首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although forest biomass energy was long assumed to be carbon neutral, many studies show delays between forest biomass carbon emissions and sequestration, with biomass carbon causing climate change damage in the interim. While some models suggest that these primary biomass carbon effects may be mitigated by induced market effects, for example, from landowner decisions to increase afforestation due to higher biomass prices, the delayed carbon sequestration of biomass energy systems still creates considerable scientific debate (i.e., how to assess effects) and policy debate (i.e., how to act given these effects). Forests can be carbon sinks, but their carbon absorption capacity is finite. Filling the sink with fossil fuel carbon thus has a cost, and conversely, harvesting a forest for biomass energy – which depletes the carbon sink – creates potential benefits from carbon sequestration. These values of forest carbon sinks have not generally been considered. Using data from the 2010 Manomet Center for Conservation Sciences ‘Biomass sustainability and carbon policy study’ and a model of forest biomass carbon system dynamics, we investigate how discounting future carbon flows affects the comparison of biomass energy to fossil fuels in Massachusetts, USA. Drawing from established financial valuation metrics, we calculate internal rates of return (IRR) as explicit estimates of the temporal values of forest biomass carbon emissions. Comparing these IRR to typical private discount rates, we find forest biomass energy to be preferred to fossil fuel energy in some applications. We discuss possible rationales for zero and near‐zero social discount rates with respect to carbon emissions, showing that social discount rates depend in part on expectations about how climate change affects future economic growth. With near‐zero discount rates, forest biomass energy is preferred to fossil fuels in all applications studied. Higher IRR biomass energy uses (e.g., thermal applications) are preferred to lower IRR uses (e.g., electricity generation without heat recovery).  相似文献   

2.
In this paper we estimate the European potential for carbon mitigation of no-till farming using results from European tillage experiments. Our calculations suggest some potential in terms of (a) reduced agricultural fossil fuel emissions, and (b) increased soil carbon sequestration. We estimate that 100% conversion to no-till farming would be likely to sequester about 23 Tg C y–1 in the European Union or about 43 Tg C y–1 in the wider Europe (excluding the former Soviet Union). In addition, up to 3.2 Tg C y–1 could be saved in agricultural fossil fuel emissions. Compared to estimates of the potential for carbon sequestration of other carbon mitigation options, no-till agriculture shows nearly twice the potential of scenarios whereby soils are amended with organic materials. Our calculations suggest that 100% conversion to no-till agriculture in Europe could mitigate all fossil fuel-carbon emissions from agriculture in Europe. However, this is equivalent to only about 4.1% of total anthropogenic CO2-carbon produced annually in Europe (excluding the former Soviet Union) which in turn is equivalent to about 0.8% of global annual anthropogenic CO2-carbon emissions.  相似文献   

3.
农田土壤固碳措施的温室气体泄漏和净减排潜力   总被引:8,自引:0,他引:8  
逯非  王效科  韩冰  欧阳志云  郑华 《生态学报》2009,29(9):4993-5006
农田土壤固碳措施作为京都议定书认可的大气CO2减排途径受到了广泛关注.研究表明,农田土壤固碳措施在主要农业国家和全球都具有很大的固碳潜力.但是,实施农田土壤固碳措施有可能影响农业中化石燃料消耗和其他农业投入的CO2排放和非CO2温室气体排放.这些土壤碳库以外的温室气体排放变化可能抵消部分甚至全部土壤固碳效果,构成了农田土壤固碳措施的温室气体泄漏.因此,将土壤固碳和温室气体泄漏综合计算的净减排潜力成为了判定土壤固碳措施可行性的首要标准.综述总结了目前较受重视的一些农田措施(包括施用化学氮肥、免耕和保护性耕作、灌溉、秸秆还田、施用禽畜粪便以及污灌)的土壤固碳潜力,温室气体泄漏和净减排潜力研究成果.结果表明,温室气体泄漏可抵消以上措施土壤固碳效益的-241%~660%.建议在今后的研究中,应该关注土壤碳饱和、气候变化及土地利用变化对农田固碳措施温室气体泄漏和净减排潜力的评估结果的影响.  相似文献   

4.
To estimate fossil fuel demand and greenhouse gas emissions associated with short-rotation willow (Salix spp.) crops in New York State, we constructed a life cycle assessment model capable of estimating point values and measures of variability for a number of key processes across eight management scenarios. The system used 445.0 to 1,052.4 MJ of fossil energy per oven-dry tonne (odt) of delivered willow biomass, resulting in a net energy balance of 18.3:1 to 43.4:1. The largest fraction of the energy demand across all scenarios was driven by the use of diesel fuels. The largest proportion of diesel fuel was associated with harvesting and delivery of willow chips seven times on 3-year rotations over the life of the crop. Similar patterns were found for greenhouse gas emissions across all scenarios, as fossil fuel use served as the biggest source of emissions in the system. Carbon sequestration in the belowground portion of the willow system provided a large carbon sink that more than compensated for carbon emissions across all scenarios, resulting in final greenhouse gas balances of ?138.4 to ?52.9 kg CO2 eq. per odt biomass. The subsequent uncertainty analyses revealed that variability associated with data on willow yield, litterfall, and belowground biomass eliminated some of the differences between the tested scenarios. Even with the inclusion of uncertainty analysis, the willow system was still a carbon sequestration system after a single crop cycle (seven 3-year rotations) in all eight scenarios. A better understanding and quantification of factors that drive the variability in the biological portions of the system is necessary to produce more precise estimates of the emissions and energy performance of short-rotation woody crops.  相似文献   

5.
We propose to compare avoided emissions from ethanol use in Brazil with emissions caused by the use of fossil fuel, and by land use changes, specifically Amazon deforestation. The avoided emissions of CO2 in Brazil due to ethanol use in 2008 ranged from approximately 9 to 12 Tg C yr?1. These values are an order of magnitude higher than the amount of carbon that could be potentially sequestered in soils if sugarcane cultivation in Brazil switches completely to mechanized harvesting, and two orders of magnitude higher than the carbon emissions in soils cultivated with sugarcane and that undergo harvest with burning. In relation to fossil fuel emissions, ethanol avoided emissions are equivalent to 20–30% of the carbon emissions associated with the use of gasoline and diesel in the transportation sector, and to approximately 10% of the total use of fossil fuel in the country. When compared with the carbon emissions from Amazon deforestation ethanol avoided emissions are again one order of magnitude lower. We conclude that ethanol avoided emissions are relatively important within the transport sector, but are still incipient if compared with the emissions from total fossil fuel combustion and emissions from deforestation indicating that climate mitigation efforts in Brazil needs to focus outside of biofuel production. Consequently, we suggest that Brazil develop equally strong actions towards increased energy efficiency use in the country and, more importantly to drastically reduce carbon emissions associated with Amazon deforestation.  相似文献   

6.
Second generation biofuels, like cellulosic ethanol, have potential as important energy sources that can lower fossil fuel carbon emissions without affecting global food commodity prices. Agricultural crop residues, especially maize, have been proposed for use as biofuel, but the net greenhouse warming effect of the gained fossil fuel carbon offset needs to account for any ecosystem carbon losses caused by the large‐scale maize residue removal. Using differential 13C isotopic ratios between residue and soil in an incubation experiment, we found that removal of residue increased soil organic matter decomposition by an average of 16%, or 540–800 kg carbon ha?1. Thus, removal of residue for biofuel production can have a hidden carbon cost, reducing potential greenhouse gas benefits. Accurate net carbon accounting of cellulosic biofuel needs to include not only fossil fuel savings from use of the residue, but also any declines in soil carbon caused directly and indirectly by residue removal.  相似文献   

7.
Reforesting and managing ecosystems have been proposed as ways to mitigate global warming and offset anthropogenic carbon emissions. The intent of our opinion piece is to provide a perspective on how well plants and ecosystems sequester carbon. The ability of individual plants and ecosystems to mine carbon dioxide from the atmosphere, as defined by rates and cumulative amounts, is limited by laws of physics and ecological principles. Consequently, the rates and amount of net carbon uptake are slow and low compared to the rates and amounts of carbon dioxide we release by fossil fuels combustion. Managing ecosystems to sequester carbon can also cause unintended consequences to arise. In this paper, we articulate a series of key take‐home points. First, the potential amount of carbon an ecosystem can assimilate on an annual basis scales with absorbed sunlight, which varies with latitude, leaf area index and available water. Second, efforts to improve photosynthesis will come with the cost of more respiration. Third, the rates and amount of net carbon uptake are relatively slow and low, compared to the rates and amounts and rates of carbon dioxide we release by fossil fuels combustion. Fourth, huge amounts of land area for ecosystems will be needed to be an effective carbon sink to mitigate anthropogenic carbon emissions. Fifth, the effectiveness of using this land as a carbon sink will depend on its ability to remain as a permanent carbon sink. Sixth, converting land to forests or wetlands may have unintended costs that warm the local climate, such as changing albedo, increasing surface roughness or releasing other greenhouse gases. We based our analysis on 1,163 site‐years of direct eddy covariance measurements of gross and net carbon fluxes from 155 sites across the globe.  相似文献   

8.
Urban ecosystems and the North American carbon cycle   总被引:12,自引:0,他引:12  
Approximately 75–80% of the population of North America currently lives in urban areas as defined by national census bureaus, and urbanization is continuing to increase. Future trajectories of fossil fuel emissions are associated with a high degree of uncertainty; however, if the activities of urban residents and the rate of urban land conversion can be captured in urban systems models, plausible emissions scenarios from major cities may be generated. Integrated land use and transportation models that simulate energy use and traffic‐related emissions are already in place in many North American cities. To these can be added a growing dataset of carbon gains and losses in vegetation and soils following urbanization, and a number of methods of validating urban carbon balance modeling, including top down atmospheric monitoring and urban ‘metabolic’ studies of whole ecosystem mass and energy flow. Here, we review the state of our understanding of urban areas as whole ecosystems with regard to carbon balance, including both drivers of fossil fuel emissions and carbon cycling in urban plants and soils. Interdisciplinary, whole‐ecosystem studies of the socioeconomic and biophysical factors that influence urban carbon cycles in a range of cities may greatly contribute to improving scenarios of future carbon balance at both continental and global scales.  相似文献   

9.
In the current debate over the CO2 emissions implications of switching from fossil fuel energy sources to include a substantial amount of woody biomass energy, many scientists and policy makers hold the view that emissions from the two sources should not be equated. Their rationale is that the combustion or decay of woody biomass is simply part of the global cycle of biogenic carbon and does not increase the amount of carbon in circulation. This view is frequently presented as justification to implement policies that encourage the substitution of fossil fuel energy sources with biomass. We present the opinion that this is an inappropriate conceptual basis to assess the atmospheric greenhouse gas (GHG) accounting of woody biomass energy generation. While there are many other environmental, social, and economic reasons to move to woody biomass energy, we argue that the inferred benefits of biogenic emissions over fossil fuel emissions should be reconsidered.  相似文献   

10.
中国能源消费碳排放的时空特征   总被引:2,自引:0,他引:2  
舒娱琴 《生态学报》2012,32(16):4950-4960
选择联合国政府间气候变化专门委员会(IPCC)的部门方法和8大类能源,采用1990年至2009年的中国能源统计数据,按照自下而上的思路,对我国各省区的碳排放量进行估算,并从碳排放量、碳排放强度、人均碳排放量和碳排放密指标出发,深入分析了各省区碳排放的时空特征差异。以期对国内碳排放的时空特征分析,有助于决策者和能源分析家提高节能减排政策制定的有效性。  相似文献   

11.
夏楚瑜  李艳  叶艳妹  史舟  刘婧鸣 《生态学报》2017,37(11):3862-3871
以不同类型城市东营和滨州为例,采用基于净生产力的生态足迹模型测度2005—2014年两市工业碳排放效应,利用弹性系数模型对工业碳排放生态足迹及其影响因素进行对比,通过情景模拟分析了基准和低碳情景下两市的可持续低碳发展潜力。研究结果显示:(1)东营碳排放总量和碳排放强度明显高于滨州,两市的碳排放生态足迹总体上都处于上升趋势,年均增长率分别为12.79%和6.16%,这与两市工业化发展阶段不同有关;(2)2005—2008、2008—2011和2011—2014,东营工业碳排放生态足迹当量主导影响因素组合变化为"耕地面积-土地城镇化率-能源结构系数"转化为"耕地面积-人口规模-能源结构系数"到"耕地面积-人口规模-第二产业比重";滨州2005—2014年的主导因素组合一直为"人口规模-土地城镇化率-能源结构系数";(3)通过情景模拟分析2020年东营、滨州的低碳发展潜力:基准和低碳情景下,滨州生态赤字分别为东营的10倍和2.6倍;就"减排"潜力而言,滨州远远高于东营,但实现低碳情景是工业GDP增长从现阶段20.6%骤降到6.5%为代价,对产业结构调整升级要求很高。对东营而言,低碳情景的实现不仅要将能源利用效率提高一倍,更要保证大量重要"碳汇"资源的恢复与重建。  相似文献   

12.
One of the main options for carbon mitigation identified by the IPCC is the sequestration of carbon in soils. In this paper we use statistical relationships derived from European long-term experiments to explore the potential for carbon sequestration in soils in the European Union. We examine five scenarios, namely (a) the amendment of arable soils with animal manure, (b) the amendment of arable soils with sewage sludge, (c) the incorporation of cereal straw into the soils in which it was grown, (d) the afforestation of surplus arable land through natural woodland regeneration, and (e) extensification of agriculture through ley-arable farming. Our calculations suggest only limited potential to increase soil carbon stocks over the next century by addition of animal manure, sewage sludge or straw (Þbl 15 Tg C y–1), but greater potential through extensification of agriculture (≈ 40 Tg C y–1) or through the afforestation of surplus arable land (≈ 50 Tg C y–1). We estimate that extensification could increase the total soil carbon stock of the European Union by 17%. Afforestation of 30% of present arable land would increase soil carbon stocks by about 8% over a century and would substitute up to 30 Tg C y–1 of fossil fuel carbon if the wood were used as biofuel. However, even the afforestation scenario, with the greatest potential for carbon mitigation, can sequester only 0.8% of annual global anthropogenic CO2-carbon. Our figures suggest that, although efforts in temperate agriculture can contribute to global carbon mitigation, the potential is small compared to that available through reducing anthropogenic CO2 emissions by halting tropical and sub-tropical deforestation or by reducing fossil fuel burning.  相似文献   

13.
Bioenergy Crops and Carbon Sequestration   总被引:1,自引:0,他引:1  
Greenhouse gas (GHG) emissions constitute a global problem. The need for agricultural involvement in GHG mitigation has been widely recognized since the 1990s. The concept of C sinks, C credits, and emission trading has attracted special interests in herbaceous and woody species as energy crops and source of biofuel feedstock. Bioenergy crops are defined as any plant material used to produce bioenergy. These crops have the capacity to produce large volume of biomass, high energy potential, and can be grown in marginal soils. Planting bioenergy crops in degraded soils is one of the promising agricultural options with C sequestration rates ranging from 0.6 to 3.0 Mg C ha?1 yr?1. About 60 million hectares (Mha) of land is available in the United States and 757 Mha in the world to grow bioenergy crops. With an energy offset of 1 kg of C in biomass per 0.6 kg of C in fossil fuel, there exists a vast potential of offsetting fossil fuel emission. Bioenergy crops have the potential to sequester approximately 318 Tg C yr?1 in the United States and 1631 Tg C yr?1 worldwide. Bioenergy crops consist of herbaceous bunch-type grasses and short-rotation woody perennials. Important grasses include switchgrass (Panicum virgatum L.), elephant grass (Pennissetum purpureum Schum.), tall fescue (Fetusca arundinacea L.), etc. Important among short-rotation woody perennials are poplar (Populus spp.), willow (Salix spp.), mesquite (Prosopis spp.), etc. The emissions of CO2 from using switchgrass as energy crop is 1.9 kg C Gj?1 compared with 13.8, 22.3, and 24.6 kg C Gj?1 from using gas, petroleum, and coal, respectively. Mitigation of GHG emissions cannot be achieved by C sinks alone, a substantial reduction in fossil fuel combustion will be necessary. Carbon sequestration and fossil fuel offset by bioenergy crops is an important component of a possible total societal response to a GHG emission reduction initiative.  相似文献   

14.
There is a potential to sequester carbon in soil by changing agricultural management practices. These changes in agricultural management can also result in changes in fossil-fuel use, agricultural inputs, and the carbon emissions associated with fossil fuels and other inputs. Management practices that alter crop yields and land productivity can affect the amount of land used for crop production with further significant implications for both emissions and sequestration potential. Data from a 20-year agricultural experiment were used to analyze carbon sequestration, carbon emissions, crop yield, and land-use change and to estimate the impact that carbon sequestration strategies might have on the net flux of carbon to the atmosphere. Results indicate that if changes in management result in decreased crop yields, the net carbon flux can be greater under the new system, assuming that crop demand remains the same and additional lands are brought into production. Conversely, if increasing crop yields lead to land abandonment, the overall carbon savings from changes in management will be greater than when soil carbon sequestration alone is considered.  相似文献   

15.
面向森林碳汇供给的企业减排路径选择机理与政策模拟   总被引:2,自引:0,他引:2  
龙飞  祁慧博 《生态学报》2020,40(21):7966-7977
采用我国碳交易试点省市中钢铁、火电、化工3个碳排放密集型行业89家企业2759个减排单位为样本,通过构建企业减排路径选择模型,模拟分析面向森林碳汇供给的企业在不同减排政策影响下的减排路径及其行业差异。研究表明:(1)企业购买森林碳汇、技术减排和购买配额的成本分别为210元/t、319元/t和158元/t,因边际减排成本不同,行业间企业减排路径选择受减排政策的影响存在明显差异;(2)为激励企业购买森林碳汇以抵消碳排放,应对不同行业企业采取有差别的政策,综合考虑补贴投入和激励效果,应分别对火电企业实施102元/t的技术减排补贴,对化工企业给予技术减排补贴和购买森林碳汇补贴各83元/t,对钢铁企业购买森林碳汇进行168元/t的补贴;(3)在以上分行业施策的影响下,3个行业企业经不同减排路径成本比较后,均将有约50%的减排单位选择购买森林碳汇。结合国家应对气候变化战略目标和各行业发展规律,研究结果为积极引导企业节能减排、充分挖掘森林碳汇市场潜力、减小企业减排成本压力等提供了科学依据。  相似文献   

16.
周健  肖荣波  庄长伟  邓一荣 《生态学报》2013,33(18):5865-5873
城市森林及其管理相关政策作为减少CO2排放的有效策略得到了较为广泛的关注。采用材积源生物量方程与净初级生产力方法来定量分析了广州市城市森林碳储量和碳固定量,根据化石能源使用量及其碳排放因子核算了广州城市能源碳排放,最后评估了城市森林碳抵消效果。结果显示广州市城市森林碳储量为654.42×104t,平均碳密度为28.81 t/hm2,而森林碳固定量为658732 t/a,平均固碳率为2.90 t·hm-2·a-1。2005-2010年广州市年均能源碳排放则达到2907.41×104t。广州城市森林碳储量约为城市年均能源碳排放的22.51%,其通过碳固定年均能够抵消年均碳排放的2.27%,不过从城市森林综合效益来看其仍是城市低碳发展重要举措之一。分析了林型组成和林龄结构对于广州森林碳储量和碳固定量的影响,并从森林管理角度为城市森林碳汇提升提出建议。这些结果和讨论有助于评估城市森林碳汇在抵消碳排放中所起的效果。  相似文献   

17.
Recent sustainability science research focuses on tradeoffs between human well-being and stress placed on the environment from fossil fuel consumption, a relationship known as the carbon intensity of well-being (CIWB). In this study we assess how the effect of economic development on consumption-based CIWB—a ratio of consumption-based carbon dioxide emissions to average life expectancy—changed from 1990 to 2008 for 69 nations throughout the world. We examine the effect of development on consumption-based CIWB for the overall sample as well as for smaller samples restricted to mostly high-income OECD nations, Non-OECD nations, and more nuanced regional samples of Non-OECD nations in Africa, Asia, and Latin America. We find that the effect of economic development on CIWB increased through time for the overall sample. However, analyses of the Non-OECD and OECD samples indicate that while the effect of development on CIWB increased from null to a moderate level for the Non-OECD nations, the effect of economic development was much larger, relatively stable through time, and more unsustainable for the OECD nations. Additional findings reveal important regional differences for Non-OECD nations. In the early 1990s, increased development led to a reduction in CIWB for Non-OECD nations in Africa, but in more recent years the relationship changed, becoming less sustainable. For the samples of Non-OECD nations in Asia and Latin America, we find that economic development increased consumption-based CIWB, and increasingly so throughout the 19 year period of study.  相似文献   

18.
根据研究需要与北京市2010年投入产出表部门划分情况,尽可能地对能源部门进行细分,并编制社会核算矩阵。构建可计算一般均衡(CGE)模型模拟碳税政策对北京市社会经济的影响。实证结果显示:碳税政策具有显著的节能减排效果,对于化石能源密集型产业产出具有明显的抑制作用,但对于清洁能源、服务业等行业产出具有促进作用。因此严格限制煤炭、石油等高碳化石能源的使用、开发高碳能源低碳化利用技术是减排的重要措施。由于碳税会使产品价格上升,从而导致消费需求减少,碳税对国内生产总值和社会福利具有一定的负面影响,虽然影响程度的相对量有限,但影响的绝对效果较大,应该避免较高的碳税税率。  相似文献   

19.
A process‐based model of the energy crop Miscanthus×giganteus is integrated into the global climate impact model IMOGEN, simulating the potential of large‐scale Miscanthus plantation to offset fossil fuel emissions during the 21st century. This simulation produces spatially explicit, annual projections of Miscanthus yields from the present day to the year 2100 under an SRES A2 anthropogenic emissions scenario and includes the effects of climate change. IMOGEN also simulates natural vegetation and soil carbon storage throughout the 21st century. The benefit of Miscanthus cultivation (avoiding fossil fuel emissions of CO2) is then compared with the cost of displacing natural vegetation (carbon emissions from vegetation and soil). The time taken for these effects to cancel out, the pay‐back time, is calculated regionally. The effects of large‐scale Miscanthus plantation are then integrated globally to produce an estimate of atmospheric CO2 concentrations throughout the 21st century. Our best estimate of the pay‐back time for Miscanthus plantation is 30 years. We project a maximum possible reduction in atmospheric CO2 of 323 ppmv by the end of 21st century, with a reduction of 162 ppmv corresponding to the best estimate scenario.  相似文献   

20.
We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth’s measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today’s young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur “slow” feedbacks and eventual warming of 3–4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth’s energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号