. Long-term stress caused by elevated adrenocorticoids induces pathological changes in CA1–CA3 neurons, of the hippocampus; the adrenal hormones also exacerbate damage from stress. In rats chronically treated with corticosterone, we examined expression of HO-1 and its response to thermal stress in the hippocampus. An unprecedented appearance of scattered immunoreactive astrocytes marked the molecular layer of the hippocampus in corticosterone-treated rats. Steroid treatment showed no discernible effect on whole-brain HO-1 mRNA. When these rats were subjected to hyperthermia, neurons in the CA1–CA3 area, including pyramidal cells, exhibited intense immunoreactivity for the oxygenase and a pronounced increase (∼10-fold) in number. HO-1 is essentially undetectable in this area when rats are exposed to chronic corticosterone alone or thermal stress by itself, or in control rats. In contrast, similar analysis of hilar neurons showed no apparent effect on either the number or relative intensity of HO-1-immunostained cells after treatment. Corticosterone treatment also intensified the stress response of cerebellum, including Purkinje cells and Bergmann glia in the molecular layer. In brain, despite a pronounced reduction in NO synthase activity in corticosterone-treated and/or heat-stressed animals, the level of cyclic GMP was not significantly reduced. These observations are consistent with the hypothesis that responsiveness to environmental stress of CA1–CA3 neurons brought about by chronic elevation in circulating adrenocorticoids results in an increased excitatory neuronal activity and eventual hippocampal degeneration. Moreover, these findings yield further support for a role of CO in the production of cyclic GMP in the brain.  相似文献   

5.
In humans, long-term exposure to uncontrollable and unpredictable life stressors is a major precipitant in the development of depressive disorders. There are strong evidences that depression is accompanied by lower serum zinc. The aim of present study is to assess the effects of repeated psychological stress (PS) on the zinc metabolism in rat. The rats were divided into control group and PS group which were subdivided into three subgroups: 7-day group, 14-day group, and recovery group (ten rats in each subgroup). PS model was created by a communication box which contains room A and room B. Rats in room A were only exposed to the responses of rats which were randomly given electrical shock for 30 min in room B. PS was given to rats for 30 min every morning for 14 days. The serum corticosterone (CORT), zinc in serum and tissues, and zinc apparent absorption after PS exposure were investigated. The results showed that the serum CORT increased and serum zinc decreased after 7 and 14 days of PS treatment. The zinc concentration in the liver was increased by 14 days PS exposure, whereas its concentration in the hippocampus was decreased by 7 and 14 days of PS exposure. There were no significant changes in zinc concentration in the heart, spleen, kidney, duodenum, cortex, and cerebellum. A decrease in the zinc apparent absorption was observed in the 7- and 14-day PS groups. The increased serum CORT and liver zinc concentrations and decreased serum zinc and apparent absorption of zinc recovered to normal concentrations 7 days away from PS exposure. The results suggest that PS could induce lower serum zinc, which might be correlated with decreased zinc absorption in the small intestine and increased liver zinc accumulation after PS exposure. The consequent effects of decreased hippocampal and serum zinc and increased CORT concentration after PS exposure on stress-related diseases await further research.  相似文献   

6.
Major depression is characterized for symptoms at the psychological, behavioral and physiological levels. The chronic mild stress model has been used as an animal model of depression. The consumption of sweet food, locomotor activity, body weight, lipid and protein oxidation levels and superoxide dismutase and catalase activities in the rat hippocampus, prefrontal cortex and cortex were assessed in rats exposed to chronic mild stress. Our findings demonstrated a decrease on sweet food intake, no effect on locomotor activity, lack of body weight gain, increase in protein (prefrontal, hippocampus, striatum and cortex) and lipidic peroxidation (cerebellum and striatum), and an increase in catalase (cerebellum, hippocampus, striatum, cortex) and a decrease in superoxide dismutase activity (prefrontal, hippocampus, striatum and cortex) in stressed rats. In conclusion, our results support the idea that stress produces oxidants and an imbalance between superoxide dismutase and catalase activities that contributes to stress-related diseases, such as depression.  相似文献   

7.
Improvement of glycosylation is one of the most important topics in the industrial production of therapeutic antibodies. We have focused on terminal sialylation with alpha-2,6 linkage, which is crucial for anti-inflammatory activity. In the present study, we have successfully cloned cDNA of beta-galactosyl alpha-2,6 sialyltransferase (ST6Gal I) derived from Chinese hamster ovary (CHO) cells regardless of reports that stated this was not endogenously expressed in CHO cells. After expressing cloned ST6Gal I in Escherichia coli, the transferase activity was confirmed by HPLC and lectin binding assay. Then, we applied ST6Gal I to alpha-2,6 sialylation of the recombinant antibody; the ST6Gal I expression vector was transfected into the CHO cell line producing a bispecific antibody. The N-glycosylation pattern of the antibody was estimated by HPLC and sialidase digestion. About 70% of the total N-linked oligosaccharide was alpha-2,6 sialylated in the transfected cell line whereas no sialylation was observed in the non-transfected cell line. The improvement of sialylation would be of practical importance for the industrial production of therapeutic antibodies.  相似文献   

8.
We have studied the effect of acute and chronic stress on corticosterone and growth hormone (GH) serum levels in male Wistar rats. Both acute noise-light stress and the presence of a dog elicited an increase in corticosterone and a decrease in GH levels in serum. While previous chronic stress induced a reduction of corticosterone response to the same stimuli, no reduction was observed in GH response. In addition, chronic exposure to noise-light stress induced modifications in corticosterone but not in GH response to dog presence. The results suggest that GH and corticoadrenal response mechanisms of adaptation to chronic stress are dissociated. This is further corroborated by the study of the correlation between both hormones.  相似文献   

9.
In order to determine how glycosylation changes associated with cellular differentiation may be influenced by the basal cellular sialylation potential, the effect of retinoic acid (RA)-induced differentiation was investigated in neuroblastoma cells expressing differing levels (and activities) of the 2,6(N) sialyltransferase (ST6N) enzyme. The increase in ST activity was proportional to the basal cellular sialylation potentials with the high activity clones showing the greatest increase. This was paralleled by an up-regulation of the level of overall sialoglycoprotein glycosylation level. An increase in the levels of the polysialic acid (PSA) epitope was associated with a parallel increase in the levels of the neural cell adhesion molecule (NCAM) protein backbone although there was no overall change in the PSA:NCAM ratio following RA treatment.  相似文献   

10.
Therapeutic glycoproteins produced in different host cells by recombinant DNA technology often contain terminal GlcNAc and Gal residues. Such glycoproteins clear rapidly from the serum as a consequence of binding to the mannose receptor and/or the asialoglycoprotein receptor in the liver. To increase the serum half-life of these glycoproteins, we carried out in vitro glycosylation experiments using TNFR-IgG, an immunoadhesin molecule, as a model therapeutic glycoprotein. TNFR-IgG is a disulfide-linked dimer of a polypeptide composed of the extracellular portion of the human type 1 (p55) tumor necrosis factor receptor (TNFR) fused to the hinge and Fc regions of the human IgG(1) heavy chain. This bivalent antibody-like molecule contains four N-glycosylation sites per polypeptide, three in the receptor portion and one in the Fc. The heterogeneous N-linked oligosaccharides of TNFR-IgG contain sialic acid (Sia), Gal, and GlcNAc as terminal sugar residues. To increase the level of terminal sialylation, we regalactosylated and/or resialylated TNFR-IgG using beta-1,4-galactosyltransferase (beta1,4GT) and/or alpha-2,3-sialyltransferase (alpha2,3ST). Treatment of TNFR-IgG with beta1,4GT and UDP-Gal, in the presence of MnCl(2), followed by MALDI-TOF-MS analysis of PNGase F-released N-glycans showed that the number of oligosaccharides with terminal GlcNAc residues was significantly decreased with a concomitant increase in the number of terminal Gal residues. Similar treatment of TNFR-IgG with alpha2,3ST and CMP-sialic acid (CMP-Sia), in the presence of MnCl(2), produced a molecule with an approximately 11% increase in the level of terminal sialylation but still contained oligosaccharides with terminal GlcNAc residues. When TNFR-IgG was treated with a combination of beta1,4GT and alpha2,3ST (either in a single step or in a stepwise fashion), the level of terminal sialylation was increased by approximately 20-23%. These results suggest that in vitro galactosylation and sialylation of therapeutic glycoproteins with terminal GlcNAc and Gal residues can be achieved in a single step, and the results are similar to those for the stepwise reaction. This type of in vitro glycosylation is applicable to other glycoproteins containing terminal GlcNAc and Gal residues and could prove to be useful in increasing the serum half-life of therapeutic glycoproteins.  相似文献   

11.
Mucopolysaccharidosis type I is a lysosomal storage disease with alterations in several organs. Little is known about the pathways that lead to the pathology. Evidences point oxidative stress on lysosomal storage diseases and mucopolysaccharidosis type I. The aim of the present study was to evaluate oxidative biomarkers on mucopolysaccharidosis type I mice model. We evaluated antioxidant enzymatic activity, protein damage and lipid peroxidation in the forebrain, cerebellum, heart, lung, diaphragm, liver, kidney and spleen. Superoxide dismutase activity was increased on cerebellum, lung, diaphragm, liver and kidney of mucopolysaccharidosis type I mice. Catalase activity was increased on cerebellum, spleen and lung. There was no alteration on glutathione peroxidase activity on any of the analyzed organs. Mucopolysaccharidosis type I mice showed increased carbonyl groups on cerebellum, heart and spleen. There was a decrease of thiobarbituric acid-reactive substances on the cerebellum of mucopolysaccharidosis type I mice. The results indicate a oxidative imbalance in this model. As lysosomes are very susceptible to oxidative damage, leading inclusive to cellular death, and lysosomal storage diseases present several alterations on this organelles, this finding can help to elucidate the cellular damage pathways on mucopolysaccharidosis type I.  相似文献   

12.
In central nervous system, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) hydrolyse acetylcholine. Diminished cholinesterase activity is known to alter several mental and psychomotor functions. The symptoms of cholinergic crisis and those observed during acute attacks of acute intermittent porphyria are very similar. The aim of this study was to investigate if there could be a link between the action of some porphyrinogenic drugs on brain and the alteration of the cholinergic system. To this end, AChE and BuChE activities were assayed in whole and different brain areas. Muscarinic acetylcholine receptor (mAChR) levels were also measured. Results obtained indicate that the porphyrinogenic drugs tested affect central cholinergic transmission. Quantification of mAChR gave quite different levels depending on the xenobiotic. Veronal administration inhibited 50% BuChE activity in whole brain, cortex and hippocampus; concomitantly cortex mAChR was 30% reduced. Acute and chronic isoflurane anaesthesia diminished BuChE activity by 70-90% in whole brain instead cerebellum and hippocampus mAChR levels were only altered by chronic enflurane anaesthesia. Differential inhibition of cholinesterases in the brain regions and their consequent effects may be of importance to the knowledge of the mechanisms of neurotoxicity of porphyrinogenic drugs.  相似文献   

13.
Abstract: Ornithine decarboxylase (ODC), the rate-limiting enzyme in the biosynthesis of polyamines, was measured in the brain and the liver of adrenalectomized rats after an acute S.C. treatment with glucocorticoids. The effects of corticosterone and dexamethasone were compared in three brain areas, the cerebral cortex, hippocampus, and cerebellum. These structures have similar concentrations of cytosolic glucocorticoid receptor, as measured by an in vitro exchange assay using a specific glucocorticoid ligand, [3H]RU 26988, but contain different amounts of mineralocorticoid receptor. Corticosterone and dexamethasone increased ODC activity in the liver and brain areas in a dose dependent manner, dexamethasone being more active than corticosterone in all tissues. Moreover, estradiol, progesterone, and testosterone were inactive. Aldosterone, at high doses, increased brain ODC activity. Glucocorticoids, selected for their weak binding, or lack of binding to the mineralocorticoid receptor, were tested and found to be highly active in inducing brain and liver ODC, thus showing that ODC induction by steroids is specific for glucocorticoids. These results are among the first to suggest biochemically a central action of glucocorticoids following an acute treatment and confirm that the brain is a glucocorticoid target organ.  相似文献   

14.
Cell surface glycosylation patterns are markers of cell type and status. However, the mechanisms regulating surface glycosylation patterns remain unknown. Using a panel of carbohydrate markers, we have shown that cell surface sialylation and fucosylation are upregulated in L1-transfected embryonic stem cells (L1-ESCs). Consistently, the mRNA levels of sialyltransferase ST6Gal1 and ST3Gal4, and fucosyltransferase FUT9 were significantly increased in L1-transfected ESCs. Activation of L1 signaling promoted cell survival and inhibited cell proliferation. ShRNAs knocking down FUT9, ST6Gal1 and ST3Gal4 blocked these effects. A phospholipase Cγ (PLCγ) inhibitor and shRNA reduced ST6Gal1, ST3Gal4 and FUT9 mRNA levels in the L1-ESCs. Thus, embryonic stem cell surface sialylation and fucosylation are regulated via PLCγ by L1, with which they cooperate to modulate cell survival and proliferation.  相似文献   

15.
16.
Postnatal changes in liver corticosterone metabolism in vitro were investigated in male rats pretreated for three days twice daily by physiological saline i.p./stress/ or by phenobarbital /20 mg/kg/. Perinatally, both stress and phenobarbital decrease corticosterone side chain metabolism while no change was observed in A ring reduction rate. In older animals no effect of the stress on corticosterone metabolism was observed. The inhibitory influence of phenobarbital on the side chain metabolism was still apparent at age of 14 days, but not in adult animals. The A ring reduction rate was increased by phenobarbital at age of 14 days and in adult animals.Measurements of serum corticosterone and corticosterone production by adrenal glands in vitro confirmed earlier reports showing that during perinatal period increased level of circulating corticosterone can be associated with minor or transient changes in adrenal cortex activity.It is concluded that changes in liver corticosterone metabolism are likely to play an important role in regulation of glucocorticoid activity perinatally when the responsiveness of pituitary-adrenal system to environmental stimuli is decreased.  相似文献   

17.
Psychological stress (PS) could cause decreased iron absorption and iron redistribution in body resulting in low iron concentration in the bone marrow and inhibition of erythropoiesis. In the present study, we investigated the effect of zinc supplementation on the iron metabolism, erythropoiesis, and oxidative stress status in PS-induced rats. Thirty-two rats were divided into two groups randomly: control group and zinc supplementation group. Each group was subdivided into two subgroups: control group and PS group. Rats received zinc supplementation before PS exposure established by a communication box. We investigated the serum corticosterone (CORT) level; iron apparent absorption; iron contents in liver, spleen, cortex, hippocampus, striatum, and serum; hematological parameters; malondialdehyde (MDA); reduced glutathione (GSH); and superoxide dismutase (SOD). Compared to PS-treated rats with normal diet, the PS-treated rats with zinc supplementation showed increased iron apparent absorption, serum iron, hemoglobin, red blood cell, GSH, and SOD activities; while the serum CORT; iron contents in liver, spleen, and regional brain; and MDA decreased. These results indicated that dietary zinc supplementation had preventive effects against PS-induced iron dyshomeostasis, erythropoiesis inhibition, and oxidative stress status in rats.  相似文献   

18.
Neuroendocrine stress (NES) causes increase of glucocorticoids and alters physiological levels of reactive oxygen species production in cells, which might involve modifications in the antioxidant defense system. We investigated the hypothesis that acute, chronic, or combined stress alters copper–zinc superoxide dismutase (CuZnSOD) expression pattern at both, mRNA and subcellular protein level in the cerebral cortex and hippocampus of rats and that there may be a relationship between stress-induced corticosterone and CuZnSOD expression. The most effective stress model which led to the most pronounced changes in CuZnSOD expression patterns was also investigated. Our results demonstrated that acute stress immobilization up-regulates mRNA expression of hippocampal CuZnSOD, while cytosolic protein expression of this enzyme was increased in both brain structures. Chronic stress isolation had no effect on either mRNA and protein expression level and caused a lack of significant up-regulation to a novel acute stressors. The presence of this protein in nuclear fractions of both brain structures was also confirmed. The elevated cytosolic CuZnSOD protein levels following acute immobilization might reflect on the defense system against oxidative stress. Chronic isolation compromises CuZnSOD protein expression, which may lead to the inefficient defense against reactive oxygen species (ROS). The stress-triggered CuZnSOD protein expression was not correlated by the corresponding mRNA. The results suggest that different stress models exert a different degree of influence on mRNA and protein level of CuZnSOD in both brain structures as well as serum corticosterone.  相似文献   

19.
Exposure to different stressors initiates generation of reactive oxygen species (ROS), which create harmful environment for cellular macromolecules. Superoxide dismutases (SODs) represent the first line of antioxidant defense. Hence, any alternation in their function might be potentially damaging. To better define the role of SODs, we investigated the CuZnSOD activity in cytosolic and the nuclear fraction as well as mitochondrial MnSOD activity in the liver of Wistar male rats after exposure to 2 h of acute immobilization (IM) or cold (4°C) stress, 21 days of chronic social isolation (IS) or their combination (chronic stress followed by acute stress). Serum corticosterone (CORT) was monitored as an indicator of the stress response. Acute IM stress, with elevated CORT level, led to increased hepatic CuZnSOD activity in the nuclear fraction. Chronic isolation stress, where CORT was close to control value, did not change the CuZnSOD activity either in nuclei or in cytosolic fraction, while combined stress IS+Cold led to increased cytosolic CuZnSOD activity. MnSOD activity in mitochondrial fraction was decreased in all treated groups. Data have shown that different stressors have diverse effect on hepatic CuZnSOD and MnSOD activity as well as on serum CORT level. Increased nuclear CuZnSOD activity after acute stress represents physiological response since the named activity protects cells against oxidative stress, while chronic IS stress compromises CuZnSOD function, suggesting an inefficient defense against ROS. Observed decrease of MnSOD activities indicate inadequate elimination of ROS after acute or chronic stress, which is characteristic of the oxidative stress.  相似文献   

20.
Corticosterone regulation of brain and lymphoid corticosteroid receptors   总被引:1,自引:0,他引:1  
Circulating lymphocytes are often used as a model for brain corticosteroid receptor regulation in clinical disease states, although it is not known if lymphoid receptors are regulated in a similar manner as brain receptors. In the present study the regulation of brain (hippocampus, frontal cortex, hypothalamus and striatum), lymphoid (circulating lymphocytes, spleen and thymus) and pituitary glucocorticoid receptors in response to alterations in circulating corticosterone levels was examined. Seven days following adrenalectomy, type II corticosteroid receptors (i.e. glucocorticoid receptors) were significantly increased in the hippocampus, frontal cortex and hypothalamus, but not in any other tissues. Administration of corticosterone (10 mg/kg) for 7 days significantly decreased type II as well as type I (i.e. mineralocorticoid receptors) receptors in the hippocampus. Type II receptors in the frontal cortex, circulating lymphocytes and spleen were also significantly decreased by chronic corticosterone treatment. Immobilization stress (2 h a day for 5 days) failed to alter receptor density in any of the tissues. These results demonstrate that homologous regulation of corticosteroid receptors by corticosterone does not invariably occur in all tissues and emphasize the complex degree of regulation of these receptors. However, the simultaneous downregulation of both hippocampal and lymphocyte glucocorticoid receptors by corticosterone provides support for the hypothesis that circulating lymphocytes do reflect some aspects of brain glucocorticoid receptor regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号