首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to evaluate the influence of an extremely low frequency sinusoidal magnetic field (ELF MF) with frequency of 10 Hz and intensity of 1.8-3.8 mT on the levels of the biogenic amines dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3-methoxytyramine (3-MT), 5-hydroxytryptamine (5-HT), 5-hydroxyindolacetic acid (5-HIAA), and noradrenaline (NA), as well as on DA and 5-HT turnover in corpus striatum and frontal cortex of adult male Wistar rats. We found that ELF MF exposure for 14 days, 1 h daily, did not influence the level of the examined biogenic amines and metabolites, but increased the rate of synthesis (turnover) of DA and 5-HT in rat frontal cortex as compared to control, sham exposed rats. On the basis of the present results and our previous findings, extremely low frequency magnetic field (ELF MF) exposure has been found to alter both turnover and receptor reactivity of monoaminergic systems, as well as some behaviors induced by these systems or their agonists and antagonists.  相似文献   

2.
Human Mesenchymal Stem Cells (hMSCs) were exposed to a developed extremely low-frequency (ELF) magnetic fields (50?Hz ,20?mT ELF) system to evaluate whether exposure to (ELF) magnetic fields affects growth, metabolism, and differentiation of hMSCs. MTT method was used to determine the growth and metabolism of hMSCs following exposure to ELF magnetic fields. Na(+)/K(+) concentration and osmolality of extracellular were measured after exposured culture. Alkaline phosphatase (ALP) assay and Calcium assay, ALP staining, and Alizarin red staining were performed to evaluate the osteogenic differentiation of hMSCs under the ELF magnetic field exposure. In these experiments, the cells were exposed to ELF for up to 23 days. The results showed that exposure to ELF magnetic field could inhibit the growth and metabolism of hMSC, but have no significant effect on differentiation of hMSCs. These results suggested that ELF magnetic field may influence the early development of hMSCs related adult cells.  相似文献   

3.
Human Mesenchymal Stem Cells (hMSCs) were exposed to a developed extremely low-frequency (ELF) magnetic fields (50?Hz ,20?mT ELF) system to evaluate whether exposure to (ELF) magnetic fields affects growth, metabolism, and differentiation of hMSCs. MTT method was used to determine the growth and metabolism of hMSCs following exposure to ELF magnetic fields. Na+/K+ concentration and osmolality of extracelluar were measured after exposured culture. Alkaline phosphatase (ALP) assay and Calcium assay, ALP staining, and Alizarin red staining were performed to evaluate the osteogenic differentiation of hMSCs under the ELF magnetic field exposure. In these experiments, the cells were exposed to ELF for up to 23 days. The results showed that exposure to ELF magnetic field could inhibit the growth and metabolism of hMSC, but have no significant effect on differentiation of hMSCs. These results suggested that ELF magnetic field may influence the early development of hMSCs related adult cells.  相似文献   

4.
Objective: Electromagnetic fields can affect intracellular Ca2+ levels. The aim of this study was to determine the changes intracellular Ca2+ concentration in cardiac ventricle cells of rats exposed to 0.25 mT (2.5 Gauss) magnetic field.

Methods: Forty-five male rats were introduced to this study. The rats were divided into three groups: control, sham, and experiment. The experimental group was exposed to 0.25 mT extremely low frequency (ELF) magnetic field for 14 days, 3 h/day. The sham group was treated like the experimental group, except for elf-magnetic field exposure. The control group was not subjected to anything and differed from the experimental group and sham group. In the end of experiment, rats were sacrificed, cardiac tissue was removed, and these were fixed in 10% neutral formalin. Then, ventricular cells were stained by Alizarin red staining method.

Results: In the light microscopic examinations of control groups, in myofibril structures between groups, changes were not observed. In myofibril regions of the experimental group compared to other groups, increased heterogen Ca2+ accumulations were found.

Conclusion: ELF magnetic fields are used in daily life. The results of this study show that intracellular Ca2+ accumulation in cardiac ventricles can increase in rats exposed to ELF magnetic field.  相似文献   

5.
The aim of this study was to evaluate the influence of extremely low frequency magnetic field (ELF MF) on the reactivity of the central dopamine D(1) receptor in rats with dopamine neurons chemically damaged by 6-hydroxydopamine (6-OHDA), an animal model of human's Parkinson's disease. The experiment was carried out on male Wistar rats. On day 3 of postnatal life, a lasting and selective chemical damage of the central dopamine system was induced in the rats by infusion of 6-OHDA HBr (133.4 microg intracerebroventricular, base form) given bilaterally into lateral ventricles of the brain. Control animals received similar treatments injecting only vehicle. At 2 months of age, both 6-OHDA treated and control rats were randomly divided into two groups. Rats from the first group were exposed to 10 Hz sinusoidal, 1.8-3.8 mT magnetic field one hour daily for 14 days. Rats of the second group were sham exposed, with the applicator solenoid turned off. On the day after the final exposure the evaluations were made of the rat's spontaneous irritability, oral activity, and catalepsy. The MF exposed rat with chemically induced dopamine neurons damage exhibited a reduction of irritability and oral activity when stimulated with SKF 38393 (the agonist of central dopamine D(1) receptor) and some increase of catalepsy after administration of SCH 23390(the antagonist of central dopamine D(1) receptor). These results indicate that ELF MF reduce the reactivity of central dopamine D(1) receptors in rats.  相似文献   

6.
The aim of this study was to determine whether exposure to extremely low frequency magnetic field (ELF-MF) affects the normal diurnal rhythm of the pain threshold in mice. Pain thresholds were evaluated in mice using the hot plate test. A significant increase of pain threshold during night was observed compared to that during day. This rhythm was attenuated by both constant exposure to light (LL) and constant exposure to darkness (DD) for 5 days. Under DD exposure, the diurnal rhythm in pain threshold was restored when mice were exposed to ELF-MF (60 Hz, 1.5 mT for 12 h daily, from 08:00 to 20:00 h) for 5 days. The diurnal rhythm was not reversed under dark with reversed ELF-MF cycle (exposure to 1.5 mT from 20:00 to 08:00 h, next day) for 5 days, although pain threshold in the ELF-MF exposed period of night was slightly decreased. The diurnal rhythm of melatonin analgesic effect related to pain threshold was also observed under DD by the exposure of ELF-MF for 5 days, but not for 5 nights. The present results suggest that ELF-MF may participate in the diurnal rhythm of pain threshold by acting on the system that is associated with environmental light-dark cycle.  相似文献   

7.
Our previous study has shown that an extremely low‐frequency magnetic field (ELF‐MF) induces nitric oxide (NO) synthesis by Ca2+‐dependent NO synthase (NOS) in rat brain. The present study was designed to confirm that ELF‐MF affects neuronal NOS (nNOS) in several brain regions and to investigate the correlation between NO and nNOS activation. The exposure of rats to a 2 mT, 60 Hz ELF‐MF for 5 days resulted in increases of NO levels in parallel with cGMP elevations in the cerebral cortex, striatum, and hippocampus. Cresyl violet staining and electron microscopic evaluation revealed that there were no significant differences in the morphology and number of neurons in the cerebral cortex, striatum, and hippocampus. Differently, the numbers of nNOS‐immunoreactive (IR) neurons were significantly increased in those cerebral areas in ELF‐MF‐exposed rats. These data suggest that the increase in NO could be due to the increased expression and activation of nNOS in cells. Based on NO signaling in physiological and pathological states, ELF‐MF created by electric power systems may induce various physiological changes in modern life. Bioelectromagnetics 33:568–574, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The effects of long‐term extremely low‐frequency magnetic field (ELF‐MF) exposure on bone formation and biochemical markers were investigated in ovariectomized rats. Sixty mature female Sprague–Dawley rats were randomly divided into four different groups (n = 15): (i) unexposed control (CTL); (ii) ovariectomized only (OVX); (iii) non‐ovariectomized, exposed (SHAM + ELF‐MF); and (iv) ovariectomized, exposed (OVX + ELF‐MF). The third and fourth groups were exposed to 1.5 mT ELF‐MF for 4 h a day for 6 months. Bone mineral density (BMD) was determined using dual energy X‐ray absorption (DEXA) measurements. The formation and resorption of bone were evaluated using bone‐specific alkaline phosphatase (BAP), osteocalcin, osteoprotogerin, and N‐telopeptide. After 6 months of ELF‐MF therapy, BMD values were significantly lower in the OVX group and higher in the OVX + ELF‐MF and SHAM + ELF‐MF groups than they were before therapy (P < 0.001). Although there was no significant difference in BMD values among the groups before therapy, the BMD values increased significantly after 6 months in the OVX + ELF‐MF and SHAM + ELF‐MF groups and were reduced in the OVX group compared to the CTL group (P < 0.001). The concentrations of BAP, osteocalcin, osteoprotogerin, and N‐telopeptide in the three experimental groups also changed in a significant way compared to the CTL group. The results of the present study suggest that osteoporosis can be inhibited by ELF‐MF stimulation treatments. It was also concluded that ELF‐MF may be useful in the prevention of osteoporosis in ovariectomized rats. Bioelectromagnetics 33:543–549, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Two double-blind studies were run in an attempt to confirm the finding that a 0.2 Hz magnetic field affects simple reaction time (RT) in humans, whereas a 0.1 Hz field does not. In the first experiment, 12 volunteer subjects were exposed to a continuous 0.2 Hz, 0.1 Hz, or sham field in a fully counter-balanced, within-subjects design. Subjects were run singly for one condition each day over 3 consecutive days with a field strength of 1.1 mT and a daily exposure duration of 5 min. Neither magnetic field had any effect on RT at any time during the exposure. One condition of a second study, using a new group of 24 volunteer subjects, also failed to find any field effects at 0.2 Hz. Additionally, the second study failed to show any effects when the frequency, flux density, and field orientation were set according to parametric resonance theory. It is suggested that, although ELF magnetic field effects on human behaviour may be elusive, future research can improve detection rates by paying greater attention to reducing error variance and increasing statistical power. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Exposure to extremely low frequency (ELF) magnetic fields has been shown to attenuate endogenous opioid peptide mediated antinociception or “analgaesia” in the terrestrial pulmonate snail, Cepaea nemoralis. Here we examine the roles of light in determining this effect and address the mechanisms associated with mediating the effects of the ELF magnetic fields in both the presence and absence of light. Specifically, we consider whether the magnetic field effects involve an indirect induced electric current mechanism or a direct effect such as a parametric resonance mechanism (PRM). We exposed snails in both the presence and absence of light at three different frequencies (30, 60, and 120 Hz) with static field values (BDC) and ELF magnetic field amplitude (peak) and direction (BAC) set according to the predictions of the PRM for Ca2+. Analgaesia was induced in snails by injecting them with an enkephalinase inhibitor, which augments endogenous opioid (enkephalin) activity. We found that the magnetic field exposure reduced this opioid-induced analgaesia significantly more if the exposure occurred in the presence rather than the absence of light. However, the percentage reduction in analgaesia in both the presence and absence of light was not dependent on the ELF frequency. This finding suggests that in both the presence and the absence of light the effect of the ELF magnetic field was mediated by a direct magnetic field detection mechanism such as the PRM rather than an induced current mechanism. Bioelectromagnetics 18:284–291, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
The purpose of this study was to investigate the effects of 9450-MHz microwaves and extremely low frequency magnetic fields (ELFMF) on the phagocytic activity of rat macrophages in control rats and those treated with vitamins C and E. In the microwave group, 24 albino Wistar rats were exposed to microwaves (2.65 mW/cm2, specific absorption rate [SAR]: 1.80 W/kg) for 1 h/day for 21 days. Thirty-two albino Wistar rats were divided into four groups (one control, three experimental) (n = 8). The rats in the first exposure group were only exposed to microwaves for 1 h per day for 21 days. In addition to exposure with microwaves as in the first experimental group, vitamins E and C (150 mg/kg/day) were injected intraperitoneally into the rats in the second and third exposure groups, respectively. In the magnetic field exposure group, 26 albino Wistar rats were divided into two groups: the sham (n = 12) and exposed groups (n = 14). The rats in the experimental group were exposed to ELFMF (50 Hz, 0.75 mT) for 3 h/day for 3 weeks. After completing the exposure period, the rats were sacrificed under ketalar anesthesia. The viability of isolated alveolar macrophages of rats in the microwave and ELF groups was determined and compared to sham groups. The results were analyzed with the Mann–Whitney U test. In the microwave group, the phagocytic activity in the experimental groups was found to be higher than the sham groups. However, with phagocytic activity in rats treated with both microwaves and vitamins, only the vitamin C group was significant (p < 0.05). In the magnetic field group, the phagocytic activity of rats exposed to ELFMF was lower than that of the sham group, but the results were not significant (p > 0.05). Rectal temperatures of microwaveexposed groups were found to be significantly higher compared to the control group (p < 0.05).  相似文献   

12.
Photosynthetic CO2 uptake rate and early growth parameters of radish Raphanus sativus L. seedlings exposed to an extremely low frequency magnetic field (ELF MF) were investigated. Radish seedlings were exposed to a 60 Hz, 50 microT(rms) (root mean square) sinusoidal magnetic field (MF) and a parallel 48 microT static MF for 6 or 15 d immediately after germination. Control seedlings were exposed to the ambient MF but not the ELF MF. The CO2 uptake rate of ELF MF exposed seedlings on day 5 and later was lower than that of the control seedlings. The dry weight and the cotyledon area of ELF MF exposed seedlings on day 6 and the fresh weight, the dry weight and the leaf area of ELF MF exposed seedlings on day 15 were significantly lower than those of the control seedlings, respectively. In another experiment, radish seedlings were grown without ELF MF exposure for 14 d immediately after germination, and then exposed to the ELF MF for about 2 h, and the photosynthetic CO2 uptake rate was measured during the short-term ELF MF exposure. The CO2 uptake rate of the same seedlings was subsequently measured in the ambient MF (control) without the ELF MF. There was no difference in the CO2 uptake rate of seedlings exposed to the ELF MF or the ambient MF. These results indicate that continuous exposure to 60 Hz, 50 microT(rms) sinusoidal MF with a parallel 48 microT static MF affects the early growth of radish seedlings, but the effect is not so severe that modification of photosynthetic CO2 uptake can observed during short-term MF exposure.  相似文献   

13.
The combined effects of diabetes and a 50 Hz, 5 mT RMS flux density sinusoidal magnetic field for 8 h a day, for 21 consecutive days on the permeation of Evans-blue dye through the blood-brain barrier were studied in male Wistar albino rats. Our results suggest that magnetic field has no effect on the blood-brain barrier permeability in normoglycemic animals, but that diabetic rats are vulnerable to magnetic fields.  相似文献   

14.
An animal model for large granular lymphocytic (LGL) leukemia in male Fischer 344 rats was utilized to determine whether magnetic field exposure can be shown to influence the progression of leukemia. We previously reported that exposure to continuous 60 Hz, 1 mT magnetic fields did not significantly alter the clinical progression of LGL leukemia in young male rats following injection of spleen cells from donor leukemic rats. Results presented here extend those studies with the following objectives: (a) to replicate the previous study of continuous 60 Hz magnetic field exposures, but using fewer LGL cells in the inoculum, and (b) to determine if intermittent 60 Hz magnetic fields can alter the clinical progression of leukemia. Rats were randomly assigned to four treatment groups (18/group) as follows: (1) 1 mT (10 G) continuous field, (2) 1 mT intermittent field (off/on at 3 min intervals), (3) ambient controls ( < 0.1 microT), and (4) positive control (5 Gy whole body irradiation from cobalt-60 four days prior to initiation of exposure). All rats were injected intraperitoneally with 2.2 x 10(6) fresh, viable LGL leukemic spleen cells at the beginning of the study. The fields were activated for 20 h per day, 7 days per week, and all exposure conditions were superimposed over the natural ambient magnetic field. The rats were weighed and palpated for splenomegaly weekly. Splenomegaly developed 9-11 weeks after transplantation of the leukemia cells. Hematological evaluations were performed at 6, 8, 10, 12, 14, and 16 weeks of exposure. Peripheral blood hemoglobin concentration, red blood cells, and packed cell volume declined, and total white blood cells and LGL cells increased dramatically in all treatment groups after onset of leukemia. Although the positive control group showed different body weight curves and developed signs of leukemia earlier than other groups, differences were not detected between exposure groups and ambient controls. Furthermore, there were no overall effects of magnetic fields on splenomegaly or survival in exposed animals. In addition, no significant and/or consistent differences were detected in hematological parameters between the magnetic field exposed and the ambient control groups.  相似文献   

15.
This study demonstrates that exposure to 60 Hz magnetic fields (3.4–8.8 mT) and magnetic fields over the range DC-600 kHz (2.5–6.5 mT) can alter the early embryonic development of sea urchin embryos by inducing alterations in the timing of the cell cycle. Batches of fertilized eggs were exposed to the fields produced by a coil system. Samples of the continuous cultures were taken and scored for cell division. The times of both the first and second cell divisions were advanced by ELF AC fields and by static fields. The magnitude of the 60 Hz effect appears proportional to the field strength over the range tested. The relationship to field frequency was nonlinear and complex. For certain frequencies above the ELF range, the exposure resulted in a delay of the onset of mitosis. The advance of mitosis was also dependent on the duration of exposure and on the timing of exposure relative to fertilization. © 1995 Wiley-Liss, Inc.  相似文献   

16.
Drosophila flies placed in a habitat with two lateral boxes demonstrated sensitivity to magnetic fields: Oviposition decreased by exposure to pulsated extremely low frequency (ELF) (100)Hz, 1.76 miliTesla (mT) and sinusosidal fields (50 Hz, 1 mT), while there was no initial effect of exposure to a static magnetic field (4.5 mT). Drosophila eggs treated for 48 h with the above described fields showed that (1) mortality of eggs was lower in controls than in eggs exposed to all tested magnetic fields; (2) mortality of larvae increased when a permanent magnet was used; (3) mortality of pupae was highest when a permanent magnet was used; and (4) general adult viability was highest in controls (67%) and diminished progressively when eggs were exposed to pulsated (55%), sinusoidal (45%), and static (35%) magnetic fields.  相似文献   

17.
The effects of extremely low frequency (ELF) magnetic fields on membrane F0F1‐ATPase activity have been studied. When the F0F1‐ATPase was exposed to 60 Hz magnetic fields of different magnetic intensities, 0.3 and 0.5 mT magnetic fields enhanced the hydrolysis activity, whereas 0.1 mT exposure caused no significant changes. Even if the F0F1‐ATPase was inhibited by N,N‐dicyclohexylcarbodiimide, its hydrolysis activity was enhanced by a 0.5 mT 60 Hz magnetic field. Moreover, when the chromatophores which were labeled with F‐DHPE were exposed to a 0.5 mT, 60 Hz magnetic field, it was found that the pH of the outer membrane of the chromatophore was unchanged, which suggested that the magnetic fields used in this work did not affect the activity of F0. Taken together, our results show that the effects of magnetic fields on the hydrolysis activity of the membrane F0F1‐ATPases were dependent on magnetic intensity and the threshold intensity is between 0.1 and 0.3 mT, and suggested that the F1 part of F0F1‐ATPase may be an end‐point affected by magnetic fields. Bioelectromagnetics 30:663–668, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Adolescence is a critical developmental stage during which substantial remodeling occurs in brain areas involved in emotional and learning processes. Although a robust literature on the biological effects of extremely low frequency magnetic fields (ELF‐MFs) has been documented, data on the effects of ELF‐MF exposure during this period on cognitive functions remain scarce. In this study, early adolescent male mice were exposed from postnatal day (P) 23–35 to a 50 Hz MF at 2 mT for 60 min/day. On P36–45, the potential effects of the MF exposure on spatial memory performance were examined using the Y‐maze and Morris water maze tasks. The results showed that the MF exposure did not affect Y‐maze performance but improved spatial learning acquisition and memory retention in the water maze task under the present experimental conditions. Bioelectromagnetics 34:275–284, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
A series of epidemiological studies have indicated associations between exposure to magnetic fields (MFs) and a variety of cancers, including breast cancer. In order to test the possibility that MF acts as a cancer promoter or copromoter, four separate experiments have been conducted in rats in which the effects of chronic exposure to MFs on the development of mammary tumors induced by 7,12-dimethylbenz(a)anthracene (DMBA) were determined. Female rats were exposed in magnetic coils for 91 days (24 h/day) to either alternating current (AC; 50 Hz)-MF or direct current (DC)-MF. Magnetic flux density of the DC-MF was 15 mT. Two AC-MF exposures used a homogeneous field with a flux density of 30 mT (rms); one used a gradient field with flux density ranging from 0.3–1 μT. DMBA (5 mg) was administered orally at the onset of MF exposure and was repeated thrice at intervals of 1 week. In each experiment, 18–36 animals were exposed in 6 magnetic coils. The same number of rats were used as sham-exposed control. These control animals were treated with DMBA and were placed in dummy coils in the same room as the MF-exposed rats. Furthermore, groups of age-matched rats (reference controls) were treated with DMBA but housed in another room to exclude any MF exposure due to the magnetic stray field from the MF produced by coils. At the end of the exposure or sham-exposure period, tumor number and weight or size of tumors were determined at necropsy. Results were as follows: In sham-exposed animals or reference controls, the tumor incidence varied between 50 and 78% in the 4 experiments. The average number of mammary tumors per tumor-bearing animal varied between 1.6 and 2.9. In none of the experiments did MFs significantly alter tumor incidence, but in one of the experiments with AC-MF exposure at 30 mT, the number of tumors per tumor-bearing animal was significantly increased. Furthermore, exposure to a DC-MF at 15 mT significantly enhanced the tumor weight. Exposure to a gradient AC-MF at 0.3–1 μT exerted no significant effects. These experiments seem to indicate that MFs at high flux densities may act as a promoter or copromoter of breast cancer. However, this interpretation must be considered only a tentative conclusion because of the limitations of this study, particularly the small sample size used for MF exposure and the lack of repetition of data. © 1993 Wiley-Liss. Inc.  相似文献   

20.
In this work the effect of sinusoidal 50 Hz, 0.2 mT magnetic fields on the red blood cells (RBCs) and heart functions of Albino rats were investigated. Twenty-four male Albino rats were equally divided into four groups, A, B, C, and D. Animals from groups B were continuously exposed to the magnetic field for 15 days; and groups C and D, for 30 days. Group A was used as control. Animals from group D were kept after exposure to the magnetic field for a period of 45 days for delayed effect studies. The osmotic fragility and shape of RBCs' membrane and hemoglobin (Hb) structure tests were carried out for all groups. The dielectric relaxation of Hb molecules was measured in the frequency range of 0.1-10 MHz and the dielectric increment (Deltaepsilon), relaxation time (tau), molecular radius (r), and Cole-Cole parameter (alpha) were calculated for all groups. The ECG was measured for all animals before and after exposure to the magnetic field. The results indicated that exposure of the animals to 50 Hz, 0.2 mT magnetic fields resulted in the decrease of RBCs membrane elasticity and permeability and changes in the molecular structure of Hb. The ECG of the exposed animals was considerably altered. The data also indicated that there was no sign of repair in the newly generated RBCs structure and the ECG after removing the animals from the magnetic field, which indicates that the blood generating system was severely injured. The injuries in the heart of the animals were attributed to the loss of some physiological functions of the RBCs as a result of exposures of the rats to the magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号