首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
九十年代中期以后非磷酸化合成海藻糖的新酶系列及相关微生物(多为极端微生物)被发现,不同菌株纯化得到的新酶虽在专一性及酶特性方面存在差异,但均为非磷酸化酶。基因测序及同源性分析表明这些新酶与淀粉酶家族具有很强的同源性。一些文献报道了这些新酶合成海藻糖的作用机制,基本证实酶Ⅰ(MTSase、GTase和TSase)的分子内转糖基作用及酶Ⅱ(MTHase和Amylase)对麦芽寡糖基海藻糖的专一性内切作用,但这些新酶的作用机制仍需深入研究。  相似文献   

2.
从耐热古菌海藻糖芝田硫化叶菌B12中分别克隆出海藻糖生成相关酶——麦芽寡糖基海藻糖合酶的基因treY和麦芽寡糖基海藻糖基水解酶的基因treZ,测定了其核苷酸序列并进行了表达.其中treY编码的蛋白质有728个氨基酸、分子质量为86 ku;treZ编码的蛋白质有559个氨基酸、分子质量为65 ku.它们与已报道的其他微生物的两个海藻糖生成相关酶的基因进行同源性比较,treYtreZ的同源性分别为93%和76%(硫矿硫化叶菌P2)、97%和95%(硫矿硫化叶菌KM1)、63%和66%(嗜酸热硫化叶菌ATCC33909)、48%和50%(节杆菌Q36)、48%和52%(根瘤菌M11)、50%和52%(短杆菌).通过PHYLIP软件进行这些基因序列的分类聚类计算,获得这几种微生物间两个酶类的蛋白质系统进化树;经过氨基酸序列比较分析还发现,所有的海藻糖生成相关酶都含有糖苷酶家族13中几个高度保守的α-淀粉酶催化活性区,推测这些海藻糖生成相关酶都可能有着共同的进化来源.  相似文献   

3.
海藻糖合酶的研究进展   总被引:1,自引:0,他引:1  
海藻糖是一种天然存在的非还原性二糖, 对生物膜和蛋白质等大分子有独特的保护作用, 在食品、医药、化妆品等多个领域中都有广泛的发展空间。海藻糖合酶(TreS)是一类分子内转糖苷酶, 专一性地以麦芽糖为底物, 一步转化生成海藻糖, 操作工艺简单、底物价格低廉、应用前景良好。本文综述了海藻糖合酶的酶学性质、催化机理、基因工程以及目前存在的主要问题和拟解决方案。  相似文献   

4.
氨酰-tRNA合成酶(AARS)是一类在蛋白质合成过程中起着重要作用的酶,它通过与tRNA及其相应氨基酸的专一性识别作用,使得基因序列能够被精确地翻译成蛋白质序列.然而,氨酰-tRNA合成酶的这种识别作用既有专一性,也具有“兼容性”.氨酰-tRNA合成酶的这种双重性质不仅与其结构的进化有关,而且还与其所处的各类生物的不同进化阶段有关.AARS似乎经历了一个由“模糊专一性”(多重专一性)到“精确专一性”(单一专一性)的演变历程.  相似文献   

5.
海藻糖代谢途径相关基因及生物工程   总被引:5,自引:2,他引:5  
海藻糖(Trehalose)是一种由两个葡萄糖分子通过α,α-1,l糖苷键连接的非还原性双糖。最早的记录是在19世纪初期作为黑麦的麦角菌的一种成分而被描述,后来发现海藻糖广泛存在于微生物、动物和植物体内,特别是在那些能抗脱水作用的生物中起着重要作用。这些特殊生物具有在脱水条件下存活多年的性质,包括所谓的“复苏植物”(Selaginella lepidophylla)、某些咸水虾、线虫及面包酵母等。当它们体内99%的水分被去掉之后,仍保持着能在获水后迅速复活的能力^[1]。研究表明,海藻糖对于生物抗逆具有重要的保护作用。海藻糖的应用研究因此得到了人们的广泛关注和重视,目前海藻糖已被用作酶、其它蛋白、生物制品甚至移植器官的保护剂。海藻糖作为生物体对抗环境胁迫的重要应激保护物质,在不同生物中存在多种合成和分解代谢途径,相关基因已相继被克隆和分析。海藻糖合成、分解及其调控是生物抗逆的重要机制,其相关基因的研究也是海藻糖生物工程的重要基础。  相似文献   

6.
纤维素酶中具有壳聚糖水解酶活性成分的鉴定   总被引:5,自引:0,他引:5  
在壳聚糖酶的研究过程中,目前已发现37种酶具有非专一性地降解壳聚糖的能力[1].对这些非专一性酶水解壳聚糖的机理有两种看法:一些人认为,由于这些酶大都来自商业酶制剂,未经过进一步的纯化,故有人认为其中所含的少量杂质可能是产生水解活力的原因;但也有人认为,在所有的酶制剂中都存在同一种杂质似乎是不可能的,因为这些酶来源于广泛的微生物、真菌、哺乳动物和植物等.众所周知,酶具有高度的专一性,即对所催化的反应和底物有严格的选择性,一种酶往往只能催化一种或一类反应;有如此多的不同种类的酶能非专一性地水解壳聚糖.因而探讨具有水解…  相似文献   

7.
海藻糖合酶的分子生物学研究进展   总被引:3,自引:0,他引:3  
海藻糖合酶能够将麦芽糖转化为海藻糖,在海藻糖的工业生产中具有十分重要的意义。本文从海藻糖合酶的基因克隆、基因工程应用、结构和催化机制的研究以及其在微生物体内的功能等方面讨论了海藻糖合酶的研究进展。  相似文献   

8.
本实验目的是研究海藻糖对微生物谷氨酰胺转胺酶(TGase)热稳定性的作用。糖类对TGase的保护作用根据糖种类不同有所差异,海藻糖和蔗糖的保护作用优于葡萄糖对TGase的保护作用。在45℃、50℃、55℃、60℃、65℃下研究了海藻糖对TG酶的保护作用。结果表明,在50~65℃下海藻糖使谷氨酰胺转胺酶受热时的稳定性提高了约20%。海藻糖与酶复合的最合适浓度约为14%,浓度低时保护作用不明显,加入过高浓度的糖对酶的活性维持不利。50℃下处理一段时间内,海藻糖对酶的保护作用随时问变化很小。  相似文献   

9.
王千  白杰  江会锋 《生命科学》2021,(12):1493-1501
酶是一种优秀的生物催化剂,酶促反应以高效性、专一性、条件温和、绿色环保等优点著称,但天然酶仍存在活性低、稳定性差、专一性不佳等问题.合成生物学与人工智能技术的不断进步为天然酶的催化机制研究、催化活性改造以及新功能酶的设计提出了更高的要求和全新的思路.定向进化、理性及半理性设计和新酶设计等是目前发展和应用较为成熟的酶改造...  相似文献   

10.
极端酶的研究进展   总被引:2,自引:0,他引:2  
生命科学的迅猛发展大大拓宽了人们对酶的认识。以前,酶被定义为作用于常温、常压、温和PH和离子强度的水溶液中,具有区域专一性、立体专一性和高效催化活性,存在于天然生命体中的蛋白质。而今,酶在分子水平上被视为四类[1]:蛋白质酶(Pepzyme)、核酸酶(ribozyme)、化学酶(chemozyme)和抗体酶(abzyme),作用范围也大大拓宽。科学家将那些可在非常规条件下作用的酶称之为极端酶(extremozmpe)[2]。依据其来源,极端酶大致可分为三种:(1)从生活在非常规条件下的微生物(细胞)如某些古细菌(archaea)中分离得到的酶:(2)…  相似文献   

11.
含硒酶与非酶作用机制   总被引:2,自引:0,他引:2  
黄峙  郭宝江 《生命科学》2002,14(2):99-102,69
在微生物、植物和动物体内,硒的功能形式多种多样,但其作用机制可归纳为酶与非酶两个方面,含硒酶的作用主要有:谷胱甘肽过氧化物酶(GPx)家族催化超氧化物还原,防止细胞膜的氧化损伤;脱磺酶(ID)家族调节甲状腺激素代谢,硫氧还蛋白还原酶(TDR)家族催化硫氧还蛋白(Trx)还原,TDR/Trx系统为细胞的生长和分化所必需,硒的非酶化学保护作用体现在:可诱导一些蛋白激酶的富半胱氨酸结构域发生氧化还原修饰,增强免疫功能等作用,硒在植物中的作用机制具有许多特殊性。  相似文献   

12.
海藻糖-6-磷酸合成酶(trehalose-6-phosphate synthase, TPS)是昆虫海藻糖合成途径中的关键酶之一。本研究通过对葱蝇Delia antiqua海藻糖-6-磷酸合成酶基因的克隆、 序列分析及滞育相关表达的分析, 旨在证明该基因在能源合成以及抵御高温和低温环境方面发挥重要作用, 为进一步弄清葱蝇滞育分子机制提供理论依据。根据葱蝇抑制消减杂交文库中的EST序列信息, 设计特异性引物, 并通过RACE技术克隆了葱蝇海藻糖-6-磷酸合成酶基因全长cDNA, 命名为DaTPS1 (GenBank登录号: JX681124), 其全长为2 904 bp, 开放阅读框2 448 bp, 编码815个氨基酸, 推测其相对分子质量为91.2 kD, 等电点为5.96。生物信息学分析表明, 该基因编码的氨基酸序列具有两个保守结构域, 与其他物种TPS具有较高的同源性, 其中和黑腹果蝇Drosophila melanogaster亲缘关系最近, 氨基酸序列一致性为92.1%; 其蛋白质三维结构有15条大的α螺旋和11股反向平行的β链折叠。RT-PCR分析表明, DaTPS1在葱蝇非滞育、 夏滞育和冬滞育期蛹中都有表达, 但是非滞育期各时期表达量基本没有变化, 而在夏滞育和冬滞育蛹的滞育前期表达量较高, 滞育保持期表达量较低, 滞育期后期表达量又有所升高。推断在葱蝇蛹夏滞育和冬滞育期前期, TPS1开始催化合成较多的海藻糖以提高滞育期抵御不良环境的能力, 滞育保持期蛹的新陈代谢降低, 所需能量较少, 所以TPS1处于低水平表达状态, 而滞育期结束后, 蛹生长发育逐渐恢复, 所需能量有所增加, TPS1的表达量再次升高。本研究对揭示昆虫TPS在能量代谢通路中的作用及昆虫滞育的分子机理具有一定的科学意义。  相似文献   

13.
大肠杆菌海藻糖的代谢调控   总被引:1,自引:0,他引:1  
海藻糖是一种重要的抗逆物质。大肠杆菌中otsBA操纵子编码的两种酶负责海藻糖合成。otsBA基因的表达受渗透压诱导和σ^s因子的调节。细胞的周质海藻糖酶(treA)将外源海藻藻分解成两个葡萄糖分子。尽管大肠杆菌中渗透压诱导合成的海藻糖并不能保护细胞抗干燥,我们将otsA单个基因通过农杆菌转入烟草时,转基因株提高了耐盐和抗干燥特性,同时在转基因烟草提取物中检测到海藻糖,证明otsA基因在烟草中表达并合成海藻糖。我们认为若将otsA基因转入其它植物,可望改善这些植物的抗干旱、耐盐碱特性和延长采摘后的保鲜期。  相似文献   

14.
海藻糖生产菌株筛选过程中产物鉴定的研究   总被引:4,自引:0,他引:4  
在海藻糖生产菌的筛选过程中,微生物胞内酶转化淀粉生成的产物复杂,将产物逐一纯化是非常烦琐的,但又必须确证产物中是否含有海藻糖。本文将薄层层析、高效液相电喷雾电离质谱联用及核磁共振等分析手段综合应用于海藻糖生产菌株的筛选,在酶反应产物不必被纯化的前提下,准确、快捷地鉴定了酶反应产物中的未知糖组分,最终证明食尼古丁节杆菌(Arthrobacter nicotinovorus)D97利用淀粉或麦芽寡糖的酶反应产物中含有海藻糖。该方法在筛选海藻糖及其它功能性葡二糖生产菌株时较为严密。  相似文献   

15.
项目名称1徽生物学学科(42项)螺原体(Spiroplasma)基因组指纹图谱和系统分类研究弗兰克氏菌的化学与分子分类青藏高原虫草菌有性型及无性型的关系研究世界范围石耳科系统的综合研究中国根霉属的形态分类及其DNA的同源性微生物激光动态图像分析法及微生物动态特性研究紫色非硫细菌光系统作用中心电子传递及质子转移的机理细菌群体波状生长的自组织机制研究微生物醇脱氢酶新辅基一毗咯唆琳醒的研究纤维素菌分解纤维素的新机制与其酶新亚类兰细菌可逆性氢酶的研究血红蛋白基因对芽抱杆菌作用的研究放线菌沉默基因活化作为新抗生素筛选来源用…  相似文献   

16.
耐放射异常球菌海藻糖合成酶基因的克隆及功能鉴定   总被引:6,自引:0,他引:6  
利用生物信息学手段,在GenBank中进行氨基酸序列的同源性比较分析,检索到来自于耐放射异常球菌(Deinococcus radiodurans)基因组序列中一功能未确定的开放阅读框(ORF),其氨基酸序列和已报道的海藻糖合成酶的氨基酸序列有约60%的同源性.将这段ORF克隆到大肠杆菌进行表达,并进行功能鉴定.实验表明这段ORF序列所编码的是一种海藻糖合成酶,它能将麦芽糖分子转化成海藻糖分子,以30%的麦芽糖为底物时能将约65%的麦芽糖转化成海藻糖.重组酶性质初步研究表明,在pH 7.0,最佳温度30℃转化麦芽糖效率最高.  相似文献   

17.
灰飞虱海藻糖酶基因的克隆及RNA干扰效应   总被引:7,自引:0,他引:7  
张倩  鲁鼎浩  蒲建  吴敏  韩召军 《昆虫学报》2012,55(8):911-920
RNA干扰(RNAi)不但可以用于研究基因的功能, 还可以通过沉默靶标基因干扰特定的生命过程。因此, 通过深入研究, 发掘高效专一性靶基因和RNAi技术, 有可能开辟针对性的害虫RNAi防控新途径。本研究通过灰飞虱Laodelphax striatellus转录组数据分析并结合RACE技术, 克隆了灰飞虱两种海藻糖酶的全长基因, 分别命名为LSTre-1和LSTre-2, 其GenBank登录号分别为JQ027050和JQ027051。它们均具有海藻糖酶基因的典型特征, 与已报道的其他昆虫的海藻糖酶基因具有很高的相似性, 并表现出一定的虫种亲缘关系。其中LSTre-1为水溶性海藻糖酶基因, 全长2 042 bp, 开放阅读框编码602个氨基酸, 前端有25个氨基酸的信号肽, 但无跨膜结构域; LSTre-2为膜结合型海藻糖酶基因, 全长2 619 bp, 开放阅读框编码618个氨基酸, 前端有26个氨基酸的信号肽, 有2个疏水性跨膜结构域。利用喂食法研究2种海藻糖酶基因dsRNA对灰飞虱的致死效应, 发现靶向水溶性酶基因的干扰效应略高于靶向膜结合型的, 但两种海藻糖酶基因的dsRNA都可以显著抑制灰飞虱海藻糖酶基因的表达, 降低其活力, 还能显著抑制试虫的生长, 大幅增加试虫死亡率。 结果提示, 通过适宜途径干扰海藻糖酶基因可以开发防治灰飞虱的新途径。  相似文献   

18.
海藻糖广泛存在于细菌、真菌、昆虫、无脊椎动物和植物等大量生物中。它不仅可以作为昆虫的能量来源,而且在抗逆等方面起着重要作用。海藻糖合成酶(Trehalose-6-phosphate synthase,TPS)是海藻糖合成过程中的一个关键酶。目前细菌、真菌和植物中都已经被发现和克隆,但其不存在于哺乳动物中。海藻糖是昆虫的"血糖",主要通过海藻糖合成酶和海藻糖-6-磷酸脂酶(Trehalose-6-phosphate phosphatase,TPP)在脂肪体中催化合成。TPS基因所编码的蛋白序列一般都包含两个保守的结构域:TPS和TPP,分别对应着酵母中的Ots A和Ots B基因。昆虫海藻糖合成酶的基因表达和酶活性的变化与昆虫的多项生理过程有着密切的关系,海藻糖合成酶有可能成为控制害虫的新靶标。  相似文献   

19.
海藻糖广泛存在于细菌、真菌、动物和植物中。它不仅作为能量储备物质,在外界环境胁迫或内部代谢紊乱时,也可作为保护因子,保护其生命体度过逆境。昆虫海藻糖合成酶与海藻糖酶分别是海藻糖合成与分解的关键酶,合成的海藻糖在海藻糖转运蛋白的帮助下由胞内进入胞外。胰岛素与脂动激素直接参与昆虫糖代谢,保幼激素与蜕皮激素通过和胰岛素与脂动激素通路偶联,间接参与调控昆虫海藻糖代谢。海藻糖代谢途径和昆虫生长发育密切相关,昆虫海藻糖代谢信号通路为开发害虫控制的新靶标提供理论依据。  相似文献   

20.
微生物脂肪酶的研究与应用   总被引:7,自引:0,他引:7  
肖春玲 《微生物学杂志》1997,17(4):56-59,51
脂肪酶(Lipase,Ec3.1.1.3)是一类特殊的酯键水解酶,广泛地存在于动物组织、植物种子和微生物体中,它能催化天然底物油脂(甘油三脂)水解,产生脂肪酸和甘油。在水解过程中存在中间产物甘油单酯和甘油二酯。从催化特性来看,脂肪酶可以催化酯类化合物的分解、合成和酯交换,具有化学选择性和高度的立体异构专一性,且反应不需辅酶,反应条件温和,副产物少。脂肪酶的另一显著特点是:它只能在异相系统(即油-水界面)或有机相中作用,这不仅发展了“界面酶学”,也促进了“非水酶学”的研究和深入。脂肪酸是最早研究的酶类之一,已…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号