首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erythroid spectrin is the main component of the red cell membrane skeleton, which is very important in determining the shape, resistance to mechanical stresses and deformability of red cells. Previously we demonstrated that human erythroid alpha-spectrin is ubiquitinated in vitro and in vivo, and using recombinant peptides we identified on repeat 17 the main ubiquitination site of alpha-spectrin. In order to identify the lysine(s) involved in the ubiquitination process, in the present study we mutated the lysines by site-directed mutagenesis. We found that ubiquitination was dramatically inhibited in peptides carrying the mutation of lysine 27 on repeat 17 (mutants K25,27R and K27R). We also demonstrated that the correct folding of this protein is fundamental for its recognition by the ubiquitin conjugating system. Furthermore, the region flanking lysine 27 showed a 75% similarity with the leucine zipper pattern present in many regulatory proteins. Thus, a new potential ubiquitin recognition motif was identified in alpha-spectrin and may be present in several other proteins.  相似文献   

2.
Mammalian red blood cell alpha-spectrin is ubiquitinated in vitro and in vivo [Corsi, D., Galluzzi, L., Crinelli, R., Magnani, M. (1995) J. Biol. Chem. 270, 8928-8935]. This process shows a cell age-dependent decrease, with senescent red blood cells having approximately one third of the amount of ubiquitinated alpha-spectrin found in young cells. In-vitro ubiquitination of alpha-spectrin was dependent on the source of the red cell membranes (those from older cells are less susceptible to ubiquitination than those from younger cells), on the source of ubiquitin-conjugating enzymes (those from older cells catalyze the process at a reduced rate compared to those from younger cells) and on the ubiquitin isopeptidase activity (which decreases during red cell ageing). However, once alpha-spectrin has been extracted from the membranes of young or old red blood cells, it is susceptible to ubiquitination to a similar extent regardless of source. This suggests that it is the membrane architecture, and not spectrin itself, that is responsible for the age-dependent decline in ubiquitination. Furthermore, spectrin oligomers, tetramers and dimers are also equally susceptible to ubiquitination. As spectrin ubiquitination occurs on domains alphaIII and alphaV of alpha-spectrin, and domain alphaV contains the nucleation site for the association of the alpha- and beta-spectrin chains, alterations in ubiquitination during red cell ageing could affect the stability and deformability of the erythrocyte membrane.  相似文献   

3.
This review covers the observations that erythrocyte spectrin has a E2 ubiquitin conjugating enzymatic activity that allows it to transfer ubiquitin to a target site in the alpha-spectrin repeats 20/21. The position of this ubiquitination site suggests that ubiquitination may regulate alpha beta spectrin heterodimer nucleation, spectrin-4.1-actin ternary complex formation, and adducin stimulated spectrin-actin attachment in the mature erythrocyte. In sickle cells, which contain altered redox status (high GSSG/GSH ratio), ubiquitin attachment to the E2 and target sites in alpha-spectrin is greatly diminished. We propose that this attenuated ubiquitination of spectrin may be due to glutathiolation of the E2 active site cysteine leading to diminished ubiquitin-spectrin adduct and conjugate formation. Furthermore we propose that lack of ubiquitin-spectrin complex formation leads to dysregulation of the membrane skeleton in mature SS erythrocytes and may diminish spectrin turnover in SS erythropoietic cells via the ubiquitin proteasome machinery. In hippocampal neurons, spectrin is the major ubiquitinated protein and a component of the cytoplasmic ubiquitinated inclusions observed in Alzheimer's and Parkinson's diseases. The two primary neuronal spectrin isoforms: alpha SpI Sigma*/beta SpI Sigma 2 and alpha SpII Sigma 1/beta SpII Sigma 1 are both ubiquitinated. Future work will resolve whether neuronal spectrins also contain E2-ubiquitin conjugating activity and the molecular basis for formation of ubiquitinated inclusions in neurological disorders.  相似文献   

4.
We demonstrate that ubiquitinated red blood cell (RBC) spectrin dissociates more rapidly from the spectrin-adducin-actin ternary complex, than non-ubiquitinated spectrin. Homozygous (SS) sickle cell spectrin has substantially diminished ubiquitination of alpha-spectrin resulting in slower dissociation from the spectrin-adducin-actin ternary complex, than normal (AA) cell spectrin. These results supply a partial explanation of the slow dissociation of the irreversible sickle cell (ISC) membrane skeleton, which leads to the inability of the ISC to change shape.  相似文献   

5.
It has been demonstrated by our laboratory that the irreversibly sickled cell (ISC) spectrin-4.1-actin complex dissociates slowly as compared to ternary complexes formed out of control (AA) and reversibly sickle cell (RSCs) core skeletons. These studies indicated that the molecular basis for the inability of irreversibly sickled cells (ISCs) to change shape is a skeleton that disassembles, and therefore reassembles, very slowly. The present study is based on the following observations: a) alpha-spectrin repeats 20 and 21 contain ubiquitination sites, and b) The spectrin repeats beta-1 and beta-2 are in direct contact with spectrin repeats alpha-20 and alpha-21 during spectrin heterodimer formation, and contain the protein 4.1 binding domain. We demonstrate here that alpha-spectrin ubiquitination at repeats 20 and 21 increases the dissociation of the spectrin-protein-4.1-actin ternary complex thereby regulating protein 4.1's ability to stimulate the spectrin-actin interaction. Performing in vitro ternary complex dissociation assays with AA control and sickle cell SS spectrin (isolated from high-density sickle cells), we further demonstrate that reduced ubiquitination of alpha-spectrin is, in part, responsible for the locked membrane skeleton in sickle cell disease.  相似文献   

6.
We have determined the nucleotide sequence coding for the chicken brain alpha-spectrin. It is derived both from the cDNA and genomic sequences, comprises the entire coding frame, 5' and 3' untranslated sequences, and terminates in the poly(A)-tail. The deduced amino acid sequence was used to map the domain structure of the protein. The alpha-chain of brain spectrin contains 22 segments of which 20 correspond to the repeat of the human erythrocyte spectrin (Speicher, D. W., and V. T. Marchesi. 1984. Nature (Lond.). 311:177-180.), typically made of 106 residues. These homologous segments probably account for the flexible, rod-like structure of spectrin. Secondary structure prediction suggests predominantly alpha-helical structure for the entire chain. Parts of the primary structure are excluded from the repetitive pattern and they reside in the middle part of the sequence and in its COOH terminus. Search for homology in other proteins showed the presence of the following distinct structures in these nonrepetitive regions: (a) the COOH-terminal part of the molecule that shows homology with alpha-actinin, (b) two typical EF-hand (i.e., Ca2+-binding) structures in this region, (c) a sequence close to the EF-hand that fulfills the criteria for a calmodulin-binding site, and (d) a domain in the middle of the sequence that is homologous to a NH2-terminal segment of several src-tyrosine kinases and to a domain of phospholipase C. These regions are good candidates to carry some established as well as some yet unestablished functions of spectrin. Comparative analysis showed that alpha-spectrin is well conserved across the species boundaries from Xenopus to man, and that the human erythrocyte alpha-spectrin is divergent from the other spectrins.  相似文献   

7.
Cloning and analysis of cDNA clones for rat kidney alpha-spectrin   总被引:1,自引:0,他引:1  
We have isolated a 3922-base pair (bp) cDNA clone for rat nonerythroid alpha-spectrin from a rat kidney lambda gt11 cDNA library. Sequence analysis revealed that this cDNA contains an open reading frame of 3090 bp encoding for the C-terminal 1030 amino acid sequence of rat kidney alpha-spectrin. The 3'-untranslated region (including a 38-bp poly(A+) tail) contains an 832-bp sequence. A single mRNA of about 8 kilobase pairs was detected in rat liver, kidney, brain, heart, intestine, lung, testis, stomach, spleen, and muscle with varying abundances, which is consistent with and further confirms the presence of spectrins in nonerythroid tissues as demonstrated previously by immunoblot analysis. Southern blot analysis suggested that there is a single gene for nonerythroid alpha-spectrin. The derived amino acid sequence contains sequence from the spectrin 106-residue internal repeat 12 to the C terminus of rat kidney alpha-spectrin. Sequence comparison with human and chicken nonerythroid alpha-spectrin showed that nonerythroid alpha-spectrin is well conserved during evolution. The rat kidney alpha-spectrin sequence, when compared to rat brain alpha-spectrin, contains an extra 76-amino-acid sequence at the C terminus. Sequence comparison of all the internal repeats available revealed that the internal repeat 3, 4, 5, 6, 7, and 8 has highest sequence similarity with internal repeat 12, 13, 14, 15, 16, and 17, respectively. Therefore, internal repeats 3-8 and 12-17 are most likely derived from an ancestral gene through gene duplication, suggesting that the spectrin gene is derived from a half-spectrin gene by gene duplication and divergence during evolution.  相似文献   

8.
The spectrins are a family of widely distributed filamentous proteins. In association with actin, spectrins form a supporting and organizing scaffold for cell membranes. Using antibodies specific for human brain alpha-spectrin (alpha-fodrin), we have cloned a rat brain alpha-spectrin cDNA from an expression library. Several closely related human clones were also isolated by hybridization. Comparison of sequences of these and other overlapping nonerythroid and erythroid alpha-spectrin genes demonstrated that the nonerythroid genes are strictly conserved across species, while the mammalian erythroid genes have diverged rapidly. Peptide sequences deduced from these cDNAs revealed that the nonerythroid alpha-spectrin chain, like the erythroid spectrin, is composed of multiple 106-amino-acid repeating units, with the characteristic invariant tryptophan as well as other charged and hydrophobic residues in conserved locations. However, the carboxy-terminal sequence varies markedly from this internal repeat pattern and may represent a specialized functional site. The nonerythroid alpha-spectrin gene was mapped to human chromosome 9, in contrast to the erythroid alpha-spectrin gene, which has previously been assigned to a locus on chromosome 1.  相似文献   

9.
Spectrin is an ubiquitous protein in metazoan cells, and its flexibility is one of the keys to maintaining cellular structure and organization. Both alpha-spectrin and beta-spectrin polypeptides consist primarily of triple coiled-coil modular repeat units, and two important factors that determine spectrin flexibility are the bending flexibility between two consecutive repeat units and the conformational flexibility of individual repeat units. Atomistic molecular dynamics (MD) simulations are used here to study double spectrin repeat units (DSRUs) from the human erythrocyte beta-spectrin (HEbeta89) and the chicken brain alpha-spectrin (CBalpha1617). From the results of MD simulations, a highly conserved Trp residue in the A-helix of most repeat units that has been suggested to be important in conferring stability to the coiled-coil structures is found not to have a significant effect on the conformational flexibility of individual repeat units. Characterization of the bending flexibility for two consecutive repeats of spectrin via atomistic simulations and coarse-grained (CG) modeling indicate that the bending flexibility is governed by the interactions between the AB-loop of the first repeat unit, the BC-loop of the second repeat unit and the linker region. Specifically, interactions between residues in these regions can lead to a strong directionality in the bending behavior of two repeat units. The biological implications of these finding are discussed.  相似文献   

10.
Nonerythroid alpha-spectrin (alpha-fodrin) is a major component of the membrane skeleton in diverse cell types. Overlapping cDNAs have been isolated which encompass the coding region of human lung fibroblast nonerythroid alpha-spectrin. The composite sequence of 7,787 nucleotides encodes a polypeptide of 2,472 amino acids (predicted Mr of 283,964). This sequence has 58% amino acid identity with human erythroid alpha-spectrin, which is encoded on a different gene, and 96% amino acid identity with the full-length sequence of chicken brain alpha-spectrin. We previously reported the variable expression in human fibroblast alpha-spectrin of 20 amino acids between repeats 10 and 11 (McMahon, A. P., Giebelhaus, D. H., Champion, J. E., Bailes, J. A., Lacey, S., Carritt, B., Henchman, S. K., and Moon, R. T. (1987) Differentiation 34, 68-78). In this study, we report additional heterogeneity in fibroblast alpha-spectrin near the carboxyl-terminal end. One of the fibroblast cDNAs (clone 3D) has an in-frame deletion of 18 nucleotides within spectrin repeat 21 when compared to an overlapping fibroblast cDNA (clone 7). As this heterogeneity in amino acid sequence occurs near domains of nonerythroid alpha-spectrin suggested to bind calcium or actin, it is possible that fibroblasts express functionally distinct isoforms of nonerythroid alpha-spectrin.  相似文献   

11.
Previous X-ray crystal structures have shown that linkers of five amino acid residues connecting pairs of chicken brain alpha-spectrin and human erythroid beta-spectrin repeats can undergo bending without losing their alpha-helical structure. To test whether bending at one linker can influence bending at an adjacent linker, the structures of two and three repeat fragments of chicken brain alpha-spectrin have been determined by X-ray crystallography. The structure of the three-repeat fragment clearly shows that bending at one linker can occur independently of bending at an adjacent linker. This observation increases the possible trajectories of modeled chains of spectrin repeats. Furthermore, the three-repeat molecule crystallized as an antiparallel dimer with a significantly smaller buried interfacial area than that of alpha-actinin, a spectrin-related molecule, but large enough and of a type indicating biological specificity. Comparison of the structures of the spectrin and alpha-actinin dimers supports weak association of the former, which could not be detected by analytical ultracentrifugation, versus strong association of the latter, which has been observed by others. To correlate features of the structure with solution properties and to test a previous model of stable spectrin and dystrophin repeats, the number of inter-helical interactions in each repeat of several spectrin structures were counted and compared to their thermal stabilities. Inter-helical interactions, but not all interactions, increased in parallel with measured thermal stabilities of each repeat and in agreement with the thermal stabilities of two and three repeats and also partial repeats of spectrin.  相似文献   

12.
Ubiquitination-the attachment of ubiquitin to a protein target-is involved in a wide range of cellular processes in eukaryotes. This dynamic posttranslational modification utilizes three enzymes to link, through an isopeptide bond, the C-terminal Gly of ubiquitin to the lysine side chain from a protein target. Progress in the field aiming at deciphering the role of ubiquitination in biological processes has been very dependent on the discovery of the enzymatic machinery, which is known to be very specific to each protein target. Chemical approaches offer a complementary route to the biochemical methods to construct these conjugates in vitro in order to assist in unraveling the role of ubiquitination on protein function. Herein is presented a novel method for the rapid synthesis of ubiquitinated peptides employing solid-phase peptide to generate the critical isopeptide linkage. Using these tools, several ubiquitinated peptides derived from known ubiquitinated proteins were prepared. Among them is the ubiquitinated C-terminal fragment of H2B, which can be used in the synthesis of monoubiquitinated H2B. For the first time, we systematically assessed the effect of the length of the ubiquitinated peptides on the UCH-L3 activity and found that peptides of up to ~20 residues are preferred substrates.  相似文献   

13.
14.
The breast- and ovarian-specific tumor suppressor BRCA1, when associated with BARD1, is an ubiquitin ligase. We have shown here that this heterodimer ubiquitinates a hyperphosphorylated form of Rpb1, the largest subunit of RNA polymerase II. Two major phosphorylation sites have been identified in the Rpb1 carboxyl terminal domain, serine 2 (Ser-2) or serine 5 (Ser-5) of the YSPTSPS heptapeptide repeat. Only the Ser-5 hyperphosphorylated form is ubiquitinated by BRCA1/BARD1. Overexpression of BRCA1 in cells stimulated the DNA damage-induced ubiquitination of Rpb1. Similar to the in vitro reaction, the stimulation of Rpb1 ubiquitination by BRCA1 in cells occurred only on those molecules hyperphosphorylated on Ser-5 of the heptapeptide repeat. In vitro, the carboxyl terminus of BRCA1 (amino acids 501-1863) was dispensable for the ubiquitination of hyperphosphorylated Rpb1. In cells, however, efficient Rpb1 ubiquitination required the carboxyl terminus of BRCA1, suggesting that interactions mediated by this region were essential in the complex milieu of the nucleus. These results link the BRCA1-dependent ubiquitination of the polymerase with DNA damage.  相似文献   

15.
Drosophila development requires spectrin network formation   总被引:2,自引:1,他引:1       下载免费PDF全文
The head-end associations of spectrin give rise to tetramers and make it possible for the molecule to form networks. We analyzed the head-end associations of Drosophila spectrin in vitro and in vivo. Immunoprecipitation assays using protein fragments synthesized in vitro from recombinant DNA showed that interchain binding at the head end was mediated by segment 0-1 of alpha-spectrin and segment 18 of beta- spectrin. Point mutations equivalent to erythroid spectrin mutations that are responsible for human hemolytic anemias diminished Drosophila spectrin head-end interchain binding in vitro. To test the in vivo consequence of deficient head-end interchain binding, we introduced constructs expressing head-end interchain binding mutant alpha-spectrin into the Drosophila genome and tested for rescue of an alpha-spectrin null mutation. An alpha-spectrin minigene lacking the codons for head- end interchain binding failed to rescue the lethality of the null mutant, whereas a minigene with a point mutation in these codons overcame the lethality of the null mutant in a temperature-dependent manner. The rescued flies were viable and fertile at 25 degrees C, but they became sterile because of defects in oogenesis when shifted to 29 degrees C. At 29 degrees C, egg chamber tissue disruption and cell shape changes were evident, even though the mutant spectrin remained stably associated with cell membranes. Our results show that spectrin's capacity to form a network is a crucial aspect of its function in nonerythroid cells.  相似文献   

16.
The complete cDNA and polypeptide sequences of human erythroid alpha-spectrin.   总被引:11,自引:0,他引:11  
Overlapping human erythroid alpha-spectrin cDNA clones were isolated from lambda gt11 libraries constructed from cDNAs of human fetal liver and erythroid bone marrow. The composite 8001-base pair (bp) cDNA nucleotide sequence contains 187-bp 5'- and 528-bp 3'-untranslated regions and has a single long open reading frame of 7287 bp that encodes a polypeptide of 2429 residues. As previously described (Speicher, D. W., and Marchesi, V. T. (1984) Nature 311, 177-180), spectrin is composed largely of homologous 106-amino acid repeat units. From the amino acid sequence deduced from the cDNA, alpha-spectrin can be divided into 22 segments. Segments 1-9 and 12-19 are homologous and can therefore be considered repeats; the average number of identical residues in pairwise comparisons of these repeats is 22 out of 106, or 21%. Of these 17 repeats, 11 are exactly 106 amino acids in length, whereas five others differ from this length by a single residue. Segments 11, 20, and 21, although less homologous, appear to be related to the more highly conserved repeat units. The very N-terminal 22 residues, segment 10, which is atypical both in length and sequence, and the C-terminal 150 residues in segment 22 appear to be unrelated to the conserved repeat units. The sequence of the erythroid alpha-spectrin polypeptide chain is compared to that of human alpha-fodrin and chicken alpha-actinin to which it is related. alpha-Spectrin is more distantly related to dystrophin.  相似文献   

17.
Ubiquitination plays an essential role in maintaining cellular homeostasis by regulating a multitude of essential processes. The ability to identify ubiquitinated proteins by MS currently relies on a strategy in which ubiquitinated peptides are identified by a 114.1 Da diglycine (GG) tag on lysine residues, which is derived from the C-terminus of ubiquitin, following trypsin digestion. In the following study, we report a more comprehensive approach for mapping ubiquitination sites by trypsin digestion and MS/MS analysis. We demonstrate that ubiquitination sites can be identified by signature peptides containing a GG-tag (114.1 Da) and an LRGG-tag (383.2 Da) on internal lysine residues as well as a GG-tag found on the C-terminus of ubiquitinated peptides. Application of this MS-based approach enabled the identification of 96 ubiquitination sites from proteins purified from human MCF-7 breast cancer cells, representing a 2.4-fold increase in the number of ubiquitination sites that could be identified over standard methods. Our improved MS-based strategy will aid future studies which aim to identify and/or characterize ubiquitinated proteins in human cells.  相似文献   

18.
We report the complete sequence of Drosophila alpha-spectrin and show that it is similar to vertebrate nonerythroid spectrins. As in vertebrates, the alpha subunit consists of two large domains of repetitive sequence (segments 1-9 and 11-19) separated by a short nonrepetitive sequence (segment 10). The 106-residue repetitive segments are defined by a consensus sequence of 54 residues. Chicken alpha-spectrin (Wasenius, V.-M., M. Saraste, P. Salven, M. Eramaa, L. Holm, V.-P. Lehto. 1989. J. Cell Biol. 108:79-93) shares 50 of these consensus positions. Through comparison of spectrin and alpha-actinin sequences, we describe a second lineage of spectrin segments (20 and 21) that differs from the 106-residue segments by an 8-residue insertion and by lack of many of the consensus residues. We present a model of spectrin evolution in which the repetitive lineage of spectrin segments and the nonrepetitive lineage of segments found in spectrin and alpha-actinin arose by separate multiplication events.  相似文献   

19.
Cyclin D1 binds and regulates the activity of cyclin-dependent kinases (CDKs) 4 and 6. Phosphorylation of the retinoblastoma protein by cyclin D1.CDK4/6 complexes during the G(1) phase of the cell cycle promotes entry into S phase. Cyclin D1 protein is ubiquitinated and degraded by the 26 S proteasome. Previous studies have demonstrated that cyclin D1 ubiquitination is dependent on its phosphorylation by glycogen synthase kinase 3beta (GSK-3beta) on threonine 286 and that this phosphorylation event is greatly enhanced by binding to CDK4 (Diehl, J. A., Cheng, M. G., Roussel, M. F., and Sherr, C. J. (1998) Genes Dev. 12, 3499-3511). We now report an additional pathway for the ubiquitination of free cyclin D1 (unbound to CDKs). We show that, when unbound to CDK4, a cyclin D1-T286A mutant is ubiquitinated. Further, we show that a mutant of cyclin D1 that cannot bind to CDK4 (cyclin D1-KE) is also ubiquitinated in vivo. Our results demonstrate that free cyclin D1 is ubiquitinated independently of its phosphorylation on threonine 286 by GSK-3beta, suggesting that, as has been shown for cyclin E, distinct pathways of ubiquitination lead to the degradation of free and CDK-bound cyclin D1. The pathway responsible for ubiquitination of free cyclin D1 may be important in limiting the effects of cyclin D1 overexpression in a variety of cancers.  相似文献   

20.
From the spectrin gene to the assembly of the membrane skeleton   总被引:1,自引:0,他引:1  
The complete nucleotide sequence coding for the chicken brain alpha-spectrin was determined. It comprises the entire coding frame, 5'- and 3'-untranslated sequences terminating in a poly(A)-tail. The deduced amino acid sequence shows that the alpha-chain contains 22 segments, 20 of which correspond to the typical 106 residue repeat of the human erythrocyte spectrin. Some segments non-homologous to the repeat structure reside in the middle and COOH-terminal regions. Sequence comparisons with other proteins show that these segments evidently harbour some structural and functional features such as: homology to alpha-actinin and dystrophin, two typical EF-hand structures (calcium-binding) and a putative calmodulin-binding site in the COOH-terminus and a sequence homologous to various src-tyrosine kinases and to phospholipase C in the middle of the molecule. Comparison of our sequence with other partial alpha-spectrin sequences shows that alpha-spectrin is well conserved in different species and that the human erythrocyte alpha-spectrin is divergent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号