首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The number of alveolar macrophages is decreased in patients or animals with Pneumocystis pneumonia (Pcp). This loss of alveolar macrophages is in part due to apoptosis caused by Pneumocystis infection. The mechanism of apoptosis induction is unknown. Cell-free bronchoalveolar lavage fluids from Pneumocystis-infected rats or mice have the ability to induce apoptosis in normal alveolar macrophages. To characterize the mechanisms by which apoptosis proceeds in alveolar macrophages during Pcp, specific caspase inhibitors are tested for their ability to suppress the apoptosis. In vitro induction of apoptosis can be inhibited by the caspase-9 inhibitor (Z-LEHD-FMK) but not by the inhibitor to caspase-8 or -10. The caspase-9 inhibitor can also inhibit apoptosis of alveolar macrophages in vivo when it is intranasally instilled into dexamethasone-immunosuppressed, Pneumocystis-infected rats or L3T4 cell-depleted, Pneumocystis-infected mice. The number of alveolar macrophages rebounds in caspase-9 inhibitor-treated Pcp animals. Phagocytic activity of alveolar macrophages in treated animals is also recovered, and organism burden in these animals is reduced. Administration of caspase-9 inhibitor also clears the exudate that normally fills the alveoli during Pcp and decreases lung inflammation. Furthermore, caspase-9-treated Pcp animals survive for the entire 70-day period of the study, whereas nontreated Pcp animals die 40-60 days after initiation of infection. Depletion of recovered alveolar macrophages by intranasal administration of clodronate-containing liposomes in caspase-9 inhibitor-treated animals abrogates the effects of the inhibitor. Together, these results indicate that immunomodulation of the host response may be an alternative to current treatments for Pcp.  相似文献   

2.
CD4+CD25+FoxP3+ regulatory T cells are decreased in patients infected with HIV and have been shown to be critical in mediating Ag tolerance in the lung. Because a subset of Pneumocystis-infected individuals develop substantial lung injury, which can be modeled in immune reconstituted scid mice, we used mouse models of Pneumocystis carinii to investigate the role of regulatory T cells in opportunistic infection and immune reconstitution. In this study, we show that CD4+CD25+FoxP3+ cells are part of the host response to Pneumocystis in CD4+ T cell-intact mice. Moreover, lung injury and proinflammatory Th1 and Th2 cytokine levels in the bronchoalveolar lavage fluid and lung homogenate were increased following CD4+CD25- immune reconstitution in Pneumocystis-infected SCID mice but not in CD4+CD25+ T cell-reconstituted animals. The ability of CD4+CD25+ T cells to control inflammation and injury during the course of Pneumocystis was confirmed by treatment of wild-type C57BL/6 mice with anti-CD25 mAb. These data show that CD4+CD25+ T cells control pulmonary inflammation and lung injury associated with Pneumocystis infection both in the setting of immune reconstitution as well as new acquisition of infection.  相似文献   

3.
K. WEHLE 《Cytopathology》1993,4(4):231-236
Broncholaveolar lavage (BAL) specimens (n= 213) from AIDS and non-HIV immunosuppressed patients were investigated for the presence of Pneumocystis carinii infection by fluorescence microscopy of Papanicolaou-stained slides. Alveolar casts, extracellular pneumocysts and phagocytosed cysts and their degradation products in pulmonary alveolar macrophages were identified. the number of phagocytosed pneumocysts within human pulmonary alveolar macrophages was recorded and correlated with the number of extracellular cysts and alveolar casts, in both groups of patients. Both phagocytic and degradation capacity were depressed in AIDS patients. This observation may explain the large number of extracellular organisms found in BAL specimens of AIDS patients compared with non-HIV-positive immunocompromised individuals.  相似文献   

4.
Abstract Nitric oxide (NO) exhibits potent antimicrobial activity in vitro. The function of NO in host defenses in vivo, however, is presently unclear. Experiments were undertaken to determine the production of NO in vitro from murine peritoneal and alveolar macrophages, and murine macrophage cell line (J774A.1) stimulated with Bordetella pertussis or pertussis toxin (PT). In addition, we determined circulating levels of NO in the sera and bronchoalveolar lavage (BAL) fluids of mice infected intranasally with B. pertussis . The results of this study showed that in vitro murine peritoneal macrophages induce production of NO in response to B. pertussis and PT. In addition, murine macrophage cell line, J774A.1 also induces NO production after stimulation with B. pertussis . NO production was also detected in alveolar macrophages from mice infected intranasally with B. pertussis . Finally, a significant increment of circulating levels of NO was noted, in the sera but not in the BAL fluids, of mice infected intranasally with B. pertussis .  相似文献   

5.
The effect of inhaled nitric oxide (NO) on inflammatory process in acute lung injury (ALI) is unclear. The aims of this study were to 1) examine whether inhaled NO affects the biochemical lung injury parameters and cellular inflammatory responses and 2) determine the effect of inhaled NO on the activation of nuclear factor-kappa B (NF-kappa B) in lipopolysaccharide (LPS)-induced ALI. Compared with saline controls, rabbits treated intravenously with LPS showed increases in total protein and lactate dehydrogenase in the bronchoalveolar lavage (BAL) fluid, indicating ALI. LPS-treated animals with NO inhalation (LPS-NO) showed significant decreases in these parameters. Neutrophil numbers in the BAL fluid, the activity of reactive oxygen species in BAL cells, and the levels of interleukin (IL)-1 beta and IL-8 in alveolar macrophages were increased in LPS-treated animals. In contrast, neutrophil numbers and these cellular activities were substantially decreased in LPS-NO animals, compared with LPS-treated animals. NF-kappa B activation in alveolar macrophages from LPS-treated animals was also markedly increased, whereas this activity was effectively blocked in LPS-NO animals. These results suggest that inhaled NO attenuates LPS-induced ALI and pulmonary inflammation. This attenuation may be associated with the inhibition of NF-kappa B activation.  相似文献   

6.
Amano H  Oishi K  Sonoda F  Senba M  Wada A  Nakagawa H  Nagatake T 《Cytokine》2000,12(11):1662-1668
In order to investigate the role of the cytokine-induced neutrophil chemoattractant (CINC) in chronic bronchopulmonary infection, we developed a rat model of bronchopulmonary infection with Pseudomonas aeruginosa by using the agar bead method, and determined the kinetics of bacterial and cell number, as well as the concentrations of CINC-1, CINC-2, and CINC-3 in bronchoalveolar lavage (BAL) fluids in this model. The bacterial number in the lung rapidly increased from days 1 to 4, and declined 14 days after challenge. Neutrophil number in BAL fluid increased up to one day after challenge, and then slowly decreased during 14 days post-challenge. Among the CINCs, the local production of CINC-2 alpha sharply increased at day 1 and then decreased until day 4 post-challenge, while the local production of CINC-1 slightly increased at day 1 post-challenge. Neither CINC-2 beta nor CINC-3 were detected during the entire course of the infection. Increased CINC-2 mRNA expression in the lung tissue after challenge was associated with CINC-2 alpha production in BAL fluid. Moreover, an immunohistochemical study demonstrated the localization of CINC-1 and CINC-2 alpha primarily in alveolar macrophages and, to a much lesser extent, in bronchial epithelium of infected lung tissues, whereas CINC-2 beta and CINC-3 were not detected. When anti-CINC-1 or anti-CINC-2 alpha polyclonal antibodies were used for neutralizing neutrophil chemotactic activities in BAL fluids, the anti-CINC-2 alpha antibody inhibited 70% of the chemotactic activity in BAL fluids from infected rats at day 1 after challenge. No inhibition was observed by anti-CINC-1 antibody. These data indicate that CINC-2 alpha, which is produced by alveolar macrophages and bronchial epithelial cells, plays a pivotal role in neutrophil accumulation in the airway of a rat model of chronic bronchopulmonary infection with P. aeruginosa.  相似文献   

7.
Helicobacter pylori infection induces innate immune responses in macrophages, contributing to mucosal inflammation and damage. Macrophage apoptosis is important in the pathogenesis of mucosal infections but has not been studied with H. pylori. NO derived from inducible NO synthase (iNOS) can activate macrophage apoptosis. Arginase competes with iNOS by converting L-arginine to L-ornithine. Since we reported that H. pylori induces iNOS in macrophages, we now determined whether this bacterium induces arginase and the effect of this activation on apoptosis. NF-kappa B-dependent induction of arginase II, but not arginase I, was observed in RAW 264.7 macrophages cocultured with H. pylori. The time course of apoptosis matched those of both arginase and iNOS activities. Surprisingly, apoptosis was blocked by the arginase inhibitors N(omega)-hydroxy-L-arginine or N(omega)-hydroxy-nor-L-arginine, but not by the iNOS inhibitor N-iminoethyl-L-lysine. These findings were confirmed in peritoneal macrophages from iNOS-deficient mice and were not dependent on bacterial-macrophage contact. Ornithine decarboxylase (ODC), which metabolizes L-ornithine to polyamines, was also induced in H. pylori-stimulated macrophages. Apoptosis was abolished by inhibition of ODC and was restored by the polyamines spermidine and spermine. We also demonstrate that arginase II expression is up-regulated in both murine and human H. pylori gastritis tissues, indicating the likely in vivo relevance of our findings. Therefore, we describe arginase- and ODC-dependent macrophage apoptosis, which implicates polyamines in the pathophysiology of H. pylori infection.  相似文献   

8.

Background

Idiopathic pulmonary fibrosis (IPF) is a chronically progressive interstitial lung disease of unknown etiology. Previously, we have demonstrated the selective upregulation of the macrophage-derived chemokine CCL22 and the thymus activation-regulated chemokine CCL17 among chemokines, in a rat model of radiation pneumonitis/pulmonary fibrosis and preliminarily observed an increase in bronchoalveolar (BAL) fluid CCL22 levels of IPF patients.

Methods

We examined the expression of CCR4, a specific receptor for CCL22 and CCL17, in bronchoalveolar lavage (BAL) fluid cells, as well as the levels of CCL22 and CCL17, to elucidate their pathophysiological roles in pulmonary fibrosis. We also studied their immunohistochemical localization.

Results

BAL fluid CCL22 and CCL17 levels were significantly higher in patients with IPF than those with collagen vascular diseases and healthy volunteers, and there was a significant correlation between the levels of CCL22 and CCL17 in patients with IPF. CCL22 levels in the BAL fluid did not correlate with the total cell numbers, alveolar lymphocytes, or macrophages in BAL fluid. However, the CCL22 levels significantly correlated with the numbers of CCR4-expressing alveolar macrophages. By immunohistochemical and immunofluorescence analysis, localization of CCL22 and CCR4 to CD68-positive alveolar macrophages as well as that of CCL17 to hyperplastic epithelial cells were shown. Clinically, CCL22 BAL fluid levels inversely correlated with DLco/VA values in IPF patients.

Conclusion

We speculated that locally overexpressed CCL22 may induce lung dysfunction through recruitment and activation of CCR4-positive alveolar macrophages.  相似文献   

9.
We investigated the effect of Toll-like receptor 4 (TLR4) on the progression of murine Pneumocystis pneumonia. TLR4-mutant C3H/HeJ and wild-type C3H/HeN mice were infected with Pneumocystis after depletion of CD4 T cells. Mutant mice lost body weight more quickly and showed exacerbated pulmonary injury even though there was no difference in Pneumocystis organism burden in the lung. Mutant mice showed reduced levels of IL-10, IL-12p40 and MIP-2 accompanied by elevated levels of TNF-alpha and IL-6 in the bronchoalveolar lavage fluid compared with those of wild-type mice 8 weeks after the infection. In response to stimulation with Pneumocystis antigen, the production of IL-10, IL-12p40 and MIP-2 by alveolar macrophages was partially impaired in mutant mice, while that in wild-type mice was suppressed by the anti-TLR4/MD-2 mAb, MTS510. Unlike the response to lipopolysaccharide stimulation, TLR4-reconstituted HEK293 cells showed no elevated NF-kappaB activation after stimulation with Pneumocystis antigen. Taken together, these findings suggest that recognition of Pneumocystis by TLR4 helps to regulate the host inflammatory responses through cytokine and chemokine production by alveolar macrophages.  相似文献   

10.
A compromised immune system is the primary predisposing condition for Pneumocystis infection. Factors that contribute to this underlying state of immunosuppression are poorly understood. The presence of common rodent viruses and the role of anti-Pneumocystis antibodies on the progression of natural infection in the corticosteroid-treated rat model of Pneumocystis pneumonia were evaluated. The development and intensity of infection were not affected by the presence or absence of antibodies to these viruses or to major Pneumocystis antigens. A significant increase in survival of Pneumocystis-infected viral antibody-positive rats was observed when these rats were housed under barrier conditions.  相似文献   

11.
The present study investigated the relationship between apoptotic and necrotic cell death and their role in pulmonary inflammatory response to endotoxin. Pulmonary administration of lipopolysaccharide (LPS) caused a rapid increase in the levels of pro-inflammatory cytokine TNF-alpha and inflammatory cell influx in the bronchoalveolar lavage (BAL) fluids. Control mice showed only resident alveolar macrophages with no apoptosis, whereas LPS-treated mice showed clear apoptosis of BAL cells. Microscopic studies confirmed the presence of apoptotic neutrophils and macrophages ingesting apoptotic bodies. The number of apoptotic neutrophils increased concomitantly with the increase in neutrophil influx which peaked 1 day after the treatment. However, necrosis was not detected at this early time, but increased subsequently and peaked at day 3. The levels of necrosis and apoptosis were both elevated and prolonged at high LPS doses. Treatment of mice with phosphatidylserine (PS)-containing liposome, known to inhibit macrophage phagocytosis of apoptotic cells, increased the level of apoptosis and necrosis caused by LPS, whereas control non-PS liposome or saline treatment had no effects. We conclude that necrosis occurs secondary to apoptosis in LPS-treated lung model and that this development is not the result of direct insult by LPS. Instead, our results and previous studies suggest that inefficient clearance of apoptotic cells by macrophages contributes, at least in part, to the levels of apoptosis and necrosis induced by LPS. Because necrosis is associated with cell damage and release of histotoxic contents, this development is likely to play a role in determining the severity and duration of lung toxicity induced by endotoxin.  相似文献   

12.
Patients with paracoccidioidomycosis (PCM) present marked involvement of the lungs during the course of the mycosis. The purpose of this work was to obtain bronchoalveolar lavage (BAL) fluid from these patients to study the cytopathology, TNF levels and the oxidative and fungicidal response of alveolar macrophages (AMs) to in vitro incubation with recombinant IFN-gamma. To compare the lung and blood compartments, these determinations were also made in plasma and blood monocytes (BMs) obtained from the same patients. The cytopathology of BAL fluid revealed a predominance of macrophages, but with the presence of neutrophil exudation, and rare lymphocytes and epithelioid and giant cells. Comparison of the oxidative status and fungicidal activity of AMs and circulating BMs demonstrated that both cell types are highly activated for these two functions when compared to control cells. However, TNF levels were higher in BAL fluid than in plasma. The possible mechanisms involved in the hyperresponsiveness of cells from PCM patients are discussed.  相似文献   

13.
Mountain hares (Lepus timidus) and brown hares (Lepus europaeus) shot by hunters in several game management districts in southern and central Finland during the hunting season from September to the end of February 1998-2001 were examined for Protostrongylus sp. and Pneumocystis sp. Of the mountain hares, 96.5% (194/201) were infected with the lungworm Protostrongylus sp. and 16.9% (32/189) had cyst forms of the fungus Pneumocystis sp. in the lungs. The prevalence of the lungworm and fungus in brown hares was 60% (18/30) and 20.0% (6/30), respectively. The tissue changes associated with the lungworms were macroscopically and microscopically well demarcated. The majority and most severe histopathologic changes were seen at the distal part of the caudal lobes. Inflammatory cells, mainly eosinophils and macrophages, and in lesser degree neutrophils, lymphocytes, and plasma cells were typical findings in the worm-infected tissue. The condition and weight of the hare did not show any significant association with the intensity of the lungworm infection. All Pneumocystis-infected mountain hares were young, and their condition and weight correlated negatively with the intensity of the infection. The intensity of the Pneumocystis infection did not correlate with that of the lungworm infection. Within a tissue section, a slight but significant positive correlation was observed between presence of cysts and inflammatory cells.  相似文献   

14.
It is generally accepted that physiological modulators for tumour necrosis factor (TNF) are present in a variety of body fluids including serum. Among these modulators are soluble TNF receptors (TNF-R) that are cleaved from the extracellular domain of the TNF-Rs. Two receptors of different structures with molecular weights of 55 kDa (CD120a) and 75 kDa (CD120b) are known to be expressed on monocytes, lymphocytes, granulocytes and other cells of peripheral blood. The aim of our study was to determine the expression of CD120a and CD120b on bronchoalveolar lavage cells (BAL cells). BAL cells of 14 patients with different pulmonary disorders were stained with anti-CD120a and anti-CD120b monoclonal antibodies and were differentiated by FACS analysis. Both TNF-Rs are expressed on monocytes, macrophages, lymphocytes and granulocytes of the BAL. Although the relation of CD120a to CD120b is individual for a given cell type and an individual patient, strict correlations between both receptors were observed for BAL monocytes and alveolar macrophages. CD120a are expressed on 29.7% of alveolar macrophages; similar data were obtained for CD120b. 24.3% of the BAL monocytes were positive for CD120a and 25.5% for CD120b. 4.1% of the BAL lymphocytes were positive for CD120a whereas the percentage of CD120b positive BAL lymphocytes was approximately six times greater. Analysis of BAL granulocytes revealed 21.2% cells positive for CD120a and 11.6% for CD120b. In contrast to the BAL cells named above there was no positive correlation between CD120a and CD120b expression on BAL lymphocytes and granulocytes. We were able to show that TNF-Rs of BAL cells, like those of blood cells, are shedded in vitro after incubation with or without lipopolysaccharide (LPS), detected as TNFalpha-inhibitor activity in cell culture supernatant. In conclusion, BAL cells express and shed TNF-Rs, as is known for cells of other body compartments.  相似文献   

15.
Severe influenza kills tens of thousands of individuals each year, yet the mechanisms driving lethality in humans are poorly understood. Here we used a unique translational model of lethal H5N1 influenza in cynomolgus macaques that utilizes inhalation of small-particle virus aerosols to define mechanisms driving lethal disease. RNA sequencing of lung tissue revealed an intense interferon response within two days of infection that resulted in widespread expression of interferon-stimulated genes, including inflammatory cytokines and chemokines. Macaques with lethal disease had rapid and profound loss of alveolar macrophages (AMs) and infiltration of activated CCR2+ CX3CR1+ interstitial macrophages (IMs) and neutrophils into lungs. Parallel changes of AMs and neutrophils in bronchoalveolar lavage (BAL) correlated with virus load when compared to macaques with mild influenza. Both AMs and IMs in lethal influenza were M1-type inflammatory macrophages which expressed neutrophil chemotactic factors, while neutrophils expressed genes associated with activation and generation of neutrophil extracellular traps (NETs). NETs were prominent in lung and were found in alveolar spaces as well as lung parenchyma. Genes associated with pyroptosis but not apoptosis were increased in lung, and activated inflammatory caspases, IL-1β and cleaved gasdermin D (GSDMD) were present in bronchoalveolar lavage fluid and lung homogenates. Cleaved GSDMD was expressed by lung macrophages and alveolar epithelial cells which were present in large numbers in alveolar spaces, consistent with loss of epithelial integrity. Cleaved GSDMD colocalized with viral NP-expressing cells in alveoli, reflecting pyroptosis of infected cells. These novel findings reveal that a potent interferon and inflammatory cascade in lung associated with infiltration of inflammatory macrophages and neutrophils, elaboration of NETs and cell death by pyroptosis mediates lethal H5N1 influenza in nonhuman primates, and by extension humans. These innate pathways represent promising therapeutic targets to prevent severe influenza and potentially other primary viral pneumonias in humans.  相似文献   

16.
Platelet-activating factor (PAF)-acetylhydrolase is the enzyme modulating in tissues and biological fluids the concentration of the proinflammatory factors PAF and PAF-like oxidation products of phospholipids (PAF-like compounds). We investigated whether there is a relation between PAF-acetylhydrolase activity and the concentration of PAF-like compounds in bronchoalveolar lavage (BAL). We found that alveolar type II cells are an additional source of PAF-acetylhydrolase in BAL beside macrophages. Secretion of PAF-acetylhydrolase was stimulated by phorbol ester in alveolar type II cells but not in macrophages. Studies in BAL suggested that secreted PAF-acetylhydrolase was bound to alveolar surfactant. Exposure of rats to high oxygen concentration reduced the activity of PAF-acetylhydrolase in BAL and macrophages, but not in plasma or alveolar type II cells. In contrast, hyperoxia increased the concentration of PAF-like-compounds, lipid hydroperoxides and malonedialdehyde in plasma but not in BAL. Therefore, we conclude that neither the oxidant-induced decrease of the PAF-acetylhydrolase activity nor the direct peroxidation of surfactant lipids in the alveoli provide a likely mechanism for hyperoxia-induced lung injury. Instead, lung injury is apparently caused by lipid peroxidation in plasma rather than by high oxygen pressure in the alveoli.  相似文献   

17.
Although G-CSF has been shown to increase neutrophil (polymorphonuclear leukocyte, PMN) recruitment into the lung during pulmonary infection, relatively little is known about the local chemokine profiles associated with this enhanced PMN delivery. We investigated the effects of G-CSF and PMN recruitment on the pulmonary chemokine response to intratracheal LPS. Rats pretreated twice daily for 2 days with an s.c. injection of G-CSF (50 microg/kg) were sacrificed at either 90 min or 4 h after intratracheal LPS (100 microg) challenge. Pulmonary recruitment of PMNs was not observed at 90 min post LPS challenge. Macrophage inflammatory protein-2 (MIP-2) and cytokine-induced neutrophil chemoattractant (CINC) concentrations in bronchoalveolar lavage (BAL) fluid were similar in animals pretreated with or without G-CSF at this time. G-CSF pretreatment enhanced pulmonary recruitment of PMNs (5-fold) and greatly reduced MIP-2 and CINC levels in BAL fluid at 4 h after LPS challenge. In vitro, the presence of MIP-2 and CINC after LPS stimulation of alveolar macrophages was decreased by coculturing with circulating PMNs but not G-CSF. G-CSF had no direct effect on LPS-induced MIP-2 and CINC mRNA expression by alveolar macrophages. Pulmonary recruited PMNs showed a significant increase in cell-associated MIP-2 and CINC. Cell-associated MIP-2 and CINC of circulating PMNs were markedly increased after exposure of these cells to the BAL fluid of LPS-challenged lungs. These data suggest that recruited PMNs are important cells in modulating the local chemokine response. G-CSF augments PMN recruitment and, thereby, lowers local chemokine levels, which may be one mechanism resulting in the subsidence of the host proinflammatory response.  相似文献   

18.
The cellular and cytokine responses in the lungs of mice infected with Pneumocystis carinii were examined on both lung homogenates and bronchoalveolar lavage (BAL) fluids. In the lungs of infected mice, the number of P. carinii cysts rapidly decreased by day 7, then started to increase with a peak on day 14, and thereafter decreased gradually. When the presence of P. carinii was examined at the DNA level by dot blot hybridization, a similar clearance curve was obtained, and the organisms were shown to be completely eliminated on day 28. In the late phase of infection, leukocytes, mainly lymphocytes, increased in number when analyzed on lung homogenates, while no significant increase of inflammatory cells was observed in BAL fluids. An accumulation of both CD4+ and CD8+ T cells and an increase of activated T cells expressing IL-2Rα were observed in lung homogenates of the infected mice. In addition, a considerable amount of IFN-γ was detected in lung homogenates, but not in BAL fluids. These data indicate that lung homogenates are more suitable than BAL fluids for the analysis of cellular and cytokine responses in the lungs of mice infected with P. carinii. To define the involvement of IFN-γ in host defense against P. carinii, the effect of this cytokine on the killing activity of macrophages against P. carinii was examined in vitro. IFN-γ was found to augment this activity by increasing nitric oxide synthesis of the macrophages. Thus, it is suggested that IFN-γ plays an important role in the protection of mice from P. carinii infection.  相似文献   

19.
Fu Y  Quan R  Zhang H  Hou J  Tang J  Feng WH 《Journal of virology》2012,86(14):7625-7636
Porcine reproductive and respiratory syndrome virus (PRRSV) mainly infects macrophages/dendritic cells and modulates cytokine expression in these cells. Interleukin-15 (IL-15) is a pleiotropic cytokine involved in wide range of biological activities. It has been shown to be essential for the generation, activation, and proliferation of NK and NKT cells and for the survival and activation of CD8(+) effector and memory T cells. In this study, we discovered that PRRSV infection upregulated IL-15 production at both the mRNA and protein levels in porcine alveolar macrophages (PAMs), blood monocyte-derived macrophages (BMo), and monocyte-derived dendritic cells (DCs). We subsequently demonstrated that the NF-κB signaling pathway was essential for PRRSV infection-induced IL-15 production. First, addition of an NF-κB inhibitor drastically reduced PRRSV infection-induced IL-15 production. We then found that NF-κB was indeed activated upon PRRSV infection, as evidenced by IκB phosphorylation and degradation. Moreover, we revealed an NF-κB binding motif in the cloned porcine IL-15 (pIL-15) promoter, deletion of which abrogated the pIL-15 promoter activity in PRRSV-infected alveolar macrophages. In addition, we demonstrated that PRRSV nucleocapsid (N) protein had the ability to induce IL-15 production in porcine alveolar macrophage cell line CRL2843 by transient transfection, which was mediated by its multiple motifs, and it also activated NF-κB. These data indicated that PRRSV infection-induced IL-15 production was likely through PRRSV N protein-mediated NF-κB activation. Our findings provide new insights into the molecular mechanisms underling the IL-15 production induced by PRRSV infection.  相似文献   

20.
Bronchoalveolar lavage (BAL) was performed in albino random-bred adult male rats with pneumoconiosis. Fibrotic reaction in the lungs was induced by inhalation coal dust during 6 months. BAL comprised 90.9 +/- 1.2% of macrophages; 4.4 +/- 0.8% of neutrophils and 4.5 +/- 1.0% of lymphocytes. The total cell number in BAL was higher (over 59%) in animals with pneumoconiosis. The number of cells on alveolar surface of the lungs was also higher. Fibrotic reaction in the lungs is probably directly related with the increased number of vital macrophages in the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号