首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doklady Biological Sciences - Stress exposures during vegetation are known to reduce the yield in crops, but the intensity and duration of stress is rather difficult to determine from the crop...  相似文献   

2.
3.

Background

The stability of cooperative interactions among different species can be compromised by cheating. In the plant-mycorrhizal fungi symbiosis, a single mycorrhizal network may interact with many plants, providing the opportunity for individual plants to cheat by obtaining nutrients from the fungi without donating carbon. Here we determine whether kin selection may favour plant investment in the mycorrhizal network, reducing the incentive to cheat when relatives interact with a single network.

Methodology/Principal Findings

We show that mycorrhizal network size and root colonization were greater when Ambrosia artemisiifolia L. was grown with siblings compared to strangers. Soil fungal abundance was positively correlated with group leaf nitrogen, and increased root colonization was associated with a reduced number of pathogen-induced root lesions, indicating greater benefit to plants grown with siblings.

Conclusions/Significance

Plants can benefit their relatives through investment in mycorrhizal fungi, and kin selection in plants could promote the persistence of the mycorrhizal symbiosis.  相似文献   

4.
We examined the potential long-term impacts of riparian plant diversity loss on diversity and activity of aquatic microbial decomposers. Microbial assemblages were obtained in a mixed-forest stream by immersion of mesh bags containing three leaf species (alder, oak and eucalyptus), commonly found in riparian corridors of Iberian streams. Simulation of species loss was done in microcosms by including a set of all leaf species, retrieved from the stream, and non-colonized leaves of three, two or one leaf species. Leaves were renewed every month throughout six months, and microbial inoculum was ensured by a set of colonized leaves from the previous month. Microbial diversity, leaf mass loss and fungal biomass were assessed at the second and sixth months after plant species loss. Molecular diversity of fungi and bacteria, as the total number of operational taxonomic units per leaf diversity treatment, decreased with leaf diversity loss. Fungal biomass tended to decrease linearly with leaf species loss on oak and eucalyptus, suggesting more pronounced effects of leaf diversity on lower quality leaves. Decomposition of alder and eucalyptus leaves was affected by leaf species identity, mainly after longer times following diversity loss. Leaf decomposition of alder decreased when mixed with eucalyptus, while decomposition of eucalyptus decreased in mixtures with oak. Results suggest that the effects of leaf diversity on microbial decomposers depended on leaf species number and also on which species were lost from the system, especially after longer times. This may have implications for the management of riparian forests to maintain stream ecosystem functioning.  相似文献   

5.
Microbiology - The composition of rhizosphere microbial communities was studied for different species and varieties of agricultural gramineous plants (rye and wheat) grown in the soils contrasting...  相似文献   

6.
Tundra ecosystem is of importance for its high accumulation of organic carbon and vulnerability to future climate change. Microorganisms play a key role in carbon dynamics of the tundra ecosystem by mineralizing organic carbon. We assessed both ecosystem process rates and community structure of Bacteria, Archaea, and Fungi in different soil layers (surface organic layer and subsurface mineral soil) in an Arctic soil ecosystem located at Spitsbergen, Svalbard during the summer of 2008 by using biochemical and molecular analyses, such as enzymatic assay, terminal restriction fragment length polymorphism (T-RFLP), quantitative polymerase chain reaction (qPCR), and pyrosequencing. Activity of hydrolytic enzymes showed difference according to soil type. For all three microbial communities, the average gene copy number did not significantly differ between soil types. However, archaeal diversities appeared to differ according to soil type, whereas bacterial and fungal diversity indices did not show any variation. Correlation analysis between biogeochemical and microbial parameters exhibited a discriminating pattern according to microbial or soil types. Analysis of the microbial community structure showed that bacterial and archaeal communities have different profiles with unique phylotypes in terms of soil types. Water content and hydrolytic enzymes were found to be related with the structure of bacterial and archaeal communities, whereas soil organic matter (SOM) and total organic carbon (TOC) were related with bacterial communities. The overall results of this study indicate that microbial enzyme activity were generally higher in the organic layer than in mineral soils and that bacterial and archaeal communities differed between the organic layer and mineral soils in the Arctic region. Compared to mineral soil, peat-covered organic layer may represent a hotspot for secondary productivity and nutrient cycling in this ecosystem.  相似文献   

7.
Changes in the soil microbial community structure can lead to dramatic changes in the soil ecosystem. Temperature, which is projected to increase with climate change, is commonly assumed to affect microbial communities, but its effects on agricultural soils are not fully understood. We collected soil samples from six vineyards characterised by a difference of about 2 °C in daily soil temperature over the year and simulated in a microcosm experiment different temperature regimes over a period of 1 year: seasonal fluctuations in soil temperature based on the average daily soil temperature measured in the field; soil temperature warming (2 °C above the normal seasonal temperatures); and constant temperatures normally registered in these temperate soils in winter (3 °C) and in summer (20 °C). Changes in the soil bacterial and fungal community structures were analysed by automated ribosomal intergenic spacer analysis (ARISA). We did not find any effect of warming on soil bacterial and fungal communities, while stable temperatures affected the fungal more than the bacterial communities, although this effect was soil dependent. The soil bacterial community exhibited soil-dependent seasonal fluctuations, while the fungal community was mainly stable. Each soil harbours different microbial communities that respond differently to seasonal temperature fluctuations; therefore, any generalization regarding the effect of climate change on soil communities should be made carefully.  相似文献   

8.
Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen) and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies), Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific.  相似文献   

9.
The Rhizosphere Effect of Graminaceous Plants in Virgin Soils   总被引:1,自引:0,他引:1  
  相似文献   

10.
Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. To examine this question, we performed an experiment with barley (Hordeum vulgare) plants under iron-limiting and iron-sufficient growth conditions. Plants were grown in an iron-limiting soil in root box microcosms. One-half of the plants were treated with foliar iron every day to inhibit phytosiderophore production and to alter root exudate composition. After 30 days, the bacterial communities associated with different root zones, including the primary root tips, nonelongating secondary root tips, sites of lateral root emergence, and older roots distal from the tip, were characterized by using 16S ribosomal DNA (rDNA) fingerprints generated by PCR-denaturing gradient gel electrophoresis (DGGE). Our results showed that the microbial communities associated with the different root locations produced many common 16S rDNA bands but that the communities could be distinguished by using correspondence analysis. Approximately 40% of the variation between communities could be attributed to plant iron nutritional status. A sequence analysis of clones generated from a single 16S rDNA band obtained at all of the root locations revealed that there were taxonomically different species in the same band, suggesting that the resolving power of DGGE for characterization of community structure at the species level is limited. Our results suggest that the bacterial communities in the rhizosphere are substantially different in different root zones and that a rhizosphere community may be altered by changes in root exudate composition caused by changes in plant iron nutritional status.  相似文献   

11.
The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy.  相似文献   

12.
13.
现代生物技术在根际微生物群落研究中的应用   总被引:1,自引:0,他引:1  
根际微生物的定义为植物的根表及受根系直接影响的土壤区域中的微生物群落.根际微生物与植物根系相互作用,是植物生态系统物质交换的主要媒介.根际微生物群落的研究对于微生物生态学与植物生态学均具有重要意义.近年来现代生物学技术发展迅速,对根际自然群落中不可培养微生物的研究取得了突破.综述了目前已取得的研究进展,对现代生物技术在根际微生物群落研究中的应用做了讨论.  相似文献   

14.
Abundance and Diversity of Viruses in Six Delaware Soils   总被引:6,自引:3,他引:6       下载免费PDF全文
The importance of viruses in marine microbial ecology has been established over the past decade. Specifically, viruses influence bacterial abundance and community composition through lysis and alter bacterial genetic diversity through transduction and lysogenic conversion. By contrast, the abundance and distribution of viruses in soils are almost completely unknown. This study describes the abundance and diversity of autochthonous viruses in six Delaware soils: two agricultural soils, two coastal plain forest soils, and two piedmont forest soils. Viral abundance was measured using epifluorescence microscopy, while viral diversity was assessed from morphological data obtained through transmission electron microscopy. Extracted soil virus communities were dominated by bacteriophages that demonstrated a wide range of capsid diameters (20 nm to 160 nm) and morphologies, including filamentous forms and phages with elongated capsids. The reciprocal Simpson's index suggests that forest soils harbor more diverse assemblages of viruses, particularly in terms of morphological distribution. Repeated extractions of virus-like particles (VLPs) from soils indicated that the initial round of extraction removes approximately 70% of extractable viruses. Higher VLP abundances were observed in forest soils (1.31 × 109 to 4.17 × 109 g−1 dry weight) than in agricultural soils (8.7 × 108 to 1.1 × 109 g−1 dry weight). Soil VLP abundance was significantly correlated to moisture content (r = 0.988) but not to soil texture. Land use (agricultural or forested) was significantly correlated to both bacterial (r = 0.885) and viral (r = 0.812) abundances, as were soil organic matter and water content. Thus, land use is a significant factor influencing viral abundance and diversity in soils.  相似文献   

15.
A total of 220 bacterial isolates were obtained from pea rhizosphere and nonrhizosphere samples. Of these samples, 100 isolates were chosen randomly to test for their agglutinative reaction against pea root exudate. The percentage of positive agglutination of bacteria isolated from the nonrhizosphere sample was significantly lower than that of bacteria isolated from the rhizosphere sample. Moreover, this agglutinative reaction could not be blocked either by treating the bacterial cells or root exudate with different carbohydrates before they were mixed or by boiling the root exudate first. Bacteria that could be agglutinated by pea root exudate followed the downward growth of the pea root through the soil profile. The greater abilities of such bacteria to colonize the pea rhizosphere were indicated by their higher rhizosphere-colonizing (rhizosphere/nonrhizosphere) ratios, whether the bacteria were added alone or together with nonagglutinating bacteria. However, bacteria did show different agglutinative reactions toward root exudates obtained from different plants.  相似文献   

16.
Bacteria and nutrients were determined in upper soil samples collected underneath and between canopies of the dominant perennial in each of three sites along a steep precipitation gradient ranging from the Negev desert in the south of Israel to a Mediterranean forest in the north. Bacterial abundance, monitored by phospholipid fatty acid analysis, was significantly higher under the shrub canopy (compared to barren soils) in the arid and semi-arid sites but not in the Mediterranean soils. Bacterial community composition, determined using terminal restriction fragment length polymorphism and clone libraries, differed according to the sample’s origin. Closer examination revealed that in the arid and semi-arid sites, α-Proteobacteria are more abundant under the shrub canopy, while barren soils are characterized by a higher abundance of Actinobacteria. The bacterial communities in the Mediterranean soils were similar in both patch types. These results correspond to the hypothesis of “resource islands”, suggesting that shrub canopies provide a resource haven in low-resource landscapes. Yet, a survey of the physicochemical parameters of inter- and under-shrub soils could not attribute the changes in bacterial diversity to soil moisture, organic matter, or essential macronutrients. We suggest that in the nutrient-poor soils of the arid and semi-arid sites, bacteria occupying the soil under the shrub canopy may have longer growth periods under favorable conditions, resulting in their increased biomass and altered community composition.  相似文献   

17.
Plant and soil types are usually considered as the two main drivers of the rhizosphere microbial communities. The aim of this work was to study the effect of both N availability and plant genotype on the plant associated rhizosphere microbial communities, in relation to the nutritional strategies of the plant-microbe interactions, for six contrasted Medicago truncatula genotypes. The plants were provided with two different nutrient solutions varying in their nitrate concentrations (0 mM and 10 mM). First, the influence of both nitrogen availability and Medicago truncatula genotype on the genetic structure of the soil bacterial and fungal communities was determined by DNA fingerprint using Automated Ribosomal Intergenic Spacer Analysis (ARISA). Secondly, the different nutritional strategies of the plant-microbe interactions were evaluated using an ecophysiological framework. We observed that nitrogen availability affected rhizosphere bacterial communities only in presence of the plant. Furthermore, we showed that the influence of nitrogen availability on rhizosphere bacterial communities was dependent on the different genotypes of Medicago truncatula. Finally, the nutritional strategies of the plant varied greatly in response to a modification of nitrogen availability. A new conceptual framework was thus developed to study plant-microbe interactions. This framework led to the identification of three contrasted structural and functional adaptive responses of plant-microbe interactions to nitrogen availability.  相似文献   

18.
Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Here, we identified important functional genes that characterize the rhizosphere microbial community to understand metabolic capabilities in the maize rhizosphere using the GeoChip-based functional gene array method. Significant differences in functional gene structure were apparent between rhizosphere and bulk soil microbial communities. Approximately half of the detected gene families were significantly (p<0.05) increased in the rhizosphere. Based on the detected gyrB genes, Gammaproteobacteria, Betaproteobacteria, Firmicutes, Bacteroidetes and Cyanobacteria were most enriched in the rhizosphere compared to those in the bulk soil. The rhizosphere niche also supported greater functional diversity in catabolic pathways. The maize rhizosphere had significantly enriched genes involved in carbon fixation and degradation (especially for hemicelluloses, aromatics and lignin), nitrogen fixation, ammonification, denitrification, polyphosphate biosynthesis and degradation, sulfur reduction and oxidation. This research demonstrates that the maize rhizosphere is a hotspot of genes, mostly originating from dominant soil microbial groups such as Proteobacteria, providing functional capacity for the transformation of labile and recalcitrant organic C, N, P and S compounds.  相似文献   

19.
Plant Growth-Promoting Effects of Diazotrophs in the Rhizosphere   总被引:1,自引:0,他引:1  
Because of their ability to transform atmospheric N2 into ammonia that can be used by the plant, researchers were originally very optimistic about the potential of associative diazotrophic bacteria to promote the growth of many cereals and grasses. However, multiple inoculation experiments during recent decades failed to show a substantial contribution of Biological Nitrogen Fixation (BNF) to plant growth in most cases. It is now clear that associative diazotrophs exert their positive effects on plant growth directly or indirectly through (a combination of) different mechanisms. Apart from fixing N2, diazotrophs can affect plant growth directly by the synthesis of phytohormones and vitamins, inhibition of plant ethylene synthesis, improved nutrient uptake, enhanced stress resistance, solubilization of inorganic phosphate and mineralization of organic phosphate. Indirectly, diazotrophs are able to decrease or prevent the deleterious effects of pathogenic microorganisms, mostly through the synthesis of antibiotics and/or fungicidal compounds, through competition for nutrients (for instance, by siderophore production) or by the induction of systemic resistance to pathogens. In addition, they can affect the plant indirectly by interacting with other beneficial microorganisms, for example, Azospirillum increasing nodulation of legumes by rhizobia. The further elucidation of the different mechanisms involved will help to make associative diazotrophs a valuable partner in future agriculture.  相似文献   

20.
Understanding the chronological changes in soil microbial and biochemical properties of tea orchard ecosystems after wasteland has been reclaimed is important from ecological, environmental, and management perspectives. In this study, we determined microbial biomass, net N mineralization, and nitrification, enzyme (invertase, urease, proteinase, and acid phosphatase) activities, microbial community diversity assessed by denaturing gradient gel electrophoresis (DGGE) of 16S rDNA polymerase chain reaction (PCR) products, and related ecological factors in three tea orchard systems (8-, 50-, and 90-year-old tea orchards), adjacent wasteland and 90-year-old forest. Soil microbial biomass C (Cmic) and activity, i.e., soil basal respiration (Rmic), microbial biomass C as a percent of soil organic C (Cmic/Corg), N mineralization, invertase, urease, proteinase, and acid phosphatase, significantly increased after wasteland was reclaimed; however, with the succeeding development of tea orchard ecosystems, a decreasing trend from the 50- to 90-year-old tea orchard became apparent. Soil net nitrification showed an increasing trend from the 8- to 50-year-old tea orchard and then a decreasing trend from the 50- to 90-year-old tea orchard, and was significantly higher in the tea orchards compared to the wasteland and forest. Urea application significantly stimulated soil net nitrification, indicating nitrogen fertilizer application may be an important factor leading to high-nitrification rates in tea orchard soils. The Shannon’s diversity index (H) and richness (S) based on DGGE profiles of 16S rRNA genes were obviously lower in all three tea orchards than those in the wasteland; nevertheless, they were significantly higher in all three tea orchards than those in the forest. As for the three tea orchard soils, comparatively higher community diversity was found in the 50-year-old tea orchard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号