首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D. Recktenwald  B. Hess 《BBA》1980,592(3):377-384
Methods are described to classify nucleotide binding sites of the mitochondrial coupling factor F1 from yeast on the basis of their affinities and stability properties. High affinity sites or states for ATP and related adenine analogs and low affinity sites or states which bind a broad range of different nucleotide triphosphates are found. The results are discussed in terms of a two site, two cycle scheme, where binding of nucleotide at one site facilitates the release of nucleotide at a second site.  相似文献   

2.
Tubulin was first treated with alkaline phosphatase-agarose to vacate the exchangeable nucleotide binding site and then tested for manganese binding sites by Mn(II) EPR. Buttlaire et al. ((1980) J. Biol. Chem. 255, 2164-2168) have shown that high affinity manganese binding occurs at a single site normally occupied by magnesium. We report that the number of high affinity manganese binding sites per mol of tubulin depends on the number of occupied exchangeable nucleotide binding sites. Thus, removal of nucleotides results in a loss of high affinity manganese binding sites. The EPR spectra of manganese bound to tubulin and to GTP are found to be qualitatively similar. These data indicate that high affinity manganese binding is the result of the formation of a metal-nucleotide complex at the exchangeable nucleotide binding site. In addition it was found that zinc, cobalt, and magnesium bind with approximately equal affinity to this site whereas calcium binds only weakly.  相似文献   

3.
The transporter associated with antigen processing (TAP) contains two nucleotide-binding domains (NBD) in the TAP1 and TAP2 subunits. When expressed as individual subunits or domains, TAP1 and TAP2 NBD differ markedly in their nucleotide binding properties. We investigated whether the two nucleotide-binding sites of TAP1/TAP2 complexes also differed in their nucleotide binding properties. To facilitate electrophoretic separation of the subunits when in complex, we used TAP complexes in which one of the subunits was expressed as a fluorescent protein fusion construct. In binding experiments at 4 degrees C using the photo-cross-linkable nucleotide analogs 8-azido-[gamma-(32)P]ATP and 8-azido-[alpha-(32)P]ADP, TAP2 was found to have reduced affinity for nucleotides compared with TAP1, when the two proteins were separately expressed. Complex formation with TAP1 enhanced the binding affinity of the TAP2 nucleotide-binding site for both nucleotides. Binding analyses with mutant TAP complexes that are deficient in nucleotide binding at one or both sites provided evidence for the existence of two ATP-binding sites with relatively similar affinities in TAP1/TAP2 complexes. TAP1/TAP2 NBD interactions appear to contribute at least in part to enhanced nucleotide binding at the TAP2 site upon TAP1/TAP2 complex formation. Binding analyses with mutant TAP complexes also demonstrate that the extent of TAP1 labeling is dependent upon the presence of a functional TAP2 nucleotide-binding site.  相似文献   

4.
The ATP analog 6-[(3-carboxy-4-nitrophenyl)thiol]-9-beta-D-ribofuranosylpurine 5'-triphosphate (Nbs6ITP) is slowly hydrolyzed at pH 7.4 by the (Na+ + K+)-ATPase, whereas it binds covalently at pH 8.5 and inhibits the enzyme irreversibly. Time courses of irreversible inhibition could only be fitted to a model in which the enzyme can exist in two slowly interchangeable states, one of which is enzymatically active and binds Nbs6ITP first reversibly and then covalently. Arguments that the covalent binding occurs at a low affinity nucleotide binding site are: (a) similarity of the Ki Nbs6ITP for the reversible and the irreversible inhibition and of K0.5 for ATP protection; (b) stoichiometry of covalent Nbs6ITP binding per alpha subunit of 0.8; and (c) change of complex substrate dependence of the enzyme to a Michaelis-Menten type after Nbs6ITP modification. This change in kinetics and the finding that the Nbs6ITP inactivation at a low affinity nucleotide binding site is increased by micromolar ADP concentrations indicates that the (Na+ + K+)-ATPase contains two different nucleotide binding sites. Since studies of nucleotide effects on enzyme inactivation by 5,5'-dithiobis(2-nitrobenzoic acid) did not confirm the hypothesis of an SH-group in a nucleotide binding site, Nbs6ITP may bind to another functional group, e.g. to an OH-group of tyrosine.  相似文献   

5.
It was previously reported that 2',3'-O-(2,4,6-trinitrocyclohexadienylidene) (TNP)-nucleotides bind with high affinity to the sarcoplasmic reticulum Ca-ATPase (Dupont, Y., Chapron, Y., and Pougeois, R. (1982) Biochem. Biophys. Res. Commun. 106, 1272-1279 and Watanabe, T., and Inesi, G. (1982) J. Biol. Chem. 257, 11510-11516). Here we report a study of the Ca-ATPase nucleotide binding sites using TNP-nucleotides. Competition at equilibrium between TNP-nucleotides and ATP was measured in the absence of calcium; it was found that TNP-nucleotides and ATP competitively bind to two classes of sites of equal concentration (3.5 nmol/mg). The ATP dissociation constants for the two classes of sites were found to be sensitive to H+ and Mg2+ concentrations. In the absence of Mg2+ (independently of pH) or at acid pH (independently of Mg2+ concentration), the nucleotide sites behave like one single family of sites of intermediate affinity (Kd = 20 microM). They split into two classes of sites of high (Kd = 2-4 microM) and low (Kd greater than 1 mM) affinity at pH values higher than neutral and in the presence of Mg2+. The calcium-activated ATP hydrolysis is accelerated by TNP-ATP (or TNP-AMP-PNP) binding on the phosphorylated enzyme. It is concluded 1) that the Ca-ATPase enzyme possesses two classes of ATP binding sites, 2) that the affinity of these two sites and the nature of their interaction is modulated by the H+ and Mg2+ concentrations, and 3) that the hydrolytic activity of the high affinity ATP binding site is activated by ATP or TNP-AMP-PNP (or TNP-ATP) binding in a low affinity ATP binding site.  相似文献   

6.
Interactions of the Escherichia coli PriA helicase with nucleotide cofactors have been studied using the fluorescence titration and analytical ultracentrifugation techniques. Binding of unmodified cofactors was characterized by the fluorescence competition titration method. The obtained data establish that at saturation the PriA helicase binds two nucleotide molecules per protein monomer. This result corroborates with the primary structure of the protein, which contains sequence motifs implicated as putative nucleotide-binding sites. The intrinsic affinities of the binding sites differ by 2-4 orders of magnitude. Thus, the PriA helicase has a strong and a weak nucleotide-binding site. The binding sites differ dramatically in their properties. The strong site is highly specific for adenosine cofactors, while the weak site shows very modest base specificity. The affinities of the strong and weak binding sites for ATP are lower than the affinities for ADP, although both sites have similar affinity for the inorganic phosphate group. Unlike the weak site, the affinity of the strong site profoundly depends on the structure of the phosphate group of the ATP cofactor. Binding of unmodified nucleotides indicates the presence of positive cooperative interactions between bound cofactors (i.e., the existence of communication between the two sites). Magnesium cations are specifically involved in controlling the cofactor affinity for the strong site, while the affinity of the weak site is predominantly determined by interactions between the phosphate group and ribose regions of the cofactor and the protein matrix. The significance of these results for the activities of the PriA helicase is discussed.  相似文献   

7.
By using gel filtration chromatography, following the technique of Hummel and Dreyer (Hummel, J., and Dreyer, W. (1962) Biochim. Biophys. Acta 63, 532-534), the adenine nucleotide-binding sites of isolated soluble chloroplast ATPase (CF1) and of the beta subunit were studied. CF1 possesses six adenine nucleotide-binding sites: two high affinity sites for ADP or ATP (KdH = 1-5 microM) in addition to one site where endogenous not-exchangeable ADP is bound, and three low affinity sites binding ADP or ATP with a dissociation constant (KdL = 15-20 microM) which is considerably increased in the presence of pyrophosphate. KdH is not modified by addition of pyrophosphate. The stability of nucleotide binding at the low affinity sites increases after heat activation of CF1. Removal of the delta or epsilon subunits on CF1 affects neither the number nor the binding parameters of the nucleotide-binding sites. The purified beta subunit possesses one easily exchangeable site/subunit. It is proposed that the low affinity sites on CF1 are the catalytic sites.  相似文献   

8.
Interactions between the high affinity binding sites on mitochondrial F1 were analysed by combined use of the nucleotide analogues 3'-O-(1-naphthoyl)-ADP (N-ADP) and 2'-3'-O-(2,4,6-trinitrophenyl)-ADP (TNP-ADP). The binding behaviour of F1 with respect to these ligands was studied by measuring the fluorescence of F1 and of TNP-ADP and the fluorescence anisotropy of N-ADP. A total of 3 high affinity binding sites can be occupied by TNP-ADP. By exchange experiments, it could be shown that binding of TNP-ADP to such a site considerably accelerates the dissociation of a ligand bound to a neighbouring site. These results support the notion that the functional behaviour of F1 is symmetric: during the catalytic cycle any individual site can successively assume different affinity states as has been predicted by hypotheses such as the binding change model.  相似文献   

9.
The [Mg(2+)] dependence of ADP binding to myosin V and actomyosin V was measured from the fluorescence of mantADP. Time courses of MgmantADP dissociation from myosin V and actomyosin V are biphasic with fast observed rate constants that depend on the [Mg(2+)] and slow observed rate constants that are [Mg(2+)]-independent. Two myosin V-MgADP states that are in reversible equilibrium, one that exchanges nucleotide and cation slowly (strong binding) and one that exchanges nucleotide and cation rapidly (weak binding), account for the data. The two myosin V-MgADP states are of comparable energies, as indicated by the relatively equimolar partitioning at saturating magnesium. Actin binding lowers the affinity for bound Mg(2+) 2-fold but shifts the isomerization equilibrium approximately 6-fold to the weak ADP binding state, lowering the affinity and accelerating the overall rate of MgADP release. Actin does not weaken the affinity or accelerate the release of cation-free ADP, indicating that actin and ADP binding linkage is magnesium-dependent. Myosin V and myosin V-ADP binding to actin was assayed from the quenching of pyrene actin fluorescence. Time courses of myosin V-ADP binding and release are biphasic, consistent with the existence of two (weak and strong) quenched pyrene actomyosin V-ADP conformations. We favor a sequential mechanism for actomyosin V dissociation with a transition from strong to weak actin-binding conformations preceding dissociation. The data provide evidence for multiple myosin-ADP and actomyosin-ADP states and establish a kinetic and thermodynamic framework for defining the magnesium-dependent coupling between the actin and nucleotide binding sites of myosin.  相似文献   

10.
H M Wong  M J Sole  J W Wells 《Biochemistry》1986,25(22):6995-7008
N-[3H]Methylscopolamine has been used to characterize muscarinic receptors in crude homogenates prepared from hearts of Syrian golden hamsters. The Hill coefficient is one for specific binding of the radioligand itself and for its inhibition by muscarinic antagonists; markedly lower values are obtained for its inhibition by muscarinic agonists. The binding patterns of agonists have been analyzed in terms of a mixture of sites differing in affinity for the drug and reveal the following. All agonists discern at least two classes of receptor in atrial and ventricular homogenates. The number of classes and the relative size of each differ for different agonists in the same region and for the same agonist in different regions. Atrial and ventricular affinities are in good agreement for some agonists but differ for others. Guanylyl imidodiphosphate (GMP-PNP) is without effect on the specific binding of the radioligand but alters the binding of carbachol via an apparent redistribution of receptors from one class to another; the apparent affinity at either class remains unchanged. Carbachol reveals two classes of sites in ventricular preparations, and the nucleotide mediates an interconversion from higher to lower affinity; three classes are revealed in atrial preparations, and the nucleotide eliminates the sites of highest affinity with a concomitant increase in the number of sites of lowest affinity. Taken together, the data are incompatible with the notion of different, noninterconverting sites; rather, there appear to be several possible states of affinity such that the equilibrium distribution of receptors among the various states is determined by the tissue, by the agonist, and by neurohumoral modulators such as guanylyl nucleotides. The effects of agonists and GMP-PNP cannot be rationalized in terms of a ternary complex model in which the low Hill coefficients arise from a spontaneous equilibrium between receptor (R) and G protein (G) and in which agonists bind preferentially to the RG complex.  相似文献   

11.
The regulatory domain of the cGMP-binding cGMP-specific 3':5'-cyclic nucleotide phosphodiesterase (PDE5) contains two homologous segments of amino acid sequence that encode allosteric cyclic nucleotide-binding sites, referred to as site a and site b, which are highly selective for cGMP over cAMP. The possibility that the state of protonation in these sites contributes to cyclic nucleotide selectivity was investigated. The binding of cGMP or cAMP was determined using saturation and competition kinetics at pH values between 5.2 and 9.5. The total cGMP binding by PDE5 was unchanged by variation in pH, but the relative affinity for cGMP versus cAMP progressively decreased as the pH was lowered. Using site-directed mutagenesis, a conserved residue, Asp-289, in site a of PDE5 has been identified as being important for cyclic nucleotide discrimination in this site. It is proposed that deprotonation of Asp-289 enhances the number and strength of bonds formed with cGMP, while concomitantly decreasing the interactions with cAMP.  相似文献   

12.
The mechanism of the sarcoplasmic reticulum Ca2+-ATPase was investigated at low temperatures (0 to -12 degrees C). Transient states of the enzyme were studied by two complementary techniques: intrinsic protein fluorescence and rapid filtration on Millipore filters. Intrinsic fluorescence was used to distinguish conformational states of the protein and to evaluate the rate of conversion between these states. Filtrations were used to measure the evolution of the active sites during the transition; the time resolution was 2-5 s. At sub-zero temperatures this time is shorter than the lifetime of most of the enzymatic states which have been detected. In this paper the mechanism of Ca2+ binding to the protein is investigated in the absence of nucleotides. Two basic experiments are described; (1) Kinetics of calcium binding and dissociation over a wide range of calcium concentration. (2) Kinetics of calcium exchange (45Ca2+ in equilibrium 40Ca2+) at constant concentration. The results obtained in the first series of experiments are consistent with a sequential binding to two interacting Ca2+ binding sites. Calcium ions have very fast access to a site with low apparent affinity (Kd approximately 25 microM). Occupation of this site induces a slow conformational change which increased its apparent affinity and reveals a second site of high apparent affinity. At equilibrium the two sites are not equivalent in terms of rate of exchange. Two different rates were detected k fast greater than 0.2 s-1, k slow approximately 0.015 s-1 at -10 degrees C. Removal of Ca2+ from the fast exchanging site by addition of EGTA accelerates the rate of release of the slow exchanging one. A model is proposed with two interacting Ca2+-binding sites. A set of parameters has been obtained which produces correctly the Ca2+-binding curve and the fluorescence level at equilibrium as well as the rate constants of the calcium-induced fluorescence changes over a very wide range of Ca2+ concentrations (0.02 to 150 microM). The non-equivalence of the two classes of site and the meaning of the initial low-affinity binding are discussed.  相似文献   

13.
In bovine heart mitochondria bongkrekic acid at concentrations as low as about 4 nmol/mg protein (a) completely inhibits phosphorylation of exogenous adenosine diphosphate (ADP) and dephosphorylation of exogenous adenosine triphosphate (ATP), (b) completely reverses atractyloside inhibition of inner membrane contraction induced by exogenous adenine nucleotides, and (c) decreases the amount of adenine nucleotide required to elicit maximal exogenous adenine nucleotide-induced inner membrane contraction to a level which appears to correspond closely with the concentration of contractile, exogenous adenine nucleotide binding sites Bongkrekic acid at concentrations greater than 4 nmol/mg protein induces inner membrane contraction which seems to depend on the presence of endogenous ADP and/or ATP. The findings appear to be consistent with the interpretations (a) that the inner mitochondrial membrane contains two types of contractile, adenine nucleotide binding sites, (b) that the two sites differ markedly with regard to adenine nucleotide affinity, (c) that the high affinity site is identical with the adenine nucleotide exchange carrier, (d) that the low affinity site is accessible exclusively to endogenous adenine nucleotides and is largely unoccupied in the absence of bongkrekic acid, and (e) that bongkrekic acid increases the affinity of both sites in proportion to the amount of the antibiotic bound to the inner membrane.  相似文献   

14.
Highly reactive sulfhydryls, previously labeled with an iodoacetamide spin label on the Ca-ATPase of sarcoplasmic reticulum, were labeled with the fluorescent probe, 5-(2-[iodoacetyl)amino)ethyl)aminonaphthalene-1-sulfonic acid (IAEDANS), without loss of enzymatic activity. We have selectively measured the apparent distance of the more reactive site, relative to other site-specific probes at both the nucleotide and the high affinity calcium binding sites. Fluorescence energy transfer efficiencies from the donor IAEDANS to two acceptors: fluorescein 5'-isothiocyanate or 2',3'-O-(2,4,3-trinitrophenyl)adenosine monophosphate, situated at or near the nucleotide site, were measured using fluorescence lifetimes and yields. Fluorescence on polyacrylamide gels shows that the IAEDANS and fluorescein 5'-isothiocyanate labels are both associated with the B tryptic fragment. The energy transfer measurements are consistent with distances of 56 and 68 A between IAEDANS and these respective binding sites. On the other hand, energy transfer measurements using the lanthanide, praseodymium (Pr3+), as an acceptor indicate that IAEDANS is located 16-18 A from the binding site(s) of this calcium analog. Pr3+ is shown to be a good analog for calcium binding to the high affinity sites on the enzyme since it competitively displaces calcium, as evidenced by the reversal of the specific calcium-dependent intrinsic fluorescent signal and inactivation of ATPase activity, over the same narrow range in Pr3+ concentration where energy transfer is observed. Our observations suggest that the portion of the B fragment spanning the cytoplasmic portion of the ATPase is folded onto the A fragment, bringing the IAEDANS label in close proximity to the high affinity calcium binding domain.  相似文献   

15.
Abstract

Bovine liver adenosine kinase displays a characteristic intrinsic fluorescence due to 3 tryptophans/mol. This fluorescence is very sensitive to ligand binding and was used to characterize the ligand binding sites of the enzyme. ADP or ATP showed a monophasic saturation curve consistent with the existence of one binding site. In contrast, adenosine and AMP gave biphasic saturation curves suggesting the existence of at least two binding sites with high and low affinity. These binding sites were further characterized by studying the complexation of adenosine kinase with O-(N-methylanthraniloyl)adenosine nucleoside or nucleotide analogues.  相似文献   

16.
Tritium-labeled hemicholinium-3 ([3H]HC-3) was used to characterize the sodium-dependent high-affinity choline carrier sites in rat striatal preparations. In an earlier study, we had shown that [3H]HC-3 labels choline carrier sites with high and low affinities and had suggested that the low-affinity sites represent "functional" carrier sites. The objective of the present study was to examine the mechanisms involved in the regulation of the two affinity states of [3H]HC-3 binding. Here, we demonstrate that these two affinity states are totally interconvertible; addition of 0.1 mM ATP in the binding assay medium quantitatively converted all the binding sites to the low-affinity state, whereas addition of 1 mM beta,gamma-methylene 5'-ATP quantitatively converted all the binding sites to the high-affinity state. Preincubation of the tissue (for 15 min at 37 degrees C) before the binding assay also converted the binding sites to the high-affinity state, whereas supplementation of the assay medium with ATP (0.5 mM) again induced expression of the low-affinity state of the binding sites. This effect of ATP was found to be selective for this nucleotide. Neither ADP (1 mM) nor cyclic AMP could mimic such an effect. Other nucleotide triphosphates--CTP (0.5 mM) and GTP (0.5 mM)--also could not substitute for ATP. GTP, however, caused nearly a 35% reduction in the number of binding sites, accompanying a loss of the low-affinity component of binding. This effect of GTP was also shared by 5'-guanylylimidodiphosphate but not by GDP or cyclic GMP. This ATP-dependent low-affinity conversion of [3H]HC-3 binding sites requires divalent metal ions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The function of guanine nucleotide binding (G) proteins is Mg2+ dependent with guanine nucleotide exchange requiring higher metal ion concentration than guanosine 5′-triphosphate hydrolysis. It is unclear whether two Mg2+ binding sites are present or if one Mg2+ binding site exhibits different affinities for the inactive GDP-bound or the active GTP-bound conformations. We used furaptra, a Mg2+-specific fluorophore, to investigate Mg2+ binding to α subunits in both conformations of the stimulatory (G) and inhibitory (Giα1) regulators of adenylyl cyclase. Regardless of the conformation or α protein studied, we found that two distinct Mg2+ sites were present with dissimilar affinities. With the exception of G in the active conformation, cooperativity between the two Mg2+ sites was also observed. Whereas the high affinity Mg2+ site corresponds to that observed in published X-ray structures of G proteins, the low affinity Mg2+ site may involve coordination to the terminal phosphate of the nucleotide.  相似文献   

18.
A calorimetric study at 25 degrees C is reported on the interaction between allosteric bovine seminal ribonuclease and cytidine-3'-phosphate. The results are compared with those obtained under identical experimental conditions for the interaction of pancreatic ribonuclease A and the same nucleotide. The analysis of the data provides evidence that the binding sites of seminal ribonuclease for cytidine-3'-phosphate are not equivalent, in agreement with previous equilibrium dialysis studies. A model with two sites with different affinities toward the nucleotide, the site with higher affinity resembling the binding site of pancreatic ribonuclease, is proposed. The values calculated for the thermodynamic parameters provide an insight of the forces involved in the interaction of the two enzymes with the nucleotide.  相似文献   

19.
The affinity of the origin-binding domain (OBD) of simian virus 40 large T antigen for its cognate origin was measured at equilibrium using a DNA binding assay based on fluorescence anisotropy. At a near-physiological concentration of salt, the affinities of the OBD for site II and the core origin were 31 and 50 nM, respectively. Binding to any of the four 5'-GAGGC-3' binding sites in site II was only slightly weaker, between 57 and 150 nM. Although the OBD was shown previously to assemble as a dimer on two binding sites spaced by 7 bp, we found that increasing the distance between both binding sites by 1 to 3 bp had little effect on affinity. Similar results were obtained for full-length T antigen in absence of nucleotide. Addition of ADP-Mg, which promotes hexamerization of T antigen, greatly increased the affinity of full-length T antigen for the core origin and for nonspecific DNA. The implications of these findings for the assembly of T antigen at the origin and its transition to a non-specific DNA helicase are discussed.  相似文献   

20.
Beef heart mitochondrial F1 contains a total of six adenine nucleotide-binding sites including at least two different types of sites. Three "exchangeable" sites exchange rapidly during hydrolysis of MgATP, whereas three "nonexchangeable" sites do not (Cross, R. L. and Nalin, C. M. (1982) J. Biol. Chem. 257, 2874-2881). When F1 that has been stored as a suspension in (NH4)2SO4/ATP/EDTA/sucrose/Tris, pH 8.0, is pelleted, rinsed with (NH4)2SO4, dissolved, and desalted, it retains three bound adenine nucleotides. We find that two of these endogenous nucleotides are bound at nonexchangeable sites and one at an exchangeable site. The vacant nonexchangeable site is highly specific for adenine nucleotide and is rapidly filled by ADP upon addition of ADP or during ATP hydrolysis. ADP bound at this site can be removed by reprecipitating the enzyme with (NH4)2SO4. The single nucleotide retained by desalted F1 at an exchangeable site is displaced during hydrolysis of ATP, GTP, or ITP. The binding of PPi at two sites on the enzyme also promotes its dissociation. Neither procedure affects retention of nucleotide at the nonexchangeable sites. These observations, combined with the finding that PPi is much more easily removed from exchangeable sites than ADP, have led to the development of a procedure for preparing F1 with uniform and well-defined nucleotide site occupancy. This involves sequential exposure to MgATP, PPi, and high concentrations of Pi. Unbound ligand is removed between each step. The resulting enzyme, F1[3,0], has three occupied nonexchangeable sites and three vacant exchangeable sites. Evidence that nonexchangeable and exchangeable sites represent noncatalytic and catalytic sites, respectively, suggest that this form of the enzyme will prove useful in numerous applications, including transient kinetic measurements and affinity labeling of active site residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号