首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have altered the structure of the COOH-terminus of the vesicular stomatitis virus (VSV) glycoprotein (G) by introducing deletions into a cDNA clone encoding G protein. We examined the effects of these deletions on intracellular transport of G protein after expression of the deleted genes in eucaryotic cells under control of the SV40 late promoter. To prevent readthrough of translation into vector sequences, we introduced synthetic DNA linkers containing translation stop codons at the site of the deletion. G proteins that lacked the cytoplasmic domain and most of the transmembrane domain were secreted slowly from the cells. Deletion mutants affecting the structure of the cytoplasmic domain fell into two classes. The first class completely arrested transport of the protein to the cell surface at a stage prior to acquisition of complex oligosaccharides. The second class showed severely reduced rates of complex sugar addition although the proteins were eventually transported to the cell surface. Indirect immunofluorescence microscopy suggested that mutant proteins in both classes may accumulate in the rough endoplasmic reticulum.  相似文献   

2.
Agents that affect intracellular cation and pH gradients and inhibit energy production have been tested for their ability to modulate the processing and secretion of the free alpha subunit and the alpha beta dimer of human chorionic gonadotropin (hCG) by cultured human trophoblastic cells (JAR). Incubation of JAR cells with monensin or nigericin, monovalent cation ionophores that produce equilibration of Na+ and K+ across cellular membranes, dicyclohexylcarbodiimide, an agent that inhibits intracellular membrane ATPases, and methylamine, which neutralizes intracellular pH gradients, produced similar effects on hCG processing and secretion. All these agents inhibited the processing of the asparagine-linked oligosaccharide chains of free alpha subunit and the alpha and beta subunits contained in the hCG dimer. Moreover, after treatment of JAR cells with these agents, there was an intracellular accumulation of precursor forms and an inhibition of secretion of "mature" forms of hCG. Monensin affected the processing and secretion of hCG subunits differently at different concentrations. At 5 X 10(-7) M, monensin inhibited the processing of the asparagine-linked oligosaccharides of hCG without altering the rate-limiting step in the secretory pathway or blocking hCG secretion. The intracellular hCG subunit precursors in both control and monensin-treated cells contained a similar array of high mannose oligosaccharides, predominantly of the Man8GlcNAc2 and Man9GlcNAc2 types. However, monensin-treated cells secreted hCG subunits that contained endo H-sensitive oligosaccharides of the high mannose (mostly Man5GlcNAc2) and hybrid types rather than the endo H-resistant complex chains synthesized by control cells. Nevertheless, a full complement of serine-linked oligosaccharides was added to the hCG-beta subunit in monensin-treated cells. These results indicate that the intracellular movement of hCG from the rough endoplasmic reticulum to the cell surface was not inhibited by monensin at a concentration that impaired Golgi-localized steps in the processing of asparagine-linked oligosaccharides. At 5 X 10(-6) M, monensin significantly inhibited secretion of hCG and created a new rate-limiting step in the processing pathway. hCG subunits bearing Man5GlcNAc2 units accumulated intracellularly, suggesting that the equilibration of intracellular Na+/K+ pools blocked oligosaccharide processing at an intra-Golgi point, perhaps by inhibiting movement of the glycoprotein hormone from the "cis" to the "trans" Golgi compartment. Since the other drugs mentioned above produced similar effects on hCG processing and secretion, it appears that maintenance of intracellular cation and pH gradients is necessary for the intra-Golgi transport of glycoprotein hormones.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Karaivanova  VK; Luan  P; Spiro  RG 《Glycobiology》1998,8(7):725-730
Endo-alpha-D-mannosidase is an enzyme involved in N-linked oligosaccharide processing which through its capacity to cleave the internal linkage between the glucose-substituted mannose and the remainder of the polymannose carbohydrate unit can provide an alternate pathway for achieving deglucosylation and thereby make possible the continued formation of complex oligosaccharides during a glucosidase blockade. In view of the important role which has been attributed to glucose on nascent glycoproteins as a regulator of a number of biological events, we chose to further define the in vivo action of endomannosidase by focusing on the well characterized VSV envelope glycoprotein (G protein) which can be formed by the large array of cell lines susceptible to infection by this pathogen. Through an assessment of the extent to which the G protein was converted to an endo-beta-N- acetylglucosaminidase (endo H)-resistant form during a castanospermine imposed glucosidase blockade, we found that utilization of the endomannosidase-mediated deglucosylation route was clearly host cell specific, ranging from greater than 90% in HepG2 and PtK1 cells to complete absence in CHO, MDCK, and MDBK cells, with intermediate values in BHK, BW5147.3, LLC-PK1, BRL, and NRK cell lines. In some of the latter group the electrophoretic pattern after endo H treatment suggested that only one of the two N-linked oligosaccharides of the G protein was processed by endomannosidase. In the presence of the specific endomannosidase inhibitor, Glcalpha1-->3(1- deoxy)mannojirimycin, the conversion of the G protein into an endo H- resistant form was completely arrested. While the lack of G protein processing by CHO cells was consistent with the absence of in vitro measured endomannosidase activity in this cell line, the failure of MDBK and MDCK cells to convert the G protein into an endo H-resistant form was surprising since these cell lines have substantial levels of the enzyme. Similarly, we observed that influenza virus hemagglutinin was not processed in castanospermine-treated MDCK cells. Our findings suggest that studies which rely on glucosidase inhibition to explore the function of glucose in controlling such critical biological phenomena as intracellular movement or quality control should be carried out in cell lines in which the glycoprotein under study is not a substrate for endomannosidase action.   相似文献   

4.
We compared the effects of the cationic ionophore, monensin, on the synthesis, maturation and release of vesicular stomatitis virus (VSV) in cultures of Chinese hamster ovary (CHO) cells and the monensin-resistant clone, MonR-31. Our results depended on the dose and time of the addition of monensin to the infected cells, from 1 h prior to VSV infection to 1 h after infection. VSV production was more resistant in MonR-31 than in CHO cells when the ionophore was added 1 h prior to VSV infection. Monensin added 1 h after VSV infection showed the opposite phenomenon; release of virus particles into the medium was 10- to 10(5)-fold less in MonR-31 cells than in CHO cells, and the intracellular virus number in the resistant cells was one-third to one-fourth of that in the parental CHO cells. Syntheses of all virus-associated G, N and M proteins were inhibited in both cell lines by monensin, but especially so in the MonR-31 cells. There were no marked qualitative changes in the biochemical properties of viral glycoprotein G in virus-infected CHO and MonR-31 cells treated with monensin after virus infection. An endoglycosidase H-resistant G with a molecular weight smaller than that of normal G and attachments of palmitate or fucose on the truncated G protein appeared. Alteration of the secretion of as well as the synthesis of the enveloped virus is discussed in relation to the monensin susceptibility of the resistant MonR-31 clone.  相似文献   

5.
Analysis of viral glycoprotein expression on surfaces of monensin- treated cells using a fluorescence-activated cell sorter (FACS) demonstrated that the sodium ionophore completely inhibited the appearance of the vesicular stomatitis virus (VSV) G protein on (Madin- Darby canine kidney) MDCK cell surfaces. In contrast, the expression of the influenza virus hemagglutinin (HA) glycoprotein on the surfaces of MDCK cells was observed to occur at high levels, and the time course of its appearance was not altered by the ionophore. Viral protein synthesis was not inhibited by monensin in either VSV- or influenza virus-infected cells. However, the electrophoretic mobilities of viral glycoproteins were altered, and analysis of pronase-derived glycopeptides by gel filtration indicated that the addition of sialic acid residues to the VSV G protein was impaired in monensin-treated cells. Reduced incorporation of fucose and galactose into influenza virus HA was observed in the presence of the ionophore, but the incompletely processed HA protein was cleaved, transported to the cell surface, and incorporated into budding virus particles. In contrast to the differential effects of monensin on VSV and influenza virus replication previously observed in monolayer cultures of MDCK cells, yields of both viruses were found to be significantly reduced by high concentrations of monensin in suspension cultures, indicating that cellular architecture may play a role in determining the sensitivity of virus replication to the drug. Nigericin, an ionophore that facilitates transport of potassium ions across membranes, blocked the replication of both influenza virus and VSV in MDCK cell monolayers, indicating that the ion specificity of ionophores influences their effect on the replication of enveloped viruses.  相似文献   

6.
Spiro MJ  Spiro RG 《Glycobiology》2001,11(10):803-811
To further explore the localization of the N-deglycosylation involved in the endoplasmic reticulum (ER)-associated quality control system we studied HepG2 cells infected with vesicular stomatitis virus (VSV) and its ts045 mutant, as in this system oligosaccharide release can be attributed solely to the VSV glycoprotein (G protein). We utilized the restricted intracellular migration of the mutant protein as well as dithiothreitol (DTT), low temperature, and a castanospermine (CST)-imposed glucosidase blockade to determine in which intracellular compartment deglycosylation takes place. Degradation of the VSV ts045 G protein was considerably greater at the nonpermissive than at the permissive temperature; this was reflected by a substantial increase in polymannose oligosaccharide release. Under both conditions these oligosaccharides were predominantly in the characteristic cytosolic form, which terminates in a single N-acetylglucosamine (OS-GlcNAc(1)); this was also the case in the presence of DTT, which retains the G protein completely in the ER. However when cells infected with the VSV mutant were examined at 15 degrees C or exposed to CST, both of which represent conditions that impair ER-to-cytosol transport, the released oligosaccharides were almost exclusively (> 95%) in the vesicular OS-GlcNAc(2) form; glucosidase blockade had a similar effect on the wild-type virus. Addition of puromycin to glucosidase-inhibited cells resulted in a pronounced reduction (> 90%) in oligosaccharide release, which reflected a comparable impairment in glycoprotein biosynthesis and indicated that the OS-GlcNAc(2) components originated from protein degradation rather than hydrolysis of oligosaccharide lipids. Our findings are consistent with N-deglycosylation of the VSV G protein in the ER and the subsequent transport of the released oligosaccharides to the cytosol where OS-GlcNAc(2) to OS-GlcNAc(1) conversion by an endo-beta-N-acetylglucosaminidase takes place. Studies with the ts045 G protein at the nonpermissive temperature permitted us to determine that it can be processed by Golgi endomannosidase although remaining endo H sensitive, supporting the concept that it recycles between the ER and cis-Golgi compartments.  相似文献   

7.
Vesicular stomatitis virus (VSV) contains a single structural glycoprotein in which the sugar sequences are largely host specified. We have used VSV as a probe to study the changes in cell glycoprotein metabolism induced by virus transformation. Analysis of purified VSV grown in baby hamster kidney (BHK) or polyoma transformed BHK cells showed that the virus glycoproteins have identical apparent molecular weights. The glycopeptides derived from the glycoproteins by extensive pronase digestion have an identical molecular weight distribution.On the basis of labeling experiments with fucose, mannose, and glucosamine, the oligosaccharide moieties of the VSV glycoprotein were different in virus from the two cell lines. The VSV glycopeptides from transformed cells showed an increased resistance to cleavage by an endoglycosidase, indicating structural changes in the core region of the oligosaccharides. They also showed an increased ratio of sialic acid to N-acetylglucosamine.VSV grows in a wide variety of cell types, and the carbohydrate structures of its single glycoprotein are amenable to analysis with specific glycosidases. The virus thus provides an excellent tool with which to study alterations induced by cell transformation in the glycosylation of membrane proteins.  相似文献   

8.
Maturation of the vesicular stomatitis virus (VSV) glycoprotein (G) to the cell surface is blocked at the nonpermissive temperature in cells infected with temperature-sensitive mutants in the structural gene encoding for G. We show here that these mutants fall into two discrete classes with respect to the stage of post-translational processing at which the block occurs. In all cases the mutant glycoproteins are inserted normally into the endoplasmic reticulum membrane, receive the two-high-mannose oligosaccharides, and apparently lose the NH2-terminal signal sequence of 16 amino acids. In cells infected with one class of mutants, no further processing of the glycoprotein occurs, and we conclude that the mutant protein is blocked at a pre-Golgi stage. In cells infected with ts L511(V), however, addition of the terminal sugars galactose and sialic acid occurs normally. Thus the maturation of G proceeds through several Golgi functions but is blocked before its appearance on the cell surface. The oligosaccharide chain of ts L511(V) G, accumulated at either the permissive (where surface maturation occurs) or the nonpermissive temperature, lacks one saccharide residue, probably fucose. In addition, no fatty acid residues are added to the ts L511(V) G protein at the nonpermissive temperature, although addition does occur under permissive conditions.  相似文献   

9.
Double-label immunofluorescence staining studies in virus-infected subclone 11 of LB cells indicated that almost all of the vesicular stomatitis virus (VSV) glycoprotein (G) was plasma membrane-associated during the logarithmic phase of virus replication. In contrast, treatment with interferon (IFN) resulted in inhibition of VSV-G transport, so that almost all of the G remained associated with the Golgi complex (GC) at comparable times after infection. In both IFN-treated and control cells, G was resistant to treatment with the enzyme endo-beta-N-acetylglucosamine H (endo H) indicating that the bulk of the G had reached the trans compartment of the GC.  相似文献   

10.
The transport of the gp70 glycoprotein to the cell surface and concomitant release of infectious virus was inhibited by treatment of Friend murine leukemia virus-infected Eveline cells with the sodium ionophore monensin. Virus yields were reduced more than 50-fold by 10(-5) M monensin, whereas particle production was reduced by 50% in monensin-treated cells. The resulting particles failed to incorporate newly synthesized gp70 and p15(E), whereas the other structural proteins, p30, p15, p12, and p10, were incorporated into virions. However, monensin did not inhibit the incorporation into virions of preformed gp70. A reduction in the efficiency of cleavage of the PrENV glycoprotein precursor and a defect in the processing of simple endo-H-sensitive to complex endo-H-resistant oligosaccharides suggest that intracellular transport of gp70 may be blocked before its entry into the Golgi apparatus. Fewer particles were found to bud from the cell surface, but intracellular vacuoles with budding virions were detected. Ferritin labeling and pulse-chase studies suggested a cell surface origin for these vacuoles. These experiments indicate that monensin inhibits the transport of Friend murine leukemia virus glycoproteins at an early stage, with a resultant block in the assembly and release of infectious virus.  相似文献   

11.
We have observed a striking differential effect of the ionophore, monensin, on replication of influenza virus and vesicular stomatitis virus (VSV) in Madin-Darby canine kidney (MDCK) and baby hamster kidney (BHK21) cells. In MDCK cells, influenza virus is assembled at the apical surfaces, whereas VSV particles bud from the basolateral membranes; no such polarity of maturation is exhibited in BHK21 cells. A 10(-6) M concentration of monensin reduces VSV yields in MDCK cells by greater than 90% as compared with controls, whereas influenza virus yields are unaffected. In BHK21 cells, monensin also inhibits VSV production, but influenza virus is also sensitive to the ionophore. Immunofluorescent staining of fixed and unfixed MDCK monolayers indicates that VSV glycoproteins are synthesized in the presence of monensin, but their appearance on the plasma membrane is blocked. Electron micrographs of VSV-infected MDCK cells treated with monensin show VSV particles aggregated within dilated cytoplasmic vesicles. Monensin-treated influenza virus-infected MDCK cells also contain dilated cytoplasmic vesicles, but virus particles were not found in these structures, and numerous influenza virions were observed budding at the cell surface. These results indicate that influenza virus glycoprotein transport is not blocked by monensin treatment, whereas there is a block in transport of VSV G protein. Thus it appears that at least two distinct pathways of transport of glycoproteins to the plasma membrane exist in MDCK cells, and only one of them is blocked by monensin.  相似文献   

12.
The intracellular sites of biosynthesis of the structural proteins of murine hepatitis virus A59 have been analyzed using cell fractionation techniques. The nucleocapsid protein N is synthesized on free polysomes, whereas the envelope glycoproteins E1 and E2 are translated on the rough endoplasmic reticulum (RER). Glycoprotein E2 present in the RER contains N-glycosidically linked oligosaccharides of the mannose-rich type, supporting the concept that glycosylation of this protein is initiated at the co-translational level. In contrast, O-glycosylation of E1 occurs after transfer of the protein to smooth intracellular membranes. Monensin does not interfere with virus budding from the membranes of the endoplasmic reticulum, but it inhibits virus release and fusion of infected cells. The oligosaccharide side chains of E2 obtained under these conditions are resistant to endoglycosidase H and lack fucose suggesting that transport of this glycoprotein is inhibited between the trans Golgi cisternae and the cell surface. Glycoprotein E1 synthesized in the presence of monensin is completely carbohydrate-free. This observation suggests that the intracellular transport of this glycoprotein is also blocked by monensin.  相似文献   

13.
M A Whitt  P Zagouras  B Crise    J K Rose 《Journal of virology》1990,64(10):4907-4913
We have recently described an assay in which a temperature-sensitive mutant of vesicular stomatitis virus (VSV; mutant tsO45), encoding a glycoprotein that is not transported to the cell surface, can be rescued by expression of wild-type VSV glycoproteins from cDNA (M. Whitt, L. Chong, and J. Rose, J. Virol. 63:3569-3578, 1989). Here we examined the ability of mutant G proteins to rescue tsO45. We found that one mutant protein (QN-1) having an additional N-linked oligosaccharide at amino acid 117 in the extracellular domain was incorporated into VSV virions but that the virions containing this glycoprotein were not infectious. Further analysis showed that virus particles containing the mutant protein would bind to cells and were endocytosed with kinetics identical to those of virions rescued with wild-type G protein. We also found that QN-1 lacked the normal membrane fusion activity characteristic of wild-type G protein. The absence of fusion activity appears to explain lack of particle infectivity. The proximity of the new glycosylation site to a sequence of 19 uncharged amino acids (residues 118 to 136) that is conserved in the glycoproteins of the two VSV serotypes suggests that this region may be involved in membrane fusion. The mutant glycoprotein also interferes strongly with rescue of virus by wild-type G protein. The strong interference may result from formation of heterotrimers that lack fusion activity.  相似文献   

14.
M F Schmidt  M J Schlesinger 《Cell》1979,17(4):813-819
The glycoprotein (G) of vesicular stomatitis virus (VSV) binds 1–2 moles of fatty acid per mole of protein. The fatty acids cannot be released by repeated extractions of the protein with organic solvents, nor can they be released by denaturing the protein with ionic or nonionic detergents. Pronase digestion of G yields an organic extractable fragment that contains bound fatty acid. The fatty acid is quantitatively released from this fragment and from intact G by mild alkali treatment in methanol and is identified by gas-liquid and thin-layer chromatography as, predominantly, the methyl ester of palmitic acid. Insignificant amounts of phosphate are found in G, thus ruling out the presence of bound phospholipid. Chicken embryo fibroblast pre-labeled with 3H-palmitate and then infected with VSV for 4 hr show the presence of 3H label in G but not in other viral structural proteins. The 3H label is present only in the fatty acid moiety of the protein. Much smaller amounts of 3H fatty acid are bound to G protein formed by the VSV mutant ts045 grown at the nonpermissive temperature, and no 3H fatty acid is bound to G synthesized at 37°C in cells pretreated with tunicamycin, an inhibitor of glycosylation. However, infection with the VSV-Orsay strain at 30°C in the presence of tunicamycin allows for production of VSV particles with nonglycosylated G (Gibson, Schlesinger and Kornfeld, 1979), and this G has the same proportion of the fatty acid as does the normal glycosylated G. These data indicate that fatty acids become covalently attached to the G polypeptide chain during maturation of the protein—perhaps as the glycoprotein moves to the cell's plasma membrane.  相似文献   

15.
Previous biosynthetic studies of the ascites 13762 rat mammary adenocarcinoma cell surface sialomucin ASGP-1 (ascites sialoglycoprotein-1) showed that it is synthesized initially as a poorly glycosylated immature form, which is converted to a larger premature form (t1/2 30 min) and more slowly to the mature glycoprotein (t1/2 greater than 4 h). In the present study O-glycosylation of ASGP-1 polypeptide is shown to occur in two phases: an early phase complete in less than 30 min, which corresponds to the synthesis of the premature form, and a later phase that continues for hours and corresponds to the synthesis of the mature form. Pulse-chase labeling studies indicate that 95% of the ASGP-1 has moved to the cell surface in 2 h. Since transit to the cell surface is faster than the slow phase of addition of new oligosaccharides, some new oligosaccharides must be added after ASGP-1 has reached the cell surface. Initiation of new oligosaccharides on cell surface ASGP-1 was demonstrated directly using a biotinylation procedure to identify cell surface molecules. Glucosamine labeling of biotinylated ASGP-1 was shown to occur on galactosamine residues, which are linked to the polypeptide, establishing the addition of new oligosaccharides to the cell surface molecules. Finally, resialylation studies indicate that ASGP-1 rapidly recycles through a sialylating compartment. From these results we propose that ASGP-1 reaches the cell surface in an incompletely glycosylated state and that additional oligosaccharides are added to the glycoprotein in a second process involving recycling.  相似文献   

16.
We have studied the effects of inhibiting the initial steps in processing of asparagine-linked oligosaccharides on the formation of vesicular stomatitis virus (VSV). Our data show that conditions which prevent the removal of glucose can block the growth of this virus. Our conclusion that inhibition of VSV synthesis is due specifically to an effect on the ability of the virus glycoprotein, G, to mature to a correct functional conformation is based on the following observations: (i) two drugs, deoxynojirimycin and castanospermine , both of which selectively inhibit the processing glucosidases, affected virus growth; (ii) only one of the two strains (San Juan and Orsay ) of VSV tested was affected and that strain, VSV(San Juan), is known to have a G protein highly sensitive to alterations in oligosaccharide structure; (iii) the effect was to make the formation of VSV(San Juan) temperature-sensitive, a result previously observed with alterations in the oligosaccharides on G protein; (iv) a cell variant missing glucosidase II activity also became temperature-sensitive in its ability to produce VSV(San Juan) but not VSV( Orsay ). Although inhibition of glucosidase activity by 1- deoxynojirimycin caused a 10-fold drop in virion formation, transport of G protein to the plasma membrane was not altered. The growth of VSV(San Juan) at 40 degrees C was not affected when subsequent steps in the processing pathway were blocked. These data indicate that by the time the glucose residues are removed G has attained a stable conformation.  相似文献   

17.
Cerulenin, an antibiotic that inhibits de novo fatty acid and cholesterol biosynthesis, effectively inhibited the formation and release of virus particles from chicken embryo fibroblasts infected with Sindbis or vesicular stomatitis virus (VSV). When added for 1 h at 3 h postinfection, the antibiotic blocked VSV particle production by 80 to 90% and inhibited incorporation of [3H]palmitic acid into the VSV glycoprotein by an equivalent amount. The effect of this antibiotic on virus protein and RNA biosynthesis was significantly less than that on fatty acid acylation. Nonacylated virus glycoproteins accumulated inside and on the surface of cerulenin-treated cells. These data indicate that fatty acid acylation is not essential for intracellular transport of these membrane proteins, but it may have an important role in the interaction of glycoproteins with membranes during virus assembly and budding.  相似文献   

18.
Because of the extensive oligosaccharide heterogeneity of the membrane glycoprotein (G) from the Hazelhurst strain of vesicular stomatitis virus, this virus has been used as a specific intracellular probe of altered protein glycosylation in Rous sarcoma virus-transformed versus normal baby hamster kidney cells. Over 70% of G protein from virus released from the transformed cells had acidic-type oligosaccharides at both glycosylation sites, compared to less than 50% from the corresponding normal host cells. The remaining G protein contained an acidic-type oligosaccharide at one site and an endo-beta-N-acetylglucosaminidase H-sensitive oligosaccharide at the other. The major endoglycosidase-sensitive species were sialylated hybrid-type (NeuNAc-Gal-GlcNAc-Man5GlcNAc2-Asn) from the transformed and neutral-type (Man5-6GlcNAc2-Asn) from the normal host cells. The degree of branching of the acidic-type oligosaccharides was not increased in the transformed cells (approx. 80% biantennary for viral G protein from both cell types). At a reduced growth temperature (24 versus 37 degrees C), the G protein oligosaccharides were more extensively processed in both cell types (approximately 85-95% of G protein contained acidic-type structures at both sites), even though the level of viral protein synthesis and virus release was decreased. Essentially all of the minor, endoglycosidase-sensitive oligosaccharides on mature viral G protein were sialic acid-containing hybrid-type structures. At 24 degrees C the branching of the acidic-type oligosaccharides was increased in the virus released from the transformed cells versus normal cells.  相似文献   

19.
alpha 1-Acid glycoprotein (alpha 1-AGP) is a glucocorticoid inducible gene product that is synthesized and secreted by certain rat hepatoma tissue culture (HTC) cell lines such as M1.54. Exposure to monensin, a Na+-K+ ionophore, causes a significant redistribution of alpha 1-AGP into two distinct fractions; immunoprecipitation of [35S]methionine-labeled proteins revealed that a 27% decrease in secretion accounts for a sixfold increase in accumulation of a stable intracellular species. The new intracellular alpha 1-AGP is more heterogeneous than normal while the extra-cellular form is 6000 Da smaller than normal. These effects are due to selective alterations in carbohydrate maturation; endo-beta-N-acetylglucosaminidase H (endo H) digestion demonstrated that both alpha 1-AGP species contain variable numbers of endo H-resistant oligosaccharide side chains ranging between zero and five. Ricin affinity chromatography revealed that the attachment of galactose residues is strikingly correlated with alpha 1-AGP externalization while neuraminidase digestions demonstrated that sialic acid attachment appears unessential for its secretion. Taken together, our results suggest that in the presence of monensin the cellular transport of intracellular destined and externalized alpha 1-AGP proceeds in common through the early segments of the Golgi and at a point prior to or at the compartment containing galactosyl transferase, alpha 1-AGP becomes committed for secretion.  相似文献   

20.
The carbohydrate portion of the G glycoprotein of vesicular stomatitis virus (VSV) grown in CHO cells (CHO/VSV) has been fractionated on BioGelP6, concanavalin A-Sepharose, and pea lectin-agarose. The results suggest that, in addition to sialic acid and fucose heterogeneity, the asparagine-linked complex carbohydrate moieties of CHO/VSV also display branching heterogeneity. Although the majority of the glycopeptides bind to concanavalin A-Sepharose in a manner typical of certain biantennary carbohydrate structures, a significant proportion do not bind to the lectin. The latter behavior is typical of tri- or tetraantennary (branched) carbohydrate structures. The CHO/VSV glycopeptides which do not bind to concanavalin A-Sepharose separate into bound and unbound fractions on pea lectin-agarose suggesting that they include at least two different types of (branched) carbohydrate structures. Glycopeptides from the G glycoprotein of VSV grown in two, independently derived CHO glycosylation mutants which belong to complementation group 4 (Lec4 mutants) were examined in the same manner. In contrast to glycopeptides from CHO/VSV, glycopeptides from Lec4/VSV which passed through concanavalin A-Sepharose did not contain a component which subsequently bound to pea lectin-agarose. A glycopeptide fraction with these lectin-binding properties was also missing from cell surface glycopeptides derived from Lec4 cells. The combined results are consistent with the hypothesis that Lec4 CHO glycosylation mutants lack a glycosyltransferase activity responsible for the addition of a (branch) N-acetylglucosamine residue linked β1,6 to mannose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号