首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 418 毫秒
1.
Alkaline p-nitrophenylphosphate phosphatase from the halophilic archaeon Halobacterium salinarum (earlier halobium) was solubilised in organic medium using reversed micelles of hexadecyltrimethylammonium bromide in cyclohexane, with 1-butanol as co-surfactant. The stability of alkaline p-nitrophenylphosphate phosphatase in this system was studied at different conditions, w(0) ([H(2)O]/[surfactant]), salt concentration, with and without Mn(+2). At all the conditions assayed, alkaline p-nitrophenylphosphate phosphatase was more stable in reversed micelles than in bulk aqueous solution (at 25 degrees C). The stabilisation effect of the reversed micelles was dramatic when the enzyme was dialysed against Mn(+2)-free buffer since the enzyme lost all the activity within 90 min in aqueous medium, but it retained approximately 72% of the initial enzymatic activity for 90 min in reversed micelles.  相似文献   

2.
Summary The extraction of penicillin acylase by reverse micellar solutions of a surfactant was studied. A 50 mM solution of dioctyl sodium sulphosuccinate in isooctane extracted 46% of the enzyme activity in a crude periplasmic extract of induced cells of E. coli ATCC 9637. The increase in the specific activity of the final enzyme preparation, after stripping of the organic phase at pH 7.5, in the presence of 1 M KCl, was 8 - fold.Abbreviations PA penicillin acylase (penicillin amidohydrolase EC 3.5.1.11) - AOT Aerosol OT (dioctyl sodium sulphosuccinate) - NIPAB 6-nitro-3-(phenylacetamido)-benzoic acid - NABA 6-nitro-3-aminobenzoic acid - BSA bovine serum albumin - SDS sodium dodecylsulphate  相似文献   

3.
Reversed micelles were used as a cytoplasmic model to study the effect of the multi-ionic equilibria on kinetics of extreme halophilic enzymes. The enzymatic system used was an alkaline p-nitrophenylphosphate phosphatase from the halophilic archaeon Halobacterium salinarum (earlier halobium). This enzyme was solubilised in reversed micelles of hexadecyltrimethylammonium bromide in cyclohexane, with 1-butanol as co-surfactant. The p-nitrophenylphosphate phosphatase is a good system to study the regulation of the enzymatic activity, because it utilises manganese, water and potassium or sodium as cofactors and reacts with p-nitrophenylphosphate. Kinetic behaviour was determined by the ratio between [Mn2+] and [Na+] or [K+]. When the [Mn2+] increased and [Na+] or [K+] decreased, the kinetics showed cooperative behaviour. Rabin's model describes the kinetic behaviour of the p-nitrophenylphosphate phosphatase in reversed micelles.  相似文献   

4.
Summary Two simple and reproducible colorimetric determinations are proposed for quantifying the surfactant dioctyl sodium sulphosuccinate (AOT) and glycerol in reversed micellar media.  相似文献   

5.
Enzymes suspended in organic solvents represent a versatile system for studying the involvement of water in catalytic properties and their flexibility in adapting to different environmental conditions. The extremely halophilic alkaline p-nitrophenylphosphate phosphatase from the archaeon Halobacterium salinarum was solubilized in an organic medium consisting of reversed micelles of hexadecyltrimethylammoniumbromide in cyclohexane, with 1-butanol as cosurfactant. Hydrolysis of p-nitrophenylphosphate was nonlinear with time when the enzyme was microinjected into reversed micelles that contained substrate. These data are consistent with a kinetic model in which the enzyme is irreversibly converted from an initial form to a final stable form during the first seconds of the encapsulation process. The model features a rate constant (k) for that transition and separate hydrolysis rates, v(1) and v(2), for the two forms of the enzyme. The enzyme conversion may be governed by the encapsulation process.  相似文献   

6.
The surfactant-degrading biocatalyst Pseudomonas C12B was immobilized by covalent linking on silanized inorganic supports and by physical entrapment of cells within reticulated polyurethane foam. Both immobilized biocatalysts have been shown to be appropriate for the effective primary biodegradation of the anionic surfactants sodium dodecyl sulphate (SDS), dodecylbenzene sulphonic acid (DBS), dioctyl sulphosuccinate (DOSS) and dihexyl sulphosuccinate (DHSS). The overall surfactant removal from water by cells entrapped in reticulated polyurethane foam exhibits a biphasic process, a rapid sorption step of the surfactant onto the cell-loaded support and the intrinsic primary biodegradation slower step, both acting cooperatively. The optimization of variables for the adsorption and the biodegradation processes (flow rate, particle size, substrate concentration) have been studied. Sorption isotherms for the surfactants on reticulated polyurethane foam have been established as type II of the Brunauer, Deming, Deming and Teller (BDDT) classification. The kinetics of the primary biodegradation of SDS by cells covalent linked on sepiolite treated with 3-aminopropyl triethoxysilane (APTS) were found to be first-order. In this case, surfactant adsorption does not exist.  相似文献   

7.
Comamonas terrigena N3H was immobilized by covalent linking on silanized inorganic supports and by physical entrapment of cells within calcium alginate beads and reticulated polyurethane foam. Both entrapped cells were efficient for the primary biodegradation of the anionic surfactants dihexyl sulphosuccinate (DHSS) and dioctyl sulphosuccinate (DOSS), furthermore, exhibiting, in the case of polyurethane immobilized cells, a positive fractionating effect of the substrate by adsorption onto the polymer matrix. The overall kinetics for the surfactant removal from water were well-fitted to a biphasic process, a rapid passive sorption step of the surfactant onto the cell-loaded support and the intrinsic primary biodegradation slower step, both acting synergically.  相似文献   

8.
Comamonas terrigena, strain N3H, which was isolated from soil polluted with crude oil products, degraded dioctyl sulphosuccinate, a synthetic commercial surfactant. The primary degradation of this compound, the cleavage of ester bonds between octyl groups and sulphosuccinate, lasted significantly shorter time than the subsequent breakdown of the sulphosuccinate moiety of dioctyl sulpho[2,3-(14)C]succinate. (14)CO(2) evolution had a significant shorter lag period with cells in Tris/phosphate medium, without inorganic sulphate and adapted to surfactant, than unadapted cells. The acceleration of the primary degradation by adapted cells also suggest that some enzymes involved in surfactant degradation are inducible. The bacterium may be useful for bioremediation.  相似文献   

9.
Alkaline p-nitrophenylphosphate phosphatase (pNPPase) from the halophilic archaeobacterium Halobacterium salinarum (previously halobium) was solubilized at low salt concentration in reverse micelles of hexadecyltrimethyl-ammoniumbromide in cyclohexane with 1-butanol as co-surfactant. The enzyme maintained its catalytic properties under these conditions. The thermodynamic "solvation-stabilization hypothesis" has been used to explain the bell-shaped dependence of pNPPase activity on the water content of reverse micelles, in terms of protein-solvent interactions. According to this model, the stability of the folded protein depends on a network of hydrated ions associated with acidic residues at the protein surface. At low salt concentration and low water content (the ratio of water concentration to surfactant concentration; w0), the network of hydrated ions within the reverse micelles may involve the cationic heads of the surfactant. The bell-shaped profile of the relationship between enzyme activity and w0 varied depending on the concentrations of NaCl and Mn2+.  相似文献   

10.
Comamonas terrigena, strain N3H, which was isolated from soil polluted with crude oil products, degraded dioctyl sulphosuccinate, a synthetic commercial surfactant. The primary degradation of this compound, the cleavage of ester bonds between octyl groups and sulphosuccinate, lasted significantly shorter time than the subsequent breakdown of the sulphosuccinate moiety of dioctyl sulpho[2,3-14C]succinate. 14CO2 evolution had a significant shorter lag period with cells in Tris/phosphate medium, without inorganic sulphate and adapted to surfactant, than unadapted cells. The acceleration of the primary degradation by adapted cells also suggest that some enzymes involved in surfactant degradation are inducible. The bacterium may be useful for bioremediation.  相似文献   

11.
Reverse micelles were used as a cytoplasmic model to study the kinetics of an extreme halophilic enzyme such as the recombinant glucose dehydrogenase from the Archaeon Haloferax mediterranei. This enzyme was solubilized in reverse micelles of hexadecyltrimethylammoniumbromide in cyclohexane, with 1-butanol as co-surfactant. Glucose dehydrogenase retained its catalytic properties in this organic medium, showing good stability at low water content, even at low salt concentration (125 mM NaCl). The dependence of the enzymatic activity on the molar water surfactant ratio (w0=[H2O]/[surfactant]) increased with rising water content. Surprisingly, the activity of this extreme halophilic enzyme did not depend on the salt concentration in reverse micelles. The kinetic of the enzymatic oxidation of β-D-glucose to D-glucono-1,5-lactone using NADP+ as coenzyme for the glucose dehydrogenase from Haloferax mediterranei was also studied in the reverse micellar system.  相似文献   

12.
Summary The colorimetric method of Lowry and Tinsley can be used for free fatty acid determination in reversed micellar systems of AOT [bis-(2-ethyl-hexyl) sulphosuccinate sodium salt in isooctane. The concentration of AOT was found to affect the optical density of the blanks as well as the slopes of the calibration curves. This effect was ascribed to a partition effect of AOT between the organic and the aqueous phases.  相似文献   

13.
Solubilization and interaction of α-tocopherol into bis(2-ethylhexyl)sulphosuc cinate sodium salt microemulsion systems have been studied by temperature dependent phase transition, viscosity and nuclear magnetic resonance studies. Tocopherol being an amphiphilic molecule dissolves into the interfacial surfactant monolayer of the microemul sion droplets. The dissolution leads to an enhancement of the rigidity of the surfactant monolayer as studied by the increase in mixing and phase transition temperatures of the microemulsion droplets. Solubilization of tocopherol into microemulsion droplets causes an increase in the effective size of the droplet and as a consequence, the inter-droplet interactions are also increased. The water binding capacity of the surfactant (bis(2-ethylhexyl)sulphosuccinate sodium salt) is reduced due to solubilization of tocopherol as is evidenced from the downfield shifts of water proton magnetic resonances. In the presence of the dissolved electrolytes into the aqueous core, tocopherol is squeezed out of the microemulsion droplets increasing the membrane fluidity and permeability.  相似文献   

14.
Enoate reductase (EC 1.3.1.31) can stereospecifically reduce a variety of alpha,beta-unsaturated carboxylates. Its use was extended to apolar media by incorporating the enzyme into a reversed micellar medium. The kinetics of the enzyme in such a medium have been investigated using 2-methylbutenoic acid as substrate and NADH as a cofactor and compared with the reaction rates in aqueous solution. In aqueous solution the enzyme obeys a ping pong mechanism [Bühler et al. (1982) Hoppe-Seyler's Z. Physiol. Chem 363, 609-625]. In 50 mM Hepes pH = 7.0 with ionic strength of 0.05 M the Michaelis constants for NADH and 2-methylbutenoic acid are 20 microM and 6.0 mM respectively. In reversed micelles the kinetics of the reaction (Michaelis constant, maximum velocity as well as inhibitory effects) were markedly different. The rate of the enzymatic reaction of enoate reductase was studied using various concentrations of 2-methylbutenoic acid and various NADH concentrations. In reversed micelles composed of the anionic detergent sodium di(ethylhexyl)sulphosuccinate, the enzymatic reaction deviates substantially from the values in aqueous solution. Using our model (see preceding paper in this issue of the journal), all kinetics could be explained as evolving from enclosure in reversed micelles without any change in the intrinsic rate parameters of the enzyme. So the enzyme itself is unaffected by incorporation in reversed micelles, but the rate of intermicellar exchange as well as the microheterogeneity of the medium, resulting in very high local concentrations of the substrate, are the most important factors altering the reaction pattern. The effect of the composition of the reversed micellar medium was also investigated using either a nonionic or a cationic surfactant. In these solutions too, exchange and microheterogeneity of the medium proved to be the most important parameters influencing the enzymatic reaction. In all reversed micellar solutions inhibition by the enoate was observed at an overall concentration of 0.5-5 mM, implying that a concentration of substrate equal to the Km value in aqueous solution may already cause inhibition in reversed micelles. At this level no inhibition by NADH was observed. The microheterogeneity of the medium also explains this inhibition of the enzyme at relatively low 2-methylbutenoic acid concentrations.  相似文献   

15.
The reactivity, stability and unfolding of wild-type (WT) Fusarium solani pisi cutinase and L153Q, S54D and T179C variants were studied in the absence and presence of the dioctyl sulfosuccinate sodium salt (AOT) surfactant. In the absence of surfactant the S54D variant catalytic activity is similar to that of the WT cutinase, whereas L153Q and T179C variants show a lower activity. AOT addition induces an activity reduction for WT cutinase and its variants, although for low AOT concentrations a small increase of activity was observed for S54D and T179C. The enzyme deactivation in the presence of 0.5 mM AOT is relatively slow for the S54D and T179C variants when compared to wild-type cutinase and L153Q variant. These results were correlated with secondary and tertiary structure changes assessed by the CD spectrum and fluorescence of the single tryptophan and the six tyrosine residues. The WT cutinase and S54D variant have similar secondary and tertiary structures that differ from those of T179C and L153Q variants. L153Q, S54D and T179C mutations prevent the formation of hydrophobic crevices responsible for the unfolding by anionic surfactants, with the consequent decrease of the AOT-cutinase interactions.  相似文献   

16.
《Luminescence》2003,18(1):31-36
Enhanced chemiluminescence (ECL) describes the phenomenon of increased light output in the luminol oxidation reaction catalysed by horseradish peroxidase (HRP) in the presence of certain compounds, such as para‐iodophenol. In this work, the effects of phenol on the para‐iodophenol‐enhanced HRP‐catalysed chemiluninescent reaction intensity in an aqueous buffer (Tris–HCl buffer, pH 8.5) and in a surfactant–water–octane mixture were compared. Preincubation of HRP at low phenol concentrations stimulated the chemiluminescent intensity in the assay performed in an aqueous buffer, but did not have significant effect in the sodium bis(2‐ethylhexyl)sulphosuccinate) (Aerosol OT, AOT) applied system. It was also observed that HRP preincubation with phenol concentration higher than 0.003 mg/mL produced an inhibitory effect on the enzyme activity for both assay systems. Only an inhibitory effect of phenol on the chemiluminescent intensity in the surfactant system in octane (as organic solvent) was observed. Three assays were developed to determine phenol concentration in water and in an organic solvent mixture. The detection limits were 0.006, 0.003 and 0.0005 mg/mL, respectively, for the buffer‐containing system, the AOT‐applied system with phenol standard solutions in water and for the AOT‐applied system with phenol standard solutions in octane. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
The fungal lipolytic enzyme cutinase, incorporated into sodium bis-(2ethylhexyl) sulfosuccinate reversed micelles has been investigated using dynamic light scattering. The reversed micelles form spontaneously when water is added to a solution of sodium bis-(2ethylhexyl) sulfosuccinate in isooctane. When an enzyme is previously dissolved in the water before its addition to the organic phase, the enzyme will be incorporated into the micelles. Enzyme encapsulation in reversed micelles can be advantageous namely to the conversion of water insoluble substrates and to carry out synthesis reactions. However protein unfolding occurs in several systems as for cutinase in sodium bis-(2ethylhexyl) sulfosuccinate reversed micelles. Dynamic light scattering measurements of sodium bis-(2ethylhexyl) sulfosuccinate reversed micelles with and without cutinase were taken at different water to surfactant ratios. The results indicate that cutinase was attached to the micellar wall and that might cause cutinase unfolding. The interactions between cutinase and the bis-(2ethylhexyl) sulfosuccinate interface are probably the driving force for cutinase unfolding at room temperature. Twenty-four hours after encapsulation, when cutinase is unfolded, a bimodal distribution was clearly observed. The radii of reversed micelles with unfolded cutinase were determined and found to be considerable larger than the radii of the empty reversed micelles. The majority of the reversed micelles were empty (90-96% of mass) and the remainder (4-10%) containing unfolded cutinase were larger by 26-89 A.  相似文献   

18.
Activation of lignin peroxidase (LIP) in an organic solvent by reversed micelles was investigated. Bis(2-ethylhexyl)sulfosuccinate sodium salt (AOT) was used as a surfactant to form a reversed micelle. Lyophilized LIP from an optimized aqueous solution exhibited no enzymatic activity in any organic solvents examined in this study; however, LIP was catalytically active by being entrapped in the AOT reversed micellar solution. LIP activity in the reversed micelle was enhanced by optimizing either the preparation or the operation conditions, such as water content and pH in water pools of the reversed micelle and the reaction temperature. Stable activity was obtained in isooctane because of the stability of the reversed micelle. The optimal pH was 5 in the reversed micellar system, which shifted from pH 3 in the aqueous solution. The degradation reaction of several environmental pollutants was attempted using LIP hosted in the AOT reversed micelle. Degradation achieved after a 1-h reaction reached 81%, 50%, and 22% for p-nonylphenol, bisphenol A, and 2,4-dichlorophenol, respectively. This is the first report on the utilization of LIP in organic media.  相似文献   

19.
Cellular lysis of Streptococcus faecalis induced with triton X-100.   总被引:9,自引:5,他引:4       下载免费PDF全文
Lysis of exponential-phase cultures of Streptococcus faecalis ATCC 9790 was induced by exposure to both anionic (sodium dodecyl sulfate) and nonionic (Triton X-100) surfactants. Lysis in response to sodium dodecyl sulfate was effective only over a limited range of concentrations, whereas Triton X-100-induced lysis occurred over a broad range of surfactant concentrations. The data presented indicate that the bacteriolytic response of growing cells to Triton X-100: (i) was related to the ratio of surfactant to cells and not the surfactant concentration per se; (ii) required the expression of the cellular autolytic enzyme system; and (iii) was most likely due to an effect of the surfactant on components of the autolytic system that are associated with the cytoplasmic membrane. The possibility that Triton X-100 may induce cellular lysis by releasing a lipid inhibitor of the cellular autolytic enzyme is discussed.  相似文献   

20.
Previous biophysical studies of tetrameric malate dehydrogenase from the halophilic archaeon Haloarcula marismortui (Hm MalDH) have revealed the importance of protein-solvent interactions for its adaptation to molar salt conditions that strongly affect protein solubility, stability, and activity, in general. The structures of the E267R stability mutant of apo (-NADH) Hm MalDH determined to 2.6 A resolution and of apo (-NADH) wild type Hm MalDH determined to 2.9 A resolution, presented here, highlight a variety of novel protein-solvent features involved in halophilic adaptation. The tetramer appears to be stabilized by ordered water molecule networks and intersubunit complex salt bridges "locked" in by bound solvent chloride and sodium ions. The E267R mutation points into a central ordered water cavity, disrupting protein-solvent interactions. The analysis of the crystal structures showed that halophilic adaptation is not aimed uniquely at "protecting" the enzyme from the extreme salt conditions, as may have been expected, but, on the contrary, consists of mechanisms that harness the high ionic concentration in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号