首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemical structure of a polysaccharide named Fucogel was characterized and the position of acetylation was identified by NMR. A conformational analysis was performed on this 3-sugar repeating unit. From this, the persistence length, characterizing the stiffness of the polysaccharide, was determined and the role of the presence of acetyl group, reducing the stiffness, was pointed out. The helical conformations were also predicted, one of these being in agreement with X-ray data obtained on a similar polysaccharide. Experimental characterization of the native and deacetylated polysaccharides was developed. SEC experiments allowed us to determine the molar mass and the persistence length on the deacetylated polysaccharide. The value is in good agreement with that predicted from the molecular modeling. Microcalorimetry, rheology, and fluorescence spectroscopy demonstrated respectively that no helical conformation exists in solution but that loose interchain interactions due to the acetyl substituents exist in dilute solutions.  相似文献   

2.
We have attempted to design a model dipeptide (acetyl dipeptide amide, Ac-CA1-CA2--NH(2)) that can adopt specifically typical torsion angles of the beta-I turn (phi(i+1), psi(i+1), phi(i+2), psi(i+2)=-60 degrees, -30 degrees, -90 degrees, 0 degrees ). The key of the design is the combination of constrained amino acids that prefer to adopt the desired torsion angles. We chose Aib (aminoisobutyric acid) as the first residue of which phi and psi angles must be -60 degrees and -30 degrees, respectively. Then, we selected an azaamino acid as the second residue since previous studies have indicated that they prefer to adopt +/-90 degrees of phi angle and 0 degrees or 180 degrees of psi angle. The conformational preference of the resulting Ac-Aib-AzGly--NH(2) is investigated using ab initio methods. The conformations implying beta-I and beta-I' turns are energetically most favorable, as we expected. Thus, we synthesized the designed molecule on the solid phase considering the future generation of combinatorial libraries using an automatic peptide synthesizer. Then, NMR spectroscopy was carried out to confirm their conformational preference in solution was carried out. The results indicated that the Ac-Aib-AzGly--NH(2) adopt beta-I or beta-I' turns in solution forming an intramolecular hydrogen bonding between Ac--C(O) and terminal NH(2). We believe that such a small peptidomimetic template is highly useful for the design of drug candidates and molecular devices.  相似文献   

3.
The conformations of the A-ring and the 17-acetyl groups of progesterone were examined within liposomes, which were prepared from L-alpha-phosphatidylcholine in the presence or absence of cholesterol in the buffer, using qualitative nuclear magnetic resonance and circular dichroism of the progesterone spectra in the wavelength regions of 260-360 nm. The preferred conformational assignments, in the rotational conformations of the 17-acetyl group and invertible conformations of the cyclohexenone of progesterone were discussed on the basis of the elliptical strength of the Cotton effect and an energy estimation of the preferred conformers. Energetically unstable conformers of the acetyl group and alpha,beta-unsaturated cyclohexenone of progesterone remarkably increased with an increase in the concentration of the liposomes. The liposomes containing 10% cholesterol were similar to the effect of the liposomes lacking cholesterol on the 17-acetyl group and the alpha,beta-unsaturated cyclohexenone but those containing 50% cholesterol showed an increase in the number of energetically stable conformers of the alpha,beta-unsaturated cyclohexenone. The nuclear magnetic resonance signal from liposomes together with the progesterone indicated the existence of the progesterone adjacent to a double bond or ester moiety in the lipid molecule. Therefore, it was apparent that the liposomes and the cholesterol within the liposomes regulated the conformational populations of both the cyclohexone and acetyl groups of the progesterone molecule.  相似文献   

4.
The interaction between the A-ring and the 17-acetyl groups of progesterone (PROG) and various concentrations of distearoyl-, dipalmitoyl-, dioleoyl- and diarachidoyl-L-alpha-phosphatidylcholines, and dipalmitoyl-L-alpha-phosphatidyl-DL glycerol in methanol and chloroform solutions and its preferred conformational assignments in the presence of those lipids were examined qualitatively by circular dichroism on the basis of PROG spectra in the wavelength regions of 260-400 nm. PROG did not interact with saturated distearoyl and dipalmitoyl phosphatidylcholines, but did with unsaturated dioleoyl and diarachidoyl phosphatidylcholines, and saturated dipalmitoylphosphatidylglycerol. The interacting moieties of PROG were an alpha,beta-unsaturated cyclohexenone of the A-ring for oleoyl and glycerol lipids, and the 17-acetyl group for unsaturated and glycerol lipids. The interaction with these lipids, the rotational conformations of the 17-acetyl group, and invertible conformations of the cyclohexenone of PROG were discussed on the basis of the elliptical strength of the Cotton effect and energy estimation of the preferred conformers. Oleoylphosphatidylcholine caused an increase in slightly energetically unstable conformers of the acetyl group and stable conformers of the alpha,beta-unsaturated cyclohexenone. Glycerol lipid, on the other hand, caused an increase in energetically unstable conformers of cyclohexenone, but it was similar to the effect of oleoyl lipid on the 17-acetyl group. Diarachidoyl-L-alpha-phosphatidylcholine, with eight double bonds, other hand, increased the number of energetically stable conformers of the 17-acetyl group, but had no effect on the conformation of cyclohexenone. It became apparent that the double bond of hydrocarbon moiety as well as the head group of choline and glycerol in lipids were closely related to the conformational populations of both groups of the PROG molecule. The specific effect on the conformations of the acetyl and alpha,beta-unsaturated cyclohexenone of PROG of various lipids with different substitutions in their heads or hydrocarbon moieties might in part explain the nongenomic action of the steroid.  相似文献   

5.
Molecular orbital calculations of proton-proton coupling constants are carried out for a number of nucleosides as a function of conformational characteristics of these compounds. The study of the role of the ring puckering and of the orientation of the exocyclic CH2OH group on the vicinal coupling constants of the ribose indicates the existence, in solution, of an equilibrium between several conformations. The influence of the torsion angle around the glycosidic bond on the vicinal and long range coupling constants is also examined.  相似文献   

6.
A A Ribeiro  R Saltman  M Goodman 《Biopolymers》1985,24(12):2449-2468
A detailed conformational analysis of polyoxyethylene-bound N-t-butyloxycarbonyl homo-oligo-L -glutamates up to the heptamer was carried out in CDCl3 solution using high-resolution 1H-nmr spectroscopy. Unequivocal assignments of resolved backbone NH and α-CH resonances were obtained with specifically deuterated oligomers. From nmr measurements, chemical-shift dependencies with respect to temperature and solvent, and the line-broadening effects of free radicals allowed the determination of hydrogen-bonded residues. The nmr data, along with model-building studies, suggest that seven-membered rings may exist in the N-terminal portion of these peptides. Replacement of the N-t-butyloxycarbonyl group by an acetyl or pyroglutamyl residue gave aggregated peptides, pointing to a special contribution by the Boc group to hydrogen bonding and solubility in CDCl3.  相似文献   

7.
The structure of carbon monoxide dehydrogenase/acetyl-coenzyme A synthase (CODH/ACS), a central enzyme in the anaerobic metabolism of acetyl-coenzyme A (acetyl-CoA), has been solved to a resolution of 2.2A. The active-site metal cluster responsible for catalyzing acetyl C-C bond synthesis and cleavage, designated the A center, was identified as an Fe(4)S(4) iron sulfur cluster with one of its cysteine thiolates acting as a bridge to an adjacent binuclear metal site. Nickel was found at one position in the binuclear site and the other metal was indicated to be copper - a surprising result, implying a previously unrecognized role for copper. Details of the A center provided new insight into the unusual organometallic mechanism of acetyl C-C bond formation and cleavage, with substantial conformational changes indicated for binding of the large methylcorrinoid protein substrate, and a unique intramolecular channel acting to contain carbon monoxide within the protein and transfer it to the site needed for acetyl-CoA synthesis.  相似文献   

8.
Homogeneous liver 3-hydroxy-3-methylglutaryl coenzyme A synthase, which catalyzes the condensation of acetyl-CoA with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA, also carries out: (a) a rapid transacetylation from acetyl-CoA to 31-dephospho-CoA and (b) a slow hydrolysis of acetyl-CoA to acetate and CoA. Transacetylation and hydrolysis occur at 50 and 1 percent, respectively, the rate of the synthasecatalyzed condensation reaction. It appears that an acetyl-enzyme intermediate is involved in the transacetylase and hydrolase reactions of 3-hydroxy-3-methylglutaryl-CoA synthase, as well as in the over-all condensation process. Covalent binding to the enzyme of a [14C]acetyl group contributed by [1(-14)C]acetyl-CoA is indicated by migration of the [14C]acetyl group with the dissociated synthase upon electrophoresis in dodecyl sulfate-urea and by precipitation of [14C]acetyl-enzyme with trichloroacetic acid. At 0 degrees and a saturating level of acetyl-CoA, the synthase is rapidly (less than 20 s) acetylated yielding 0.6 acetyl group/enzyme dimer. Performic acid oxidation completely deacetylates the enzyme, suggesting the site of acetylation to be a cysteinyl sulfhydryl group. Proteolytic digestion of [14C]acetyl-S-enzyme under conditions favorable for intramolecular S to N acetyl group transfer quantitatively liberates a labeled derivative with a [14C]acetyl group stable to performic acid oxidation. The labeled oxidation product is identified as N-[14C]acetylcysteic acid, thus demonstrating a cysteinyl sulfhydryl group as the original site of acetylation. The ability of the acetylated enzyme, upon addition of acetoacetyl-CoA, to form 3-hydroxy-3-methylglutaryl-CoA indicates that the acetylated cysteine residue is at the catalytic site.  相似文献   

9.
The structure of the ternary complex of mycothiol synthase from Mycobacterium tuberculosis with bound desacetylmycothiol and CoA was determined to 1.8 A resolution. The structure of the acetyl-CoA-binary complex had shown an active site groove that was several times larger than its substrate. The structure of the ternary complex reveals that mycothiol synthase undergoes a large conformational change in which the two acetyltransferase domains are brought together through shared interactions with the functional groups of desacetylmycothiol, thereby decreasing the size of this large central groove. A comparison of the binary and ternary structures illustrates many of the features that promote catalysis. Desacetylmycothiol is positioned with its primary amine in close proximity and in the proper orientation for direct nucleophilic attack on the si-face of the acetyl group of acetyl-CoA. Glu-234 and Tyr-294 are positioned to act as a general base and general acid to promote acetyl transfer. In addition, this structure provides further evidence that the N-terminal acetyltransferase domain no longer has enzymatic activity and is vestigial in nature.  相似文献   

10.
Empirical intramolecular energy calculations were carried out on molecular fragments related to phosphatides in order to find the preferred conformations. The energy was mapped as a function of several pairs of torsional angles in progressively larger molecular fragments, with energy minimization being carried out at each map point with respect to other significant variables. The energy mapping results were used as starting points for energy minimization on diheptanoyl L-α-phosphatidic acid-C, which consisted of the named molecule plus a carbon atom attached to one of the phosphate oxygens. It was found that there are 6 pairs of values for 2 of the torsional angles at the 3-way branch point in the glyceryl group which give sterically acceptable conformations; only 4 of these are compatible with lipid bilayer structure in that they can give a parallel arrangement of the acyl chains. The several acceptable conformations of the phosphate and acyl ester groups within each of these conformational classes are enumerated. The results obtained may be used as a guide for further experimental and theoretical work on phosphatide structures.  相似文献   

11.
The calculations have been carried out of interaction energy between complementary base pairs of nucleic acids in the function of conformational parametres of double helix (Arnott's parameters) by the method of atom-atom potential functions. Interaction energy as a function of conformational parametres is valley-like and varies little along the bottom of the valley. The regions of interaction energy minima are compared with experimentally determined conformational parametres of nucleic acid double helices. On the basis of calculation results the pathways of conformational transitions between different forms of double-helical polynucleotides are discussed.  相似文献   

12.
4-Amino-(D3)-trishomocubane-4-carboxylic acid is a constrained alpha-amino acid residue that exhibits promising conformational characteristics, i.e., helical and beta-turns. As part of the development of conformational guidelines for the design of peptides and protein surrogates, the conformational energy calculations on trishomocubane using molecular mechanics and ab initio methods are presented. The C(alpha) carbon of trishomocubane forms part of the cyclic structure, and consequently a peptidic environment was simulated with an acetyl group on its N-terminus and a methylamide group on its C-terminus. Ramachandran maps computed at the molecular mechanics level using the standard AMBER (parm94) force field libraries compared reasonably well with the corresponding maps computed at the Hartree Fock level, using the 6-31G* basis set. Trishomocubane peptide (Ac-Tris-NHMe) is characterized by four low energy conformers corresponding to the C7ax, C7eq, 3(10), and alpha(L) helical structures.  相似文献   

13.
The conformational behavior of different molecular weight fractions of a synthetic C6-oxidized derivative of cellulose were investigated by means of capillary viscometry, CD, and microcalorimetric measurements. Experiments were carried out in the presence of either monovalent or divalent counterions. The experimental data indicated that C6-oxidized cellulose can assume an ordered extended conformation at low ionic strength, induced by the intrachain repulsions of negative charges. This conformation was suggested to be very similar to the fully extended structure of cellulose. In addition to this, upon increasing the ionic strength, a conformational transition of the order-to-disorder type occurred. In fact, the screening of the electrostatic repulsions introduced a number of conformational kinks into the cellulosic backbone, which enabled the polymer to assume a more coiled conformation hence producing less viscous aqueous solutions. © 1998 John Wiley & Sons, Inc. Biopoly 45: 157–163, 1998  相似文献   

14.
The proposed active-site base Cys-378 of thiolase, responsible for deprotonation of acetyl-CoA, has been converted to a less acidic residue Ser-378 by mutagenesis. Comparison of the CD spectra and dimethyl suberimidate cross-linking experiments of the wild type, mutant Ser-378, and Gly-378 enzymes indicated that there have been no major conformational changes. The Ser-378 enzyme retains 0.1% of the Vmax of wild type in the direction of acetoacetyl-CoA thiolytic cleavage and 0.07% of the Vmax in the Claisen condensation direction. Analysis of the acetyl S-enzyme intermediate partitioning, that is capture of the acetyl enzyme by 1) the thiolate of coenzyme A relative to 2) the C-2 carbanion of acetyl-CoA, is changed to favor reaction 2 in the case of the Ser-378 mutant enzyme.  相似文献   

15.
We report here the results on N-acetyl-l-proline-N',N'-dimethylamide (Ac-Pro-NMe2) as a model for polyproline at the HF/6-31+G(d) level with the conductor-like polarizable continuum model of self-consistent reaction field methods to figure out the conformational preference and cis-trans isomerization of polyproline in the gas phase, chloroform, methanol, and water. The second methyl substitution at the carboxyl amide end results in different backbone structures and their populations from those of N-acetyl-L-proline-N-methylamide (Ac-Pro-NHMe). In particular, all conformations with the C7 hydrogen bond between acetyl and amide ends, which is the most probable conformations of Ac-Pro-NHMe in the gas phase and in nonpolar solvents, disappeared for Ac-Pro-NMe2 even in the gas phase due to the lack of amide hydrogen. The dominant conformation for Ac-Pro-NMe2 is the polyproline II structure with the trans prolyl peptide bond in the gas phase and in solutions. In methanol, the population of the polyproline I structure with the cis prolyl peptide bond is calculated to be larger than that in water, which is consistent with experiments. It should be noted that Ac-Pro-NMe2 has higher rotational barriers for the cis-trans isomerization of the Ac-Pro peptide bond than Ac-Pro-NHMe in the gas phase and in solutions, which could be due to the lack of the intramolecular hydrogen bond between prolyl nitrogen and carboxyl N-H group for the transition state of Ac-Pro-NMe2. The rotational barriers for Ac-Pro-NMe2 are increased with the increase of solvent polarity, as seen for Ac-Pro-NHMe.  相似文献   

16.
Nuclear Overhauser effects, with preirradiation of glycoside bond anomeric protons, coupling constants 3J C3, H1' and 3J C1', H4 and linkage optical rotations A were measured for L-Rha beta 1-3-L-Rha alpha 1-OMe and L-Rha alpha 1-3-L-Rha alpha 1-OMe which are the models of the disaccharide units of the Pseudomonas cepacia polysaccharide. Theoretical conformational analysis was carried out in terms of a mechanical molecular model approximation. The spatial structures of these disaccharides as well as of D-Rha alpha 1-2-D-Rha beta 1-OMe in aqueous solutions were discussed basing on the obtained results.  相似文献   

17.
18.
T Kozár  I Tvaroska 《Biopolymers》1990,29(12-13):1531-1539
The 2-methylaminotetrahydropyran was used as a model to study conformational properties of the N-glycosidic linkage in glycosylamines. Relaxed two-dimensional conformational (phi, psi) maps in 20 solvents were calculated by a method in which the total energy is divided into the energy of the isolated molecule and the solvation energy. Molecular geometry optimization has been carried out for each conformer using the quantum chemical method PCILO. The calculated variations of the geometry are consistent with the results obtained by the statistical analysis of available experimental data retrieved from the Cambridge Structural Database. The calculated abundances of conformers show that the polarity of the solvent has little effect on the anomeric ratio, and the form having the methylamino group equatorial is favored in all considered solvents.  相似文献   

19.
20.
A comparative study of the molecular dynamics of natural amino acid residues and their closest homologues and isomers was carried out. Molecular dynamics protocols not interfering with the principle of equidistribution of energy with respect to degrees of freedom were used. Poincare cross-sections, auto- and cross-correlation of complex exponential curves as a function of dihedrons were considered. The classification of dynamic properties of conformational degrees of freedom in the series of amino acid residues was carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号