首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli strains causing postweaning diarrhea (PWD) and edema disease (ED) in pigs are limited to a number of serogroups, with O8, O45, O138, O139, O141, O147, O149, and O157 being the most commonly reported worldwide. In this study, a DNA microarray based on the O-antigen-specific genes of all 8 E. coli serogroups, as well as 11 genes encoding adhesion factors and exotoxins associated with PWD and ED, was developed for the identification of related serogroups and virulence gene patterns. The microarray method was tested against 186 E. coli and Shigella O-serogroup reference strains, 13 E. coli reference strains for virulence markers, 43 E. coli clinical isolates, and 12 strains of other bacterial species and shown to be highly specific with reproducible results. The detection sensitivity was 0.1 ng of genomic DNA or 103 CFU per 0.3 g of porcine feces in mock samples. Seventeen porcine feces samples from local hoggeries were examined using the microarray, and the result for one sample was verified by the conventional serotyping methods. This microarray can be readily used to screen for the presence of PWD- and ED-associated E. coli in porcine feces samples.  相似文献   

2.
Shiga toxin-producing Escherichia coli (STEC) is an important cause of food-borne illness in humans. Ruminants appear to be more frequently colonized by STEC than are other animals, but the reason(s) for this is unknown. We compared the frequency, magnitude, duration, and transmissibility of colonization of sheep by E. coli O157:H7 to that by other pathotypes of E. coli. Young adult sheep were simultaneously inoculated with a cocktail consisting of two strains of E. coli O157:H7, two strains of enterotoxigenic E. coli (ETEC), and one strain of enteropathogenic E. coli. Both STEC strains and ETEC 2041 were given at either 107 or 1010 CFU/strain/animal. The other strains were given only at 1010 CFU/strain. We found no consistent differences among pathotypes in the frequency, magnitude, and transmissibility of colonization. However, the STEC strains tended to persist to 2 weeks and 2 months postinoculation more frequently than did the other pathotypes. The tendency for persistence of the STEC strains was apparent following an inoculation dose of either 107 or 1010 CFU. One of the ETEC strains also persisted when inoculated at 1010 CFU. However, in contrast to the STEC strains, it did not persist when inoculated at 107 CFU. These results support the hypothesis that STEC is better adapted to persist in the alimentary tracts of sheep than are other pathotypes of E. coli.  相似文献   

3.
The increasing rate of antimicrobial resistance drastically reduced the efficiency of conventional antibiotics and led to the reconsideration of the interspecies interactions in influencing bacterial virulence and response to therapy. The aim of the study was the investigation of the influence of the soluble and cellular fractions of Enterococcus (E.) faecium CMGB16 probiotic culture on the virulence and antibiotic resistance markers expression in clinical enteropathogenic Escherichia (E.) coli strains.The 7 clinical enteropathogenic E. coli strains, one standard E. coli ATCC 25,922 and one Bacillus (B.) cereus strains were cultivated in nutrient broth, aerobically at 37 °C, for 24 h. The E. faecium CMGB16 probiotic strain was cultivated in anaerobic conditions, at 37 °C in MRS (Man Rogosa Sharpe) broth, and co-cultivated with two pathogenic strains (B. cereus and E. coli O28) culture fractions (supernatant, washed sediment and heat-inactivated culture) for 6 h, at 37 °C. After co-cultivation, the soluble and cellular fractions of the probiotic strain cultivated in the presence of two pathogenic strains were separated by centrifugation (6000 rpm, 10 min), heat-inactivated (15 min, 100 °C) and co-cultivated with the clinical enteropathogenic E. coli strains in McConkey broth, for 24 h, at 37 °C, in order to investigate the influence of the probiotic fractions on the adherence capacity and antibiotic susceptibility. All tested probiotic combinations influenced the adherence pattern of E. coli tested strains. The enteropathogenic E. coli strains susceptibility to aminoglycosides, beta-lactams and quinolones was increased by all probiotic combinations and decreased for amoxicillin-clavulanic acid. This study demonstrates that the plurifactorial anti-infective action of probiotics is also due to the modulation of virulence factors and antibiotic susceptibility expression in E. coli pathogenic strains.  相似文献   

4.
Enterohemorrhagic Escherichia coli (EHEC) is the causative agent of bloody diarrhea and extraintestinal sequelae in humans, most importantly hemolytic-uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP). Besides the bacteriophage-encoded Shiga toxin gene (stx), EHEC harbors the locus of enterocyte effacement (LEE), which confers the ability to cause attaching and effacing lesions. Currently, the vast majority of EHEC infections are caused by strains belonging to five O serogroups (the “big five”), which, in addition to O157, the most important, comprise O26, O103, O111, and O145. We hypothesize that these four non-O157 EHEC serotypes differ in their phylogenies. To test this hypothesis, we used multilocus sequence typing (MLST) to analyze a large collection of 250 isolates of these four O serogroups, which were isolated from diseased as well as healthy humans and cattle between 1952 and 2009. The majority of the EHEC isolates of O serogroups O26 and O111 clustered into one sequence type complex, STC29. Isolates of O103 clustered mainly in STC20, and most isolates of O145 were found within STC32. In addition to these EHEC strains, STC29 also included stx-negative E. coli strains, termed atypical enteropathogenic E. coli (aEPEC), yet another intestinal pathogenic E. coli group. The finding that aEPEC and EHEC isolates of non-O157 O serogroups share the same phylogeny suggests an ongoing microevolutionary scenario in which the phage-encoded Shiga toxin gene stx is transferred between aEPEC and EHEC. As a consequence, aEPEC strains of STC29 can be regarded as post- or pre-EHEC isolates. Therefore, STC29 incorporates phylogenetic information useful for unraveling the evolution of EHEC.  相似文献   

5.
Aims: To (i) study the serogroup distribution and virulence characteristics of non‐sorbitol‐fermenting Escherichia coli isolates from foods of animal origin and cattle faeces and (ii) re‐examine the true sorbitol and β‐d ‐glucuronidase (GUD) reactions of sorbitol‐negative (Sor?) strains from MacConkey sorbitol agar (SMAC) to assess their phenotypic similarity with E. coli O157. Methods and Results: One hundred and thirty Sor?E. coli were isolated from 556 food samples and 177 cattle stool samples using cefixime tellurite–supplemented SMAC (CT‐SMAC) and chromogenic HiCrome MS.O157 agar respectively. Based on typing of somatic antigen, the isolates were classified into 38 serogroups. PCR results identified about 40% strains, belonging to O5, O8, O20, O28, O48, O60, O78, O82, O84, O101, O110, O123, O132, O156, O157, O‐rough and OUT as Shiga toxigenic. Majority of O5, O84, O101, O105, O123, O157, O‐rough and OUT strains were enterohaemolytic. Further, 39·2% and 63·1% of Sor? isolates from CT‐SMAC fermented sorbitol in phenol red broth and hydrolysed 4‐methylumbelliferyl‐β‐d ‐glucuronide (MUG) respectively. Members of serogroups O5, O28, O32, O81, O82, O84, O101, O‐rough lacked both the sorbitol fermentation (broth test) and GUD activity and might create confusion in phenotypic identification of E. coli O157. Conclusions: Sor?E. coli isolates from raw meat, milk, shrimp and cattle stool belonged to 38 serogroups, with E. coli O157 constituting only 14·6% of the isolates. Many of these nonclinical Sor? strains were potentially pathogenic. Nearly 39% of these Sor?E. coli from CT‐SMAC fermented sorbitol in broth, indicating the need for confirmation of sorbitol reaction in broth. Significance and Impacts of the Study: Classical sorbitol utilization and GUD tests are not likely definitive tests for E. coli O157. Further improvement of differential media based on these phenotypic properties is necessary for detection of pathogenic serotypes from foods and environmental samples.  相似文献   

6.
Urinary tract infections (UTIs) are one of the most common bacterial infections and are predominantly caused by uropathogenic Escherichia coli (UPEC). E. coli strains belonging to 14 serogroups, including O1, O2, O4, O6, O7, O8, O15, O16, O18, O21, O22, O25, O75 and O83, are the most frequently detected UPEC strains in a diverse range of clinical urine specimens. In the current study, the O-antigen gene clusters of E. coli serogroups O1, O2, O18 and O75 were characterized. A multiplex PCR method based on O-antigen-specific genes was developed for the simultaneous detection of all 14 E. coli serogroups. The multiplex PCR method was shown to be highly specific and reproducible when tested against 186 E. coli and Shigella O-serogroup reference strains, 47 E. coli clinical isolates and 10 strains of other bacterial species. The sensitivity of the multiplex PCR method was analyzed and shown to detect O-antigen-specific genes in samples containing 25 ng of genomic DNA or in mock urine specimens containing 40 colony-forming units (CFUs) per ml. Five urine specimens from hospital were examined using this multiplex PCR method, and the result for one sample was verified by the conventional serotyping methods. The multiplex PCR method developed herein can be used for the detection of relevant E. coli strains from clinical and/or environmental samples, and it is particularly useful for epidemiologic analysis of urine specimens from patients with UTIs.  相似文献   

7.
Gas formation by 116 strains of Escherichia coli and 104 strains of Aerobacter was determined in a specially constructed and accurately controlled water bath employing EC, lactose, maltose, sucrose, glucose, levulose, and galactose broths at temperatures ranging from 44.5 to 46.5 C.

Greatest gas activity occurred in EC broth. In the range 44.9 to 45.5 C over 92% of the E. coli cultures formed gas, but the Aerobacter strains dropped from 68 to 2%. A natural point of separation of the two groups occurred at 45.5 C.

Inhibition of the gas-forming mechanism rather than death is the universal response of the Escherichia organisms to these temperatures. The inhibition increases with rising temperatures and is readily reversible. At 46.5 C, 64.5% of all the Escherichia cultures were inhibited and 69.1% of all the cultures were actually viable.

In EC broth it was found that as a group atypical E. coli (-+--) were the most resistant gas-positive types. Least resistant in EC broth was a group of known typical fecal isolates of E. coli (++--). Of intermediate resistance between the two groups was the large body of typical E. coli (++--) organisms.

Certain individual strains of E. coli excelled in the production of gas in the variety of sugar broths tested at elevated temperatures. The Aerobacter strains did not exhibit this property.

Finally it is suggested that elevated temperature incubation studies of this type be conducted in critically controlled water baths with an ascertained accuracy in the vicinity of 45.5 ± 0.1 C under full load.

  相似文献   

8.
The aim of this work was: (i) to verify the level ofEscherichia coli in Pannerone and Valtrompia Formaggella, two artisanal Italian raw-milk cheeses ripened for less than 60 days; (ii) to phenotypically and genotipycally type theE. coli isolates; (iii) to detect the presence ofE. coli O157:H7 and of intestinal enteropathogenicE. coli by PCR. The levels ofE. coli in the cheeses ranged from 3.89 to 8.47 log CFU g?1. NoE. coli O157:H7 was detected in 25 g of cheese. The 76E. coli strains (68 cheese isolates and 8 reference strains) were widely diverse, since a high number of both PCR fingerprinting profiles and PhenePlate® phenotypes were shown. Within the 68 cheese isolates, no toxin production and virulence-associated genes were shown by multiplex PCR. Non-pathogenicE. coli were isolated at high levels in raw-milk cheeses, where they may contribute to the development of desirable characteristics of some of these products, e.g. Pannerone.  相似文献   

9.
The Escherichia coli O45 O-antigen gene cluster of strain O45:H2 96-3285 was sequenced, and conventional (singleplex), multiplex, and real-time PCR assays were designed to amplify regions in the wzx (O-antigen flippase) and wzy (O-antigen polymerase) genes. In addition, PCR assays targeting the E. coli O55 wzx and wzy genes were designed based on previously published sequences. PCR assays targeting E. coli O45 showed 100% specificity for this serogroup, whereas by PCR assays specific for E. coli O55, 97/102 strains serotyped as E. coli O55 were positive for wzx and 98/102 for wzy. Multiplex PCR assays targeting the E. coli O45 and the E. coli O55 wzx and wzy genes were used to detect the organisms in fecal samples spiked at levels of 106 and 108 CFU/0.2 g feces. Thus, the PCR assays can be used to detect and identify E. coli serogroups O45 and O55.  相似文献   

10.
The penicillin-binding proteins of 11 pathogenic Escherichia coli strains, including enteropathogenic, enterotoxigenic, enteroinvasive, enteroaggregative, and enterohemorrhagic E. coli, were detected in gels following the labeling of isolated cell envelopes with [3H]benzylpenicillin. The electrophoretic profiles, sensitivities to and morphological changes induced by β-lactam antibiotics showed that the penicillin-binding proteins of most pathogenic E. coli possess structural and physiological functions similar to those of E. coli K12.  相似文献   

11.
Yeast cell wall fractions have been proposed to bind enteropathogenic bacteria. The aim of this study was to develop a quantitative assay by measuring the optical density as growth parameter of adhering bacteria. The exponential growth phase of adhering bacteria was determined by optical density reading and compared with the colony count (CFU/mL). A linear regression was compiled and the bacterial number bound to the yeast cell wall product could be determined. Further focus was the investigation of a yeast cell wall from strain Trichosporon mycotoxinivorans (MTV) for its ability to bind gram negative Salmonella, E. coli and Campylobacter strains and gram positive probiotic bacteria of the genera lactobacilli and bifidobacteria as well as gram positive Clostridium perfringens quantitatively. The gram negative probiotic strain E. coli Nissle 1917 was also investigated. Seven out of 10 S. Typhimurium and S. Enteritidis strains adhered to the cell wall product with an amount between 103 and 104 CFU/10 μg. Four out of 7 E. coli strains showed an average binding capability (102 CFU/10 µg) whereas 4 × 103E. coli F4 cells bound per 10 μg yeast cell wall. E. coli 0149 K91, E. coli 0147 K89, C. jejuni and C. perfringens as well the genera lactobacilli and bifidobacteria did not bind to the yeast cell wall. E. coli Nissle 1917 was bound with 2 × 102 CFU/10 μg. These results demonstrate that cell wall from MTV can be used to differentially bind E. coli spp. and Salmonella spp. up to 8 × 104 CFU/10 μg. Thus certain yeast cell walls may prevent enteric infections caused by selective bacteria. This methodical approach would be an accurate tool in the feed industry for quality control of yeast cell wall products.  相似文献   

12.
Bacteria such as Escherichia coli will often consume one sugar at a time when fed multiple sugars, in a process known as carbon catabolite repression. The classic example involves glucose and lactose, where E. coli will first consume glucose, and only when it has consumed all of the glucose will it begin to consume lactose. In addition to that of lactose, glucose also represses the consumption of many other sugars, including arabinose and xylose. In this work, we characterized a second hierarchy in E. coli, that between arabinose and xylose. We show that, when grown in a mixture of the two pentoses, E. coli will consume arabinose before it consumes xylose. Consistent with a mechanism involving catabolite repression, the expression of the xylose metabolic genes is repressed in the presence of arabinose. We found that this repression is AraC dependent and involves a mechanism where arabinose-bound AraC binds to the xylose promoters and represses gene expression. Collectively, these results demonstrate that sugar utilization in E. coli involves multiple layers of regulation, where cells will consume first glucose, then arabinose, and finally xylose. These results may be pertinent in the metabolic engineering of E. coli strains capable of producing chemical and biofuels from mixtures of hexose and pentose sugars derived from plant biomass.The transporters and enzymes in many sugar metabolic pathways are conditionally expressed in response to their cognate sugar or a downstream pathway intermediate. While the induction of these pathways in response to a single sugar has been studied extensively (28), far less is known about how these pathways are induced in response to multiple sugars. One notable exception is the phenomenon observed when bacteria are grown in the presence of glucose and another sugar (10, 15). In such mixtures, the bacteria will often consume glucose first before consuming the other sugar, a process known as carbon catabolite repression (27). The classic example of carbon catabolite repression is the diauxic shift seen in the growth of Escherichia coli on mixtures of glucose and lactose, where the cells first consume glucose before consuming lactose. When the cells are consuming glucose, the genes in the lactose metabolic pathway are not induced, thus preventing the sugar from being consumed. A number of molecules participate in this regulation, including the cyclic AMP receptor protein (CRP), adenylate cyclase, cyclic AMP (cAMP), and EIIA from the phosphoenolpyruvate:glucose phosphotransferase system (PTS) (33). In addition to lactose, the metabolic genes for many other sugars are subject to catabolite repression by glucose in E. coli (27). While the preferential utilization of glucose is well known, it is an open question whether additional hierarchies exist among other sugars.Recently, substantial effort has been directed toward developing microorganisms capable of producing chemicals and biofuels from plant biomass (1, 34, 42). After glucose, l-arabinose and d-xylose are the next most abundant sugars found in plant biomass. Therefore, a key step in producing various chemicals and fuels from plant biomass will be the engineering of strains capable of efficiently fermenting these three sugars. However, one challenge concerns catabolite repression, which prevents microorganisms from fermenting these three sugars simultaneously and, as a consequence, may decrease the efficiency of the fermentation process. E. coli cells will first consume glucose before consuming either arabinose or xylose. As in the case of lactose, the genes in the arabinose and xylose metabolic pathways are not expressed when glucose is being consumed. In addition to glucose catabolite repression, a second hierarchy, between arabinose and xylose, appears to exist. Kang and coworkers have observed that the genes in the xylose metabolic pathway were repressed when cells were grown in a mixture of arabinose and xylose (21). Hernandez-Montalvo and coworkers also observed that E. coli utilizes arabinose before xylose (19). While a number of strategies exist for breaking the glucose-mediated repression of arabinose and xylose metabolism (8, 16, 19, 31), none exist for breaking the arabinose-mediated repression of xylose metabolism. Moreover, little is known about this repression beyond the observations made by these researchers.In this work, we investigate how the arabinose and xylose metabolic pathways are jointly regulated. We demonstrate that E. coli will consume arabinose before consuming xylose when it is grown in a mixture of the two sugars. Consistent with a mechanism involving catabolite repression, the genes in the xylose metabolic pathway are repressed in the presence of arabinose. We found that this repression is AraC dependent and is most likely due to binding by arabinose-bound AraC to the xylose promoters, with consequent inhibition of gene expression.  相似文献   

13.
Colilert® (Colilert), Readycult® Coliforms 100 (Readycult), Chromocult® Coliform agar ES (Chromocult), and MI agar (MI) are β-galactosidase and β-glucuronidase-based commercial culture methods used to assess water quality. Their analytical performance, in terms of their respective ability to detect different strains of Escherichia coli and total coliforms, had never been systematically compared with pure cultures. Here, their ability to detect β-glucuronidase production from E. coli isolates was evaluated by using 74 E. coli strains of different geographic origins and serotypes encountered in fecal and environmental settings. Their ability to detect β-galactosidase production was studied by testing the 74 E. coli strains as well as 33 reference and environmental non-E. coli total coliform strains. Chromocult, MI, Readycult, and Colilert detected β-glucuronidase production from respectively 79.9, 79.9, 81.1, and 51.4% of the 74 E. coli strains tested. These 4 methods detected β-galactosidase production from respectively 85.1, 73.8, 84.1, and 84.1% of the total coliform strains tested. The results of the present study suggest that Colilert is the weakest method tested to detect β-glucuronidase production and MI the weakest to detect β-galactosidase production. Furthermore, the high level of false-negative results for E. coli recognition obtained by all four methods suggests that they may not be appropriate for identification of presumptive E. coli strains.  相似文献   

14.
Enterohemorrhagic Escherichia coli (EHEC) O121:H19 belong to a specific clonal type distinct from other classical EHEC and major enteropathogenic E. coli groups and is regarded as one of the major EHEC serogroups involved in severe infections in humans. Sequencing of the fliC genes associated with the flagellar antigen H19 (fliCH19) revealed the genetic diversity of the fliCH19 gene sequences in E. coli. A cluster analysis of 12 fliCH19 sequences, 4 from O121 and 8 from non-O121 E. coli strains, revealed five different genotypes. All O121:H19 strains fell into one cluster, whereas a second cluster was formed by five non-O121:H19 strains. Cluster 1 and cluster 2 strains differ by 27 single nucleotide exchanges in their fliCH19 genes (98.5% homology). Based on allele discrimination of the fliCH19 genes, a real-time PCR test was designed for specific identification of EHEC O121:H19. The O121 fliCH19 PCR tested negative in 73 E. coli H19 strains that belonged to serogroups other than O121, including 28 different O groups, O-nontypeable H19, and O-rough:H19 strains. The O121 fliCH19 PCR reacted with all 16 tested O121:H19 strains and 1 O-rough:H19 strain which was positive for the O121 wzx gene. A cross-reaction was observed only with E. coli H32 strains which share sequence similarities in the target region of the O121 fliCH19 PCR. The combined use of O-antigen genotyping (O121 wzx) and the detection of O121 fliCH19 allele type contributes to improving the identification and molecular serotyping of EHEC O121:H19 motile and nonmotile strains and variants of these strains lacking stx genes.  相似文献   

15.
Attaching and effacing Escherichia coli (AEEC) has been described as a cause of diarrhea in calves. The molecular pathogenesis of AEEC was mainly studied in human enteropathogenic E. coli strain E2348/69 in which the virulence correlated with the presence of a 35.4 kb pathogenesis island called LEE. We showed that several strains isolated from calves with diarrhea were able to produce attaching and effacing lesions in a rabbit ileal loop model and that they possess a pathogenesis island related to the LEE. Moreover, we showed that the LEE from bovine strains was inserted mainly at a different position in the chromosome compared to the human enteropathogenic E. coli strain E2348/69.  相似文献   

16.
Escherichia coli serogroups O5, O15, O26, O45, O55, O76, O91, O103, O104, O111, O113, O118, O121, O123, O128, O145, O146, O157, O165, O172, and O177 are the O-antigen forms of the most clinically relevant Shiga toxin-producing E. coli (STEC) serotypes. In this study, three multiplex PCR assays able to specifically detect these 21 serogroups were developed and validated. For this purpose, the O-antigen gene clusters of E. coli O5 and O76 were fully sequenced, their associated genes were identified on the basis of homology, and serogroup-specific primers were designed. After preliminary evaluation, these two primer pairs were proven to be highly specific and suitable for the development of PCR assays for O5 and O76 serogroup identification. Specific primers were also designed for serogroups O15, O45, O55, O91, O104, O113, O118, O123, O128, O146, O157, O165, O172, and O177 based on previously published sequences, and previously published specific primers for serogroups O26, O103, O111, O121, and O145 were also included. These 21 primer pairs were shown to be specific for their target serogroup when tested against E. coli type strains representing 169 known O-antigen forms of E. coli and Shigella and therefore suitable for being used in PCR assays for serogroup identification. In order to validate the three multiplex PCR assays, 22 E. coli strains belonging to the 21 covered serogroups and 18 E. coli strains belonging to other serogroups were screened in a double-blind test and their sensitivity was determined as 1 ng chromosomal DNA. The PCR assays developed in this study could be a faster, simpler, and less expensive strategy for serotyping of the most clinically relevant STEC strains in both clinical microbiology and public health laboratories, and so their development could benefit for clinical diagnosis, epidemiological investigations, surveillance, and control of STEC infections.  相似文献   

17.
Aims: Our main objective was to optimize the enrichment of Escherichia coli O26 in raw milk cheeses for their subsequent detection with a new automated immunological method. Methods and Results: Ten enrichment broths were tested for the detection of E. coli O26. Two categories of experimentally inoculated raw milk cheeses, semi‐hard uncooked cheese and ‘Camembert’ type cheese, were initially used to investigate the relative efficacy of the different enrichments. The enrichments that were considered optimal for the growth of E. coli O26 in these cheeses were then challenged with other types of raw milk cheeses. Buffered peptone water supplemented with cefixim–tellurite and acriflavin was shown to optimize the growth of E. coli O26 artificially inoculated in the cheeses tested. Despite the low inoculum level (1–10 CFU per 25 g) in the cheeses, E. coli O26 counts reached at least 5·104 CFU ml?1 after 24‐h incubation at 41·5°C in this medium. Conclusions: All the experimentally inoculated cheeses were found positive by the immunological method in the enrichment broth selected. Significance and Impact of the Study: Optimized E. coli O26 enrichment and rapid detection constitute the first steps of a complete procedure that could be used in routine to detect E. coli O26 in raw milk cheeses.  相似文献   

18.
《Gene》1997,186(2):167-173
A 12-kb PstI fragment including the entire E. coli lactose operon (lacIPOZYA) was inserted in one copy into the chromosome of Pseudomonas putida, Pseudomonas fluorescens and an E. coli strain with lac phenotype. This was made possible by improvements of an already existing mini-Tn5 transposon delivery system (de Lorenzo et al., 1990; Herrero et al., 1990), which integrates cloned DNA fragments at random sites on the chromosome of the recipient bacteria in single copies. This has resulted in: (a) the making of two useful low copy-number cloning vectors both with extensive multi-cloning regions flanked by NotI sites needed in the mini-Tn5 delivery system; (b) the generation of E. coli nonlysogenic strains expressing the π protein thus being capable of maintaining and delivering R6K-based mini-Tn5 vectors to other E. coli strains; (c) the successful insertion of the E. coli lactose operon into the P. fluorescens chromosome giving P. fluorescens the ability to grow on lactose; (d) evidence from Southern blotting that contradicts the assumption that the mini-Tn5 delivery system always creates one-copy inserts. These improvements allow insertion of large DNA fragments encoding highly expressed proteins into the chromosome of a large variety of Gram-negative bacteria including E. coli.  相似文献   

19.
Aims: The objective of this study was to isolate, identify and characterize a collection of lytic bacteriophages capable of infecting enterohaemorrhagic Escherichia coli (EHEC) serotypes. Methods and Results: Phages were isolated from dairy and cattle feedlot manure using E. coli O157, O26 and O111 strains as hosts. Phages were enriched from faecal slurries by culture in 10× trypticase soy broth at 37°C overnight. Phage plaques were obtained by mixing the filtered culture supernatant with molten tryptone agar containing the phage E. coli host strain, pouring the inoculated agar on top of cooled TS agar and incubating the culture overnight. Phages were purified from plaques and screened against additional E. coli and EHEC strains by the efficiency of plating method (EOP). Phage CEV2, and five other phages previously isolated, were able to lyse all of the 15 O157 strains tested with EOP values consistently above 0·001. Two phages were found to be highly effective against strains of E. coli O157 through EOP tests and against O26 strains through spot tests, but not against the O serogroup 111 strains. A cocktail of eight phage that lyse E. coli O157 strains resulted in >5 log CFU ml?1 reductions at 37°C. Multiplex‐PCR revealed that none of these eight phages carried stx1, stx2, hlyA or eaeA genes. Conclusions: A cocktail of bacteriophages was capable of lysing most strains of two EHEC serotypes. Significance and Impact of the Study: This collection of phages can be combined and potentially used as an antimicrobial cocktail to inactivate E. coli strains from O serogroups 157 and 26 and reduce their incidence in the food chain.  相似文献   

20.
Presumptive identification of Escherichia coli O157:H7 is possible in an individual, nonmultiplexed PCR if the reaction targets the enterohemorrhagic E. coli (EHEC) eaeA gene. In this report, we describe the development and evaluation of the sensitivity and specificity of a PCR-based 5′ nuclease assay for presumptively detecting E. coli O157:H7 DNA. The specificity of the eaeA-based 5′ nuclease assay system was sufficient to correctly identify all E. coli O157:H7 strains evaluated, mirroring the previously described specificity of the PCR primers. The SZ-primed, eaeA-targeted 5′ nuclease detection assay was capable of rapid, semiautomated, presumptive detection of E. coli O157:H7 when ≥103 CFU/ml was present in modified tryptic soy broth (mTSB) or modified E. coli broth and when ≥104 CFU/ml was present in ground beef-mTSB mixtures. Incorporating an immunomagnetic separation (IMS) step, followed by a secondary enrichment culturing step and DNA recovery with a QIAamp tissue kit (Qiagen), improved the detection threshold to ≥102 CFU/ml. Surprisingly, immediately after IMS, the sensitivity of culturing on sorbitol MacConkey agar containing cefeximine and tellurite (CT-SMAC) was such that identifiable colonies were demonstrated only when ≥104 CFU/ml was present in the sample. Several factors that might be involved in creating these false-negative CT-SMAC culture results are discussed. The SZ-primed, eaeA-targeted 5′ nuclease detection system demonstrated that it can be integrated readily into standard culturing procedures and that the assay can be useful as a rapid, automatable process for the presumptive identification of E. coli O157:H7 in ground beef and potentially in other food and environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号