首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The biodiversity of the Cape Peninsula (49127 ha in extent) has been considerably affected by various factors since European settlement in 1652. Urbanization and agriculture have transformed 37% of the original area of natural vegetation. Lowland vegetation types have been worst affected, with almost half of the transformation occurring in one of the 15 recognized vegetation types. Vegetation at high altitudes has been little affected by urbanization and agriculture, but alien trees and shrubs are now threatening biodiversity in these areas. Of the area not affected by urbanization and agriculture 10.7% is currently under dense stands (>25% canopy cover) of alien plants and another 32.9% is lightly invaded. Dense stands of Acacia cyclops, the most widespread invader, cover 2510 ha, 76% of the total area under dense alien stands. This paper assesses the impacts of these factors on aspects of the plant biodiversity of the area, namely, the distribution of major vegetation types and of endemic, rare and threatened plant taxa and of taxa in the Proteaceae (a prominent element in almost all communities, taken as an indicator of overall plant biodiversity).Possible future impacts on biodiversity are assessed by considering the effects of several scenarios involving increased urbanization and changes to alien plant control strategies and further spread over the next 50–100 years. The worst-case scenario for urbanization sees the area under natural vegelation reduced to 12163 ha (39.3% of its extent in 1994, or 24.8% of its original extent). Under this scenario almost a quater of the 161 endemic, rare and threatened (special) taxa are confined totally to urban areas; 57.4% of the known localities of these taxa, and 40.1% of the remaining localities of Proteaceae taxa are transformed. Dense alien stands currently affect 29.8% of the localities of special taxa known from herbarium records and 8.4% of these taxa currently occur only in areas at present affected by aliens. Clearing all dense stands would result in 62.9% of special taxa having less than half of their known localities affected (49.1% at present). Under this scenario, 92% of Proteaceae taxa have more than 75% of their localities unaffected by aliens. If clearing is confined to specific areas (the Cape Peninsula Protected Natural Environment or all publicly-owned land) and the aliens spread further outside these areas, the area of natural vegetation remaining shrinks (to 82.4% of the current extent if control is confined to public land). The further losses in biodiversity associated with these scenarios are described. If control programmes collapse and all potentially invadable land is occupied by dense alien stands, only 407 ha of natural vegetation would remain (1.5% of the current extent).The probability of the various scenarios materializing is discussed. To minimize further losses in biodiversity it is essential that: (1) a major initiative is launched immediately to clear (firstly) the 10184 ha of lightly invaded vegetation and then the 3313 ha of densely invaded vegetation; (2) no urban development be permitted within the boundaries of the Cape Peninsula Protected Natural Environment; (3) a systematic programme of prescribed burning (linked to the alien control programme) is initiated; and (4) contingency measures are implemented to improve the status of seriously threatened taxa, habitats and vegetation types.  相似文献   

2.
Suitable reservoirs and monitoring methods are needed to manage scarce water supplies in dry countries. We assessed here the impact on aquatic macroinvertebrates of the only dam on the Eerste River, which runs through the heart of a biodiversity hotspot, the Cape Floristic Region, South Africa. The dam and associated activities, were the only forms of disturbance in this otherwise pristine area. We sampled over 20,000 macroinvertebrate individuals and illustrated some categorical effects of the impoundment and its effects on macroinvertebrate assemblages. Macroinvertebrate species diversity below the dam was only half of that in the pristine catchment area above the dam. Furthermore, Ephemeroptera, Plecoptera and Trichoptera diversity and abundance dropped to almost zero as a result of the impoundment. In contrast, the abundance of the Diptera family Chironomidae increased substantially below the dam. These changes in macroinvertebrate diversity mirrored those recorded in biologically less diverse areas, but are of major concern in this biodiversity hotspot with its rich endemic fauna. We conclude that such an impoundment, while important for human welfare, results in a high price being paid in terms of loss of local biodiversity.  相似文献   

3.
The Cape Peninsula, a landscape of profound scenic beauty, is also botanically exceptionally species-rich and has high concentrations of both endemic and threatened plant species. Alien invasive trees, urban expansion and growing tourism are impacting increasingly on the landscape and biota. Three reserve scenarios were modelled, the primary objective being to maximize the conservation of biodiversity in a manner which takes both cost and efficiency into account. A comprehensive plant species database, an endemic animali species database, a vegetation type database, land-tenure and land-use data were used in this process. The resolution of all databases was by 1 km cells. The first scenario investigated the effectiveness of the existing reserve system in conserving the Peninsula's biodiversity. The second assessed the benefit of adding all publicly owned and to the existing reserves. In scenario three, a reserve-selection algorithm was applied to conserve those plant species outside existing reserves at least once. Where endemic animal species, and areas with high concentrations of threatened and endemic plant species were not adequately conserved, extra cells were added for their inclusion. Finally, one cell was added to cater for one inadequately conserved vegetation type. Fifty-one cells were needed to satisfy the requirements stipulated for scenario three. Analyses showed that 22% of plant species have all their records within existing reserves. Adding all public land improves the status to 43% with 97% having >50% of their records included in reserves. In scenario three, these figures are 32 and 87% respectively. In terms of animal species, four species are unconserved in scenario one, two in scenario two, and all species are conserved in scenario three. We conclude that scenarios two (including all public areas) and three (iterative selection to conserve each species once) provide practicable options for conserving the Peninsula's remaining biodiversity.  相似文献   

4.
The southern African landscape appears to have experienced frequent shifts in vegetation associated with climatic change through the mid-Miocene and Plio-Pleistocene. One group whose historical biogeography may have been affected by these fluctuations are the dwarf chameleons (Bradypodion), due to their associations with distinct vegetation types. Thus, this group provides an opportunity to investigate historical biogeography in light of climatic fluctuations. A total of 138 dwarf chameleons from the Cape Floristic Region of South Africa were sequenced for two mitochondrial genes (ND2 and 16S), and resulting phylogenetic analyses showed two well-supported clades that are distributed allopatrically. Within clades, diversity among some lineages was low, and haplotype networks showed patterns of reticulate evolution and incomplete lineage sorting, suggesting relatively recent origins for some of these lineages. A dispersal-vicariance analysis and a relaxed Bayesian clock suggest that vicariance between the two main clades occurred in the mid-Miocene, and that both dispersal and vicariance have played a role in shaping present-day distributions. These analyses also suggest that the most recent series of lineage diversification events probably occurred within the last 3-6 million years. This suggests that the origins of many present-day lineages were founded in the Plio-Pleistocene, a time period that corresponds to the reduction of forests in the region and the establishment of the fynbos biome.  相似文献   

5.
The Cape Peninsula (area: 471 km2), situated at the south-western extremity of the Cape Floristic Region, has exceptionally high plant species richness (2285 species and infraspecific taxa) and numbers of endemic (90; 88 species and two infraspecific) and threatened (141; 138 species and three infraspecific) taxa (termed species from here on). This biodiversity is threatened by urban development and the spread of invasive alien plants. Peninsula endemics are concentrated in a few, predominantly species-rich families and these correspond well with endemic-rich families in other areas of the Cape Floristic Region. A high level of similarity exists between families with threatened and families with endemic species. A frequency analysis of the biological traits of both endemic and threatened species shows that low growing, ant-dispersed shrubs are over-represented in both groups. Endemics are most likely to be non-sprouters, but threatened plants do not have a specific post-fire regeneration strategy. Threatened species have higher frequencies of geophytes, sprouters and wind-dispersed species compared to endemic species. Numbers of endemic and threatened species are not randomly distributed with regard to occurrence in vegetation types and patterns are similar for both groups. The habitat and biological profiles of both endemic and threatened species suggest that they are highly vulnerable to extinction as a result of increasing rates of alien plant infestation, urbanization and inappropriate fire regimes.  相似文献   

6.
Insect diversity in Cape fynbos and neighbouring South African vegetation   总被引:1,自引:0,他引:1  
Aim  It has often been suggested that South Africa's Cape fynbos shrublands, although extremely rich in plant species, are poor in insects, thus representing a notable exception from the broad plant–insect diversity relationship. The aims of this study were to compare the diversity patterns of plant-inhabiting insects in fynbos and the vegetation of three neighbouring biomes (grassland, subtropical thicket, and Nama-karoo), and to test for a general relationship between plant diversity and insect diversity across these biomes.
Location  South-western to south-eastern South Africa.
Methods  We conducted seasonal plant surveys and sweep insect sampling in 10 × 10 m plots in the Baviaanskloof Conservation Area (Eastern Cape), where all four biomes occur. We also conducted once-only collections in the core area of each biome.
Results  Fynbos plots had insect diversity values similar to those of grassland and subtropical thicket (a dense, evergreen and spinescent shrubland with a high abundance of succulents and climbers), and significantly higher than Nama-karoo (an open, semiarid shrubland). A remarkably strong positive relationship was found between plant and insect species richness.
Main conclusions  Previous generalizations were based on a few insect groups (e.g. butterflies, under-represented in fynbos), but ignored published results on other groups (e.g. galling insects, which are in fact over-represented in this vegetation). We show that, overall, insect diversity in fynbos is comparable to that of neighbouring biomes. Fynbos vegetation does not represent a significant exception from the broad positive relationship between plant diversity and insect diversity.  相似文献   

7.
The Cape Floristic Region (CFR) is one of the most plant-species-rich regions in the world. It is also a warm temperate region and hypothetically should have high gall-insect species richness, making it interesting to investigate the relationship between the insects of the region and the rich flora. The relationship between gall-insect species richness (GSR) and plant richness was investigated for the Fynbos and for representatives of vegetation of the whole CFR. Samples (of up to 600 plants per transect for Fynbos) of woody shrubs were investigated for the presence of galls. The species richness of these insects was quantified, as well as plant species richness for each transect. GSR for Fynbos was compared to global figures for GSR. Fynbos harboured significantly more gall-insect species than other CFR vegetation types. GSR was positively correlated with CFR plant richness. GSR also closely tracked plant richness in Fynbos. GSR was not significantly influenced by other variables (elevation and aspect), suggesting that plant richness per se was an important factor in generating GSR. Fynbos GSR is comparable to other sclerophyllous regions of high GSR globally, corroborating that this vegetation type is conducive to gall-insect diversification. There is likely to be a high percentage of gall-insect endemism in the Fynbos, as might be expected from the high host fidelity of this insect group. Received: 22 September 1997 / Accepted: 16 February 1998  相似文献   

8.
We tested the effects of life‐history traits on genetic variation and conducted a comparative analysis of two plant species with differing life‐history traits co‐occurring in the highly endangered renosterveld of South Africa. We selected eighteen renosterveld remnants with varying degrees of size and isolation where populations of the herbaceous, annual and insect‐pollinated Hemimeris racemosa and the shrubby perennial and both wind‐ and insect‐pollinated Eriocephalus africanus occurred. We postulated a lower genetic variation within populations and increased genetic variation between populations in the annual than in the perennial species. Genetic variation was lower within populations of H. racemosa than within E. africanus, as is typical for annual compared to perennial species. Variation within populations was, however, not correlated with fragment size or distance in either of the two species and genetic variation between populations of the two species was comparable (ΦST = 0.10, 0.09).  相似文献   

9.
Aim Promoting population growth of genetically distinct subpopulations of Cape mountain zebra (Equus zebra zebra) is crucial to the survival of the subspecies. Several important Cape mountain zebra reserves are dominated by fynbos vegetation, and population growth is limited by a lack of grassland habitat. A fossil ungulate sequence spanning the last c. 18,000 years is examined to understand the long‐term history of this conservation challenge. Location Boomplaas Cave (BPA), South Africa. Methods The fossil sequence from BPA is examined to reconstruct ungulate community dynamics in relation to climate and vegetation change over the last 18,000 years. Results Ungulates from 18,000 to 12,000 years ago suggest an expansion of open grasslands that supported a grazing ecosystem dominated by an extinct caprine antelope and equid remains attributed to E. zebra and E. quagga. At the onset of the Holocene, the grazing ungulate community disappears and small browsers and mixed feeders dominate the assemblage, indicating the loss of open grassland vegetation. Several open‐habitat grazers go extinct at this time, and Equus persists at much lower abundances. This shift can be explained by global climate change across the Pleistocene–Holocene transition. Main conclusions The fossil sequence supports contemporary observations indicating that access to open grassland is crucial to maintaining large Cape mountain zebra subpopulations. Although fynbos is abundant throughout the historic range of the Cape mountain zebra, fossil evidence suggests that such vegetation is unlikely to support dense populations. It has been suggested that the acquisition of agricultural lands that were historically converted to open grasslands for livestock could promote Cape mountain zebra population growth. Results presented here support this management option, as the open grasslands in these converted landscapes likely approximate the vegetation structure during latest Pleistocene, when grasslands were widespread and grazing ungulates abundant.  相似文献   

10.
Taxonomie and biological aspects of endemism and Red Data Book status were studied amongst the limestone endemics of the lowland fynbos in the Cape Floristic Region, South Africa. Of the 110 limestone endemics, 1.8% are widely distributed in the Cape Floristic Region and 56.4% are regional endemics. Relative to flora of non-limestone lowland fynbos (n=538 species), the families which were overrepresented in terms of limestone endemics included the Ericaceae, Fabaceae, Polygalaceae, Rutaceae and Sterculiaceae. The Restionaceae was the only underrepresented family. The local limestone endemics were not significantly different from regional endemics in terms of their biological attributes. An analysis of the frequency of the biological traits associated with the limestone-endemic flora established a biological profile for a limestone endemic: a dwarf-to-low shrub with soil-stored seeds which are ant or wind dispersed. In terms of the species richness of limestone endemics, the De Hoop Nature Reserve was the hotspot within the region. Relative to the total species richness, the Hagelkraal and Stilbaai areas contained higher-than-predicted numbers of rare species. These areas require urgent attention if the unique floral diversity associated with limestone substrata within the Bredasdorp-Riversdale centre of endemism is to be conserved.  相似文献   

11.
Conservation planning in the Cape Floristic Region, a recognized world plant diversity hotspot, required systematic information on the estimated distributions and spatial requirements of the medium- to large-sized mammals within each of 102 Broad Habitat Units delineated according to key biophysical parameters. As a consequence of a general lack of data, we derived a pragmatic approach for obtaining estimates of these two parameters. Distribution estimates were based on a combination of a literature survey (with emphasis on early texts) and the ecological requirements of the species. Spatial requirement estimates were derived from a simple spreadsheet model that is based on forage availability estimates and the metabolic requirements of the mammals in question. Our analysis incorporated adaptations of the agriculture-based Large Stock Unit or Animal Unit approach. The predictions of the model were tested by comparing them with actual density data. The outcomes provided realistic estimates of the two parameters. However, they should be considered as testable hypotheses and the concept of adaptive management — or management by hypothesis — must apply. Examples of the outcomes are provided in the form of maps and tables.  相似文献   

12.
Excavations conducted by H.J. Deacon in the 1970s at Boomplaas Cave (BPA) uncovered a stratified sequence of Middle Stone Age (MSA) and Later Stone Age (LSA) deposits spanning the last >65,000 years. This study provides the first comprehensive and integrated taphonomic and paleoecological analysis of the BPA large mammals, with a focus on its implications for understanding human adaptations and environmental changes in southern Africa's Cape Floristic Region (CFR), an area that features prominently in understanding modern human origins. Taphonomic data indicate a complex history of human, carnivore, and raptor accumulation of the large mammal assemblage. The anthropogenic signal is largely absent from the bottom of the sequence (>65,000 years ago), intermediate in MSA and LSA assemblages from ∼50,000 to 20,000 years ago, and strong in LSA deposits post-dating the Last Glacial Maximum (LGM). When viewed in the broader CFR context, the inferred occupation history of BPA is consistent with the hypothesis that both MSA and LSA human populations were concentrated on the submerged coastline from ∼60,000 to ∼20,000 years ago. Intensive occupation following the LGM parallels an apparent increase in regional population densities, which may have been driven in part by rising sea levels. The BPA ungulate assemblage is characterized by the rise and decline of a taxonomically diverse grazing community, which peaks during the LGM. These changes are not correlated with taphonomic shifts, meaning that they are likely driven by environmental factors, namely the expansion and contraction of grassland habitats. Changes in ungulate diversity indicate that effective precipitation was highest during the LGM, corresponding with an intensified winter rainfall system. This is consistent with recent arguments that the LGM in this region may not have been extremely harsh and arid.  相似文献   

13.
Othonna cerarioides Magoswana and J.C. Manning is described as a new species from Namaqualand, Northern Cape Province of South Africa. It is an erect shrub with rod-like stems and branches, bearing numerous spur-shoots with obovate-oblanceolate leaves clustered at the tips, and up to nine disciform capitula per spur-shoot. Othonna cerarioides is anomalous in the genus in that the style of some of the disc florets is bifid. Othonna is diagnosed within subtribe Othonnineae by female-sterile disc florets with simple (or very rarely minutely bifid) styles. The disc florets in the closely related genus Hertia are bisexual with well branched styles.  相似文献   

14.
The wine industry in the Western Cape, South Africa has expanded over the past decade, particularly since the lifting of trade sanctions in 1992. Wine grapes are cultivated on fertile soils upon which threatened biodiversity habitat units of the Cape Floristic Region occur naturally. There is a concern as to whether further expansion of the wine industry, which would benefit the economy through increased foreign exchange, would encroach on the little remaining vegetation in vineyard-producing areas. Predictive land use modeling using logistic regression techniques was applied to determine suitable areas for vineyard cultivation according to climatic, topographic, and soil/geology variables. Of the most threatened habitats, 14849 hectares are particularly suitable for vineyards. Breede fynbos/renosterveld mosaic was the habitat most likely to be converted, and was considered 89.3% irreplaceable to current conservation goals. Also vulnerable are Ashton inland renosterveld and Boland coast renosterveld, the latter being 100% irreplaceable. Although the high rate in vine replanting suggests that the need for untransformed land will not be great immediately, an economic analysis showed that protection of these areas against future ploughing will be vital if targets of adequately representing each habitat in the Cape Floristic Region are to be met. Land use change modeling, especially if done in a spatially explicit and integrated manner with expert input, was shown to be an important technique for the extrapolation of historical patterns to understand the forces that shape landscapes, allowing for the assessment of management alternatives, and testing our understanding of key processes in land use changes that effect conservation planning.  相似文献   

15.
Using spatial predictions of future threats to biodiversity, we assessed for the first time the relative potential impacts of future land use and climate change on the threat status of plant species. We thus estimated how many taxa could be affected by future threats that are usually not included in current IUCN Red List assessments. Here, we computed the Red List status including future threats of 227 Proteaceae taxa endemic to the Cape Floristic Region, South Africa, and compared this with their Red List status excluding future threats. We developed eight different land use and climate change scenarios for the year 2020, providing a range of best‐ to worst‐case scenarios. Four scenarios include only the effects of future land use change, while the other four also include the impacts of projected anthropogenic climate change (HadCM2 IS92a GGa), using niche‐based models. Up to a third of the 227 Proteaceae taxa are uplisted (become more threatened) by up to three threat categories if future threats as predicted for 2020 are included, and the proportion of threatened Proteaceae taxa rises on average by 9% (range 2–16%), depending on the scenario. With increasing severity of the scenarios, the proportion of Critically Endangered taxa increases from about 1% to 7% and almost 2% of the 227 Proteaceae taxa become Extinct because of climate change. Overall, climate change has the most severe effects on the Proteaceae, but land use change also severely affects some taxa. Most of the threatened taxa occur in low‐lying coastal areas, but the proportion of threatened taxa changes considerably in inland mountain areas if future threats are included. Our approach gives important insights into how, where and when future threats could affect species persistence and can in a sense be seen as a test of the value of planned interventions for conservation.  相似文献   

16.
Habitat specialists such as soft-bodied invertebrates characterized by low dispersal capability and sensitivity to dehydration can be employed to examine biome histories. In this study, the Cape velvet worm (Peripatopsis capensis) was used to examine the impacts of climatic oscillations on historical Afromontane forest in the Western Cape, South Africa. Divergence time estimates suggest that the P. capensis species complex diverged during the Pliocene epoch. This period was characterized by dramatic climatic and topographical change. Subsequently, forest expansion and contraction cycles led to diversification within P. capensis. Increased levels of genetic differentiation were observed along a west-to-south-easterly trajectory because the south-eastern parts of the Cape Fold Mountain chain harbour larger, more stable fragments of forest patches, have more pronounced habitat heterogeneity and have historically received higher levels of rainfall. These results suggest the presence of three putative species within P. capensis, which are geographically discreet and genetically distinct.  相似文献   

17.
Mountains present particular challenges for biodiversity conservation. Table Mountain is a significant mountain in a global biodiversity hotspot, the Cape Floristic Region. It has outstanding angiosperm diversity and endemism. Yet, aerial and foliage invertebrates in the area have been poorly studied, despite their importance as pollinators and predators. These plant and invertebrate assemblages are under great pressure from human disturbance. Aerial and foliage invertebrates were sampled with a range of techniques. Sites were chosen to make comparisons between vegetation structure and type, elevation and aspect. In total, 216 species from 63 families and 14 orders were recorded. Vegetation structure (fynbos or forest) and elevation were the most important environmental variables for both aerial and foliage invertebrates. Peak time for aerial invertebrate abundance was spring and summer in the fynbos and spring in the forests, while the foliage invertebrates showed very little seasonal variation. There was no correlation between the diversity of aerial and foliage invertebrates. When these results were compared with others on epigaeic invertebrates, it became clear that epigaeic and aerial invertebrates are not correlated, while epigaeic and foliage invertebrates were only partially correlated, but not sufficiently so to consider one as a reliable estimator of the other. The management pointer from this study is that sites at all elevations are vital for the conservation of biodiversity on Table Mountain. Both the aerial and epigaeic/foliage invertebrate assemblages will need to be monitored separately to maintain the mountain’s conservation status.  相似文献   

18.
Water affects distribution of many species, but climate change is set to change rainfall patterns and hence water availability. In South Africa, various global climate‐change models suggest a drier future for the winter rainfall regions with implications for survival of plant and animal species of the fynbos region. Most birds offload heat by evaporative water loss, and this increases exponentially from 25°C. Birds need to replenish their water loss to cope particularly at high temperatures, especially species that have little preformed water in the diet. We documented bird species drinking at five natural water sources at a semi‐arid fynbos site through time‐lapse cameras to explore which birds are drinking when. We modelled the total numbers of birds observed drinking as a function of diet, mass and relative abundance and found that species classified as granivores were predicted to drink most frequently, with the more common species most frequently recorded. A phylogenetically controlled trait‐based logistic regression indicated abundance as the best predictor of observation at the water sources. Daily drinking rates at the species level for the ten most frequently observed species were generally best explained by daily temperature, with higher drinking rates on hotter days. However, daily drinking patterns were poorly explained by diurnal temperature trends at the hourly level, and we were unable to document sufficient predators to comment on the influence of predator avoidance or other heat mitigation strategies. Finally, we discuss the implications of our observations for the set of fynbos endemic passerines.  相似文献   

19.
Post-fire sprouting of dormant buds in resprouter plants is facilitated by stored carbohydrate reserves, with starch being the critical reserve. Starch is mainly stored in xylem parenchyma ray tissue of woody underground organs, such as burls, lignotubers, and roots. We carried out a comparative analysis of the pattern of starch storage and the proportion of parenchymatic ray tissue in the upper root or cotyledonary region of seedlings from seeder and resprouter forms within two Cape Erica (Ericaceae) species: E. coccinea L. and E. calycina L., which were raised in the greenhouse under controlled irrigation. We also explored the root-to-shoot allocation patterns of seeder and resprouter seedlings in these two species. Resprouter seedlings of both species showed higher relative amounts of upper-root starch and upper-root storage tissue as well as a higher root-to-shoot allocation than their seeder counterparts. Pronounced swelling of the upper root region suggests ontogenetic development of a lignotuber in the resprouter forms of the two Erica species. The distinct allocation of starch in roots seems to be genetically determined and would account for the apparent differences in the root-to-shoot allocation patterns between both regeneration forms from the early seedling stage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号