首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pro-inflammatory death is presumably an undesirable event in cancer prevention process, thus biochemical comprehension and molecular definition of this process could have important clinical implications. In the present study, we examined the cytophysiological conversion of cell death mode by benzyl isothiocyanate (BITC) in human cervical cancer HeLa cells. The detailed studies using flow cytometric and morphological analyses demonstrated that the cells treated with appropriate concentration (25 microM) of BITC showed apoptotic feature, such as chromatin condensation, DNA fragmentation, and preserved plasma membrane integrity, whereas these features were disappeared by treatment with higher concentration (100 microM). The treatment with 2-deoxyglucose, an inhibitor of ATP synthesis, drastically increased in the ratio of necrotic dead cells, while it influences little that of apoptotic cells. Moreover, an analysis using the mitochondrial DNA-deficient HeLa cells demonstrated that the rho degrees cells were more susceptible to the BITC-induced necrosis-like cell death compared to the wild-type (rho(+)) cells, whereas the ROS production was significantly inhibited in the rho degrees cells. It is likely that the BITC-induced ROS is derived from mitochondrial respiratory chain and ruled out the contribution to the mechanism of cell death mode switching. In addition, the BITC treatment resulted in a more rapid depletion of ATP in the rho degrees cells than in the rho(+) cells. Furthermore, a caspase inhibitor, Z-VAD-fmk counteracted not only apoptosis, but also necrosis-like cell death induced by BITC, suggesting that increment in this cell death pattern might be due to the interruption of events downstream of a caspase-dependent pathway. The obtained data suggested that the decline in the intracellular ATP level plays an important role in tuning the mode of cell death by BITC.  相似文献   

2.
Benzyl isothiocyanate (BITC), a dietary cancer chemopreventive agent, causes apoptosis in MDA-MB-231 and MCF-7 human breast cancer cells, but the mechanism of cell death is not fully understood. We now demonstrate that the BITC-induced apoptosis in human breast cancer cells is initiated by reactive oxygen species (ROS) due to inhibition of complex III of the mitochondrial respiratory chain. The BITC-induced ROS production and apoptosis were significantly inhibited by overexpression of catalase and Cu,Zn-superoxide dismutase and pharmacological inhibition of the mitochondrial respiratory chain. The mitochondrial DNA-deficient Rho-0 variant of MDA-MB-231 cells was nearly completely resistant to BITC-mediated ROS generation and apoptosis. The Rho-0 MDA-MB-231 cells also resisted BITC-mediated mitochondrial translocation (activation) of Bax. Biochemical assays revealed inhibition of complex III activity in BITC-treated MDA-MB-231 cells as early as at 1 h of treatment. The BITC treatment caused activation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), which function upstream of Bax activation in apoptotic response to various stimuli. Pharmacological inhibition of both JNK and p38 MAPK conferred partial yet significant protection against BITC-induced apoptosis. Activation of JNK and p38 MAPK resulting from BITC exposure was abolished by overexpression of catalase. The BITC-mediated conformational change of Bax was markedly suppressed by ectopic expression of catalytically inactive mutant of JNK kinase 2 (JNKK2(AA)). Interestingly, a normal human mammary epithelial cell line was resistant to BITC-mediated ROS generation, JNK/p38 MAPK activation, and apoptosis. In conclusion, the present study indicates that the BITC-induced apoptosis in human breast cancer cells is initiated by mitochondria-derived ROS.  相似文献   

3.
Antony ML  Kim SH  Singh SV 《PloS one》2012,7(2):e32267
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast), MCF-7 (breast), and HCT-116 (colon) human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim) protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA) protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells) and Bcl-2 (MCF-7 cells). Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study indicate that Bim-independent apoptosis by BITC in cancer cells is mediated by PUMA.  相似文献   

4.
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, inhibits growth of breast cancer cells but the mechanisms underlying growth inhibitory effect of BITC are not fully understood. Here, we demonstrate that BITC treatment causes FoxO1-mediated autophagic death in cultured human breast cancer cells. The BITC-treated breast cancer cells (MDA-MB-231, MCF-7, MDA-MB-468, BT-474, and BRI-JM04) and MDA-MB-231 xenografts from BITC-treated mice exhibited several features characteristic of autophagy, including appearance of double-membrane vacuoles (transmission electron microscopy) and acidic vesicular organelles (acridine orange staining), cleavage of microtubule-associated protein 1 light chain 3 (LC3), and/or suppression of p62 (p62/SQSTM1 or sequestosome 1) expression. On the other hand, a normal human mammary epithelial cell line (MCF-10A) was resistant to BITC-induced autophagy. BITC-mediated inhibition of MDA-MB-231 and MCF-7 cell viability was partially but statistically significantly attenuated in the presence of autophagy inhibitors 3-methyl adenine and bafilomycin A1. Stable overexpression of Mn-superoxide dismutase, which was fully protective against apoptosis, conferred only partial protection against BITC-induced autophagy. BITC treatment decreased phosphorylation of mTOR and its downstream targets (P70s6k and 4E-BP1) in cultured MDA-MB-231 and MCF-7 cells and MDA-MB-231 xenografts, but activation of mTOR by transient overexpression of its positive regulator Rheb failed to confer protection against BITC-induced autophagy. Autophagy induction by BITC was associated with increased expression and acetylation of FoxO1. Furthermore, autophagy induction and cell growth inhibition resulting from BITC exposure were significantly attenuated by small interfering RNA knockdown of FoxO1. In conclusion, the present study provides novel insights into the molecular circuitry of BITC-induced cell death involving FoxO1-mediated autophagy.  相似文献   

5.
An important and promising group of compounds that have a chemopreventive property are organosulfur compounds, such as isothiocyanates (ITCs). In recent years, it has been shown that ITCs induce apoptosis in various cancer cell lines and experimental rodents. During the course of apoptosis induction by ITC, multiple signal-transduction pathways and apoptosis intermediates are modulated. We have also clarified the molecular mechanism underlying the relationship between cell cycle arrest and apoptosis induced by benzyl isothiocyanate (BITC), a major ITC compound isolated from papaya. The exposure of cells to BITC resulted in the inhibition of the G2/M progression that coincided with not only the up-regulated expression of the G2/M cell cycle arrest-regulating genes but also the apoptosis induction. The experiment using the phase-specific synchronized cells demonstrated that the G2/M phase-arrested cells are more sensitive to undergoing apoptotic stimulation by BITC than the cells in other phases. We identified the phosphorylated Bcl-2 as a key molecule linking the p38 MAPK-dependent cell cycle arrest with the JNK activation by BITC. We also found that BITC induced the cytotoxic effect more preferentially in the proliferating normal human colon epithelial cells than in the quiescent cells. Conversely, treatment with an excessive concentration of BITC resulted in necrotic cell death without DNA ladder formation. This review addresses the biological impact of cell death induction by BITC as well as other ITCs and the involved signal transduction pathways.  相似文献   

6.
Many pathophysiological processes are associated with oxidative stress and progressive cell death. Oxidative stress is an apoptotic inducer that is known to cause rapid cell death. Here we show that a brief oxidative insult (5-min exposure to 400 microM H(2)O(2)), although it did not kill H9c2 rat ventricular cells during the exposure, triggered an intracellular death cascade leading to delayed time-dependent cell death starting from 1 h after the insult had been withdrawn, and this post-H(2)O(2) cell death cumulated gradually, reaching a maximum level 8 h after H(2)O(2) withdrawal. By comparison, sustained exposure to H(2)O(2) caused complete cell death within a narrow time frame (2 h). The time-dependent post-H(2)O(2) cell death was typical of apoptosis, both morphologically (cell shrinkage and nuclear condensation) and biochemically (DNA fragmentation, extracellular exposure of phosphatidylserines, and caspase-3 activation). A dichlorofluorescein fluorescent signal showed a time-dependent endogenous increase of reactive oxygen species (ROS) production, which was almost abolished by inhibition of the mitochondrial electron transport chain. Application of antioxidants (vitamin E or DTT) before H(2)O(2) addition or after H(2)O(2) withdrawal prevented the H(2)O(2)-triggered progressive ROS production and apoptosis. Sequential appearance of events associated with activation of the mitochondrial death pathway was found, including progressive dissipation of mitochondrial membrane potential, cytochrome c release, and late activation of caspase-3. In conclusion, transient oxidative stress triggers an intrinsic program leading to self-sustained apoptosis in H9c2 cells via cumulative production of mitochondrial ROS and subsequent activation of the mitochondrial death pathway. This pattern of apoptosis may contribute to the progressive and long-lasting cell loss in some degenerative diseases.  相似文献   

7.
Selective induction of apoptosis in tumor cells is important for treating patients with cancer. Because oxidative stress plays an important role in the process of apoptosis, we studied the effect of alpha-tocopheryl succinate (VES) on the fate of cultured human promyelocytic leukemia cells (HL-60). The presence of fairly low concentrations of VES inhibited the growth and DNA synthesis of HL-60 cells, and also induced their apoptosis via a mechanism that was inhibited by z-VAD-fluoromethylketone (z-VAD-fmk), an inhibitor of pan-caspases. VES activated various types of caspases, including caspase-3, 6, 8, and 9, but not caspase-1. VES triggered the reaction leading to the cleavage of Bid, a member of the death agonist Bcl-2 family, and released cytochrome c (Cyt.c) from the mitochondria into the cytosol by a z-VAD-fmk-inhibitable mechanism. VES transiently increased the intracellular calcium level [Ca2+]i and stimulated the release of Cyt.c in the presence of inorganic phosphate (Pi). However, high concentrations of VES (approximately 100 microM) hardly induced swelling of isolated mitochondria but depolarized the mitochondrial membrane potential by a cyclosporin A (CsA)-insensitive mechanism. These results indicate that VES-induced apoptosis of HL-60 cells might be caused by activation of the caspase cascade coupled with modulation of mitochondrial membrane function.  相似文献   

8.
Oxidative stress-induced apoptotic cell death has been implicated to play a critical role in the mechanism of corpus luteum regression and follicular atresia. Recent studies suggests that reactive oxygen species (ROS) might play important roles in the regulation of luteal function. The present work describes the inhibitory effect of 17beta-estradiol (E2) on ROS-induced mitochondrial membrane permeability transition (MPT) and apoptosis of Chinese hamster ovary (CHO) cells. ROS generated by Fe2+ and H2O2 induced mitochondrial lipid peroxidation, depolarization, activation of caspase-3 and DNA fragmentation in CHO cells by some E2-inhibitable mechanism. E2 suppressed the Fe2+/H2O2-induced lipid peroxidation and MPT of isolated mitochondria that was characterized by cyclosporin A-inhibitable swelling, depolarization and cytochrome c release. Furthermore, E2 scavenged the xanthine oxidase generated ROS. These results suggests that Fe2+/H2O2 induced MPT and apoptosis of CHO cells by a mechanism that could be suppressed by antioxidant properties of E2.  相似文献   

9.
The impact of muscarinic receptor stimulation was examined on apoptotic signaling induced by DNA damage, oxidative stress, and mitochondrial impairment. Exposure of human neuroblastoma SH-SY5Y cells to the DNA-damaging agent camptothecin increased p53 levels, activated caspase-3, and caused cell death. Pretreatment with oxotremorine-M, a selective agonist of muscarinic receptors that are expressed endogenously in these cells, did not affect the accumulation of p53 but greatly attenuated caspase-3 activation and protected from cell death to nearly the same extent as treatment with a general caspase inhibitor. Treatment with 50-200 microm H(2)O(2) caused the activation of caspase-3 beginning after 2-3 h, followed by eventual cell death. Oxotremorine-M pretreatment protected cells from H(2)O(2)-induced caspase-3 activation and death, and this was equivalent to protection afforded by a caspase inhibitor. Muscarinic receptor stimulation also protected cells from caspase-3 activation induced by exposure to rotenone, a mitochondrial complex 1 inhibitor, but no protection was evident from staurosporine-induced caspase-3 activation. The mechanism of protection afforded by muscarinic receptor activation from camptothecin-induced apoptotic signaling involved blockade of mitochondrial cytochrome c release associated with a bolstering of mitochondrial bcl-2 levels and blockade of the translocation of Bax to mitochondria. Likely the most proximal of these events to muscarinic receptor activation, mitochondrial Bax accumulation, also was attenuated by oxotremorine-M treatment after treatment with H(2)O(2) or rotenone. These results demonstrate that stimulation of muscarinic receptors provides substantial protection from DNA damage, oxidative stress, and mitochondrial impairment, insults that may be encountered by neurons in development, aging, or neurodegenerative diseases. These findings suggest that neurotransmitter-induced signaling bolsters survival mechanisms, and inadequate neurotransmission may exacerbate neuronal loss.  相似文献   

10.
Oxidized low-density lipoproteins (oxLDL) play a critical role in atherogenesis. One oxidative pathway of LDL involves myeloperoxidase, which catalyzes the production of hypochlorous acid (HOCl) in monocytes. We investigated the apoptotic mechanism induced by oxLDL, generated by HOCl treatment of native LDL, in human monocytic U937 cell line. The involvement of the mitochondrial apoptotic pathway was analyzed in Bcl-2-overexpressing clones, generated from U937 cells. HOCl-oxLDL induced in U937 cells (i) a marked caspase-dependent increase of apoptosis, (ii) a loss of mitochondrial membrane potential, (iii) a specific activation of caspase-2, -3, -8, and -9, and (iv) a similar degree of apoptosis in presence or absence of anti-Fas and anti-TNF-R1 antibodies. Moreover, the degree of HOCl-oxLDL-induced caspase-3 and -8 activation, and apoptosis was significantly reduced in U937/Bcl-2 cells, with no activation of caspase-9. By contrast, Cu-oxLDL-mediated apoptosis in U937 cells involved exclusively the mitochondrial pathway. In conclusion, the mechanism of HOCl-oxLDL-induced apoptosis in monocytic U937 cells involves the two pathways of apical caspase activation: (i) death receptor-mediated caspase-8 and (ii) mitochondria-mediated caspase-9. This converges in the activation of executing caspases, including caspase-3, and apoptosis. The interference of Bcl-2 overexpression with HOCl-oxLDL-induced apoptosis suggests the importance of mitochondrial involvement in this apoptotic mechanism.  相似文献   

11.
Selective induction of apoptosis in tumor cells is important for treating patients with cancer. Because oxidative stress plays an important role in the process of apoptosis, we studied the effect of α-tocopheryl succinate (VES) on the fate of cultured human promyelocytic leukemia cells (HL-60). The presence of fairly low concentrations of VES inhibited the growth and DNA synthesis of HL-60 cells, and also induced their apoptosis via a mechanism that was inhibited by z-VAD-fluoromethylketone (z-VAD-fmk), an inhibitor of pan-caspases. VES activated various types of caspases, including caspase-3, 6, 8, and 9, but not caspase-1. VES triggered the reaction leading to the cleavage of Bid, a member of the death agonist Bcl-2 family, and released cytochrome c (Cyt.c) from the mitochondria into the cytosol by a z-VAD-fmk-inhibitable mechanism. VES transiently increased the intracellular calcium level [Ca2+]i and stimulated the release of Cyt.c in the presence of inorganic phosphate (Pi). However, high concentrations of VES (~100 μM) hardly induced swelling of isolated mitochondria but depolarized the mitochondrial membrane potential by a cyclosporin A (CsA)-insensitive mechanism. These results indicate that VES-induced apoptosis of HL-60 cells might be caused by activation of the caspase cascade coupled with modulation of mitochondrial membrane function.  相似文献   

12.
13.
Thymocytes undergo negative and positive selection during development in the thymus. During this selection process, the majority of thymocytes are eliminated by apoptosis through signaling via TCR or die by neglect, possibly mediated through glucocorticoids. In this study, we report that thymocytes require molecular oxygen to undergo apoptosis induced by dexamethasone (DEX), a synthetic glucocorticoid, and treatment with N-acetyl-L-cysteine (NAC), a thiol antioxidant, inhibits thymocyte apoptosis in vivo as well as ex vivo. We detected elevated intracellular levels of hydrogen peroxide (H(2)O(2)) during DEX-induced apoptosis, which is reduced by NAC treatment, indicating that the elevated levels of intracellular H(2)O(2) are proapoptotic. We also show that loss of mitochondrial membrane potential, cytochrome c release, as well as caspase-3 activation induced by DEX are attenuated by NAC treatment. We identified the production site for H(2)O(2) as the ubiquinone cycle at complex III of mitochondria by using various inhibitors of the mitochondrial electron transport chain, and we show that the cell death events mediated by mitochondria are also significantly reduced when the inhibitors were used. Through inhibition of the proteasome, we also show that the production of H(2)O(2) and the cell death events mediated by mitochondria are regulated by proteosomal activities in DEX-induced thymocyte apoptosis. We conclude that in DEX-treated thymocytes, the increased production of H(2)O(2) originates from mitochondria and is proapoptotic for cell death mediated by mitochondria. We also conclude that all the apoptotic events mediated by mitochondria are regulated by proteasomes.  相似文献   

14.
When the gastric mucosa is exposed to various irritants, apoptosis and subsequent gastric mucosal lesion can result in vivo. We here show that gastric irritants induced apoptosis in gastric mucosal cells in primary culture and examined its molecular mechanism. Ethanol, hydrogen peroxide, and hydrochloric acid all induced, in a dose-dependent manner, cell death, apoptotic DNA fragmentation, and chromatin condensation, suggesting that each of these gastric irritants induced apoptosis in vitro. Since each of these irritants decreased the mitochondrial membrane potential and stimulated the release of cytochrome c from mitochondria, gastric irritant-induced apoptosis seems to be mediated by mitochondrial dysfunction. Caspase-3, caspase-8, and caspase-9-like activities were all activated simultaneously by each of these irritants and the activation was concomitantly with cell death and apoptotic DNA fragmentation. Furthermore, pre-treatment of gastric mucosal cells with an inhibitor of caspase-8 suppressed the onset of cell death as well as the stimulation of caspase-3- and caspase-9-like activities caused by each of these gastric irritants. Based on these results, we consider that caspase-8, an initiator caspase, plays an important role in gastric irritant-induced apoptosis.  相似文献   

15.
Employing fluorescence resonance energy transfer (FRET) imaging, we previously demonstrated that effector caspase activation is often an all-or-none response independent of drug choice or dose administered. We here investigated the signaling dynamics during apoptosis initiation via the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor pathway to investigate how variability in drug exposure can be translated into largely kinetically invariant cell death execution pathways. FRET-based microscopy demonstrated dose-dependent responses of caspase-8 activation and activity within individual living HeLa cells. Caspase-8 on average was activated 45-600 min after TRAIL/cycloheximide addition. Caspase-8-like activities persisted for 15-60 min before eventually inducing mitochondrial outer membrane permeabilization. Independent of the TRAIL concentrations used or the resulting caspase-8-like activities, mitochondrial outer membrane permeabilization was induced when 10% of the FRET substrate was cleaved. In contrast, in Bid-depleted cells, caspase-8-like activity persisted for hours without causing immediate cell death. Our findings provide detailed insight into the intracellular signaling kinetics during apoptosis initiation and describe a threshold mechanism controlling the induction of apoptosis execution.  相似文献   

16.
Free radicals induce oxidative stress in vivo, leading to various disorders and diseases. In the present study, the effect of oxygen pressure on the cytotoxicity induced by free radicals was studied. It was found that alkyl radicals markedly aggravated Jurkat cell apoptosis under low oxygen pressure and this was ascribed to a hypoxic condition caused by the consumption of oxygen by alkyl radicals giving peroxyl radicals and subsequent lipid peroxidation by a chain mechanism. The intracellular lipid hydroperoxides significantly increased at an early time point even under hypoxia. Cytochrome c was released from the mitochondria, and caspase-9 as well as caspase-3 was activated during apoptosis, indicating that cell death followed by the intrinsic, mitochondrial apoptosis pathway. Pretreatment with VAD-FMK, a caspase inhibitor, attenuated the apoptosis induced by alkyl radicals under hypoxia. Moreover, pretreatment with various antioxidants also significantly rescued the cells from apoptosis. Taken together, the results indicate that free radicals induced hypoxic conditions, which accelerated mitochondria-dependent cell apoptosis.  相似文献   

17.
Yang CL  Ma YG  Xue YX  Liu YY  Xie H  Qiu GR 《DNA and cell biology》2012,31(2):139-150
Curcumin (diferuloylmethane), an active component of the spice turmeric, induces apoptosis in several types of malignancies. However, little is known about its anticancer activity in small cell lung cancer (SCLC). SCLC represents a highly malignant and particularly aggressive form of cancer, with early and widespread metastases and a poor prognosis. In this study, we found that curcumin does not activate caspase-8 cleavage or alter the expression of apoptotic receptors FAS and TRAIL in NCI-H446 cells, suggesting that curcumin-induced apoptosis is not associated with death receptor-mediated pathways in these cells. Instead, curcumin caused apoptosis by increasing Bax expression while decreasing the expression of Bcl-2 and Bcl-xL. Curcumin induced a rapid decrease in mitochondrial membrane potential and the release of cytochrome c into the cytosol, followed by activation of caspase-9 and caspase-3. In addition, curcumin-induced apoptosis was accompanied by an increase of intracellular reactive oxygen species (ROS) level. These results indicated that a ROS-mediated mitochondrial pathway played an important role in the process of curcumin-induced apoptosis of human SCLC NCI-H446 cells.  相似文献   

18.
Galectin-1 (gal-1) triggers T cell death by several distinct intracellular pathways including the activation of the death-receptor pathway. The aim of this study was to investigate whether gal-1 induced activation of the death-receptor pathway in Jurkat T lymphocytes mediates apoptosis via the mitochondrial pathway linked by truncated Bid (tBid). We demonstrate that gal-1 induced proteolytic cleavage of the death agonist Bid, a member of the Bcl-2/Bcl-xL family and a substrate of activated caspase-8, was inhibited by caspase-8 inhibitor II (Z-IETD-FMK). Downstream of Bid, gal-1 stimulated mitochondrial cytochrome c release as well as the activation and proteolytic processing of initiator procaspase-9 were effectively decreased by caspase-8 inhibitor II. Blocking of gal-1 induced cleavage of effector procaspase-3 by caspase-8 inhibitor II as well as by caspase-9 inhibitors I (Z-LEHD-FMK) and III (Ac-LEHD-CMK) indicates that receptor and mitochondrial pathways converged in procaspase-3 activation and contribute to proteolytic processing of effector procaspase-6 and -7. Western blot analyses and immunofluorescence staining revealed that exposure of Jurkat T cells to gal-1 resulted in the cleavage of the DNA-repair enzyme poly (ADP-ribose) polymerase, cytoskeletal α-fodrin, and nuclear lamin A as substrates of activated caspases. Our data demonstrate that Bid provides a connection between the death receptor and the mitochondrial pathway of gal-1 induced apoptosis in human Jurkat T lymphocytes.  相似文献   

19.
Recently, caspase-2 was shown to act upstream of mitochondria in stress-induced apoptosis. Activation of caspase-8, a key event in death receptor-mediated apoptosis, also has been demonstrated in death receptor-independent apoptosis. The regulation of these initiator caspases, which trigger the mitochondrial apoptotic pathway, is unclear. Here we report a potential regulatory role of caspase-2 on caspase-8 during ceramide-induced apoptosis. Our results demonstrate the sequential events of initiator caspase-2 and caspase-8 activation, Bid cleavage and translocation, and mitochondrial damage followed by downstream caspase-9 and -3 activation and cell apoptosis after ceramide induction in T cell lines. The expression of truncated Bid (tBid) and the reduction in mitochondrial transmembrane potential were blocked by caspase-2 or caspase-8, but not caspase-3, knockdown using an RNA interference technique. Ceramide-induced caspase-8 activation, mitochondrial damage, and apoptosis were blocked in caspase-2 short interfering RNA-expressing cells. Therefore, caspase-2 acts upstream of caspase-8 during ceramide-induced mitochondrial apoptosis. Similarly, sequential caspase-2 and caspase-8 activation upstream of mitochondria was also observed in etoposide-induced apoptosis. These data suggest sequential initiator caspase-2 and caspase-8 activation in the mitochondrial apoptotic pathway induced by ceramide or etoposide.  相似文献   

20.
Although it is well known that Bcl-2 can prevent apoptosis, the Bcl-2's anti-apoptotic mechanism is not fully understood. Here, we investigate the mechanism of oxidant-induced cell death and to investigate the role of Bcl-2 in the tert-butyl hydroperoxide (t-BuOOH)-induced oxidant injury in Rat-1 fibroblasts and their bcl-2 transfected counterparts, b5 cells. Treatment with t-BuOOH causes mitochondrial disfunction and induced morphological features consistent with apoptosis more markedly in Rat-1 cells than in b5 cells. The hydroperoxide t-BuOOH at concentrations less than 100 nM for as long as 48 h or with higher concentrations (up to 100 microM) for only 3 h induces death in Rat-1 cells, whereas their bcl-2 transfectants were significantly resistant to cytotoxicity by both time and all concentration other than 100 microM. The similar results were obtained also for DNA strand cleavages as detected by TUNEL stain. The bcl-2 transfectants significantly suppressed t-BuOOH-induced increases in both lipid peroxidation and caspase-3 activation 3 and 1 h after t-BuOOH exposure, respectively, but failed to suppress either caspase-1 activation or an enhanced production of the intracellular reactive oxygen species (ROS). Intracellular uptake of [1-(14)C] ascorbic acid (Asc) into the bcl-2 transfectants was superior to that into the non-transfectants always under examined conditions regardless of serum addition to culture medium and cell density. Upregulation of Bcl-2 proteins was rapidly induced after t-BuOOH exposure in the transfectants, but not in non-transfectants, and restored till 24 h to the normal Bcl-2 level. Thus suppressions of both lipid peroxidation and the subsequent cell death events such as caspase-3 activation and DNA cleavage were concerned with the inhibitory effects of Bcl-2 on the t-BuOOH-induced cytotoxicity. And some of these events may correlate with Bcl-2 expression-induced partial enhanced anti-oxidant cellular ability including enrichment of intracellular Asc and oxidative stress-induced upregulation of Bcl-2 protein. On the other hand, ROS production and caspase-1 activation were not related to cytoprotection by Bcl-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号