首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
[Ru(bpy)2(dppz)](2+) (bpy = 2,2'-bipyridine, dppz = dipyrido- [3,2-a:2',3'-c]phenazine) (RuBD), a long-lifetime metalligand complex, displays favorable photophysical properties. These include long lifetime, polarized emission, but no significant fluorescence from the complex that is not bound to DNA. To show the usefulness of this luminophore (RuBD) for probing the bending and torsional dynamics of nucleic acids, its intensity and anisotropy decays when intercalated into supercoiled and relaxed pTZ18U plasmids were examined using frequency-domain fluorometry with a blue light-emitting diode (LED) as the modulated light source. The mean lifetimes for the supercoiled plasmids (< tau > = 148 ns) were somewhat shorter than those for the relaxed plasmids (< tau > = 160 ns). This suggests that the relaxed plasmids were shielded more efficiently from water. The anisotropy decay data also showed somewhat shorter slow rotational correlation times for supercoiled plasmids (288 ns) than for the relaxed plasmids (355 ns). The presence of two rotational correlation times suggests that RuBD reveals both the bending and torsional motions of the plasmids. These results indicate that RuBD can be useful for studying both the bending and torsional dynamics of nucleic acids.  相似文献   

2.
3.
The internal motion of F-actin in the time range from 10(-6) to 10(-3) second has been explored by measuring the transient absorption anisotropy of eosin-labeled F-actin using laser flash photolysis. The transient absorption anisotropy of eosin-F-actin at 20 degrees C has a component that decays in the submicrosecond time scale to an anisotropy of about 0.3. This anisotropy then decays with a relaxation time of about 450 microseconds to a residual anisotropy of about 0.1 after 2 ms. When the concentration of eosin-F-actin was varied in the range from 7 to 28 microM, the transient absorption anisotropy curves obtained were almost indistinguishable from each other. These results show that the anisotropy decay arises from internal motion of eosin-F-actin. Analysis of the transient absorption anisotropy curves indicates that the internal motion detected by the decay in anisotropy is primarily a twisting of actin protomers in the F-actin helix; bending of the actin filament makes a minor contribution only to the measured decay. The torsional rigidity calculated from the transient absorption anisotropy is 0.2 X 10(-17) dyn cm2 at 20 degrees C, which is about an order of magnitude smaller than the flexural rigidity determined from previous studies. Thus, we conclude that F-actin is more flexible in twisting than in bending. The calculated root-mean-square fluctuation of the torsional angle between adjacent actin protomers in the actin helix is about 4 degrees at 20 degrees C. We also found that the torsional rigidity is approximately constant in the temperature range from 5 to approximately 35 degrees C, and that the binding of phalloidin does not appreciably affect the torsional motion of F-actin.  相似文献   

4.
The experimental and analytical protocols required for obtaining rotational correlation times of biological macromolecules from fluorescence anisotropy decay measurements are described. As an example, the lumazine protein from Photobacterium leiognathi was used. This stable protein (Mr 21 200) contains the noncovalently bound, natural fluorescent marker 6,7-dimethyl-8-ribityllumazine, which has in the bound state a long fluorescence lifetime (tau = 14 ns). Shortening of the fluorescence lifetime to 2.6 ns at room temperature was achieved by addition of the collisional fluorescence quencher potassium iodide. The shortening of tau had virtually no effect on the rotational correlation time of the lumazine protein (phi = 9.4 ns, 19 degrees C). The ability to measure biexponential anisotropy decay was tested by the addition of Photobacterium luciferase (Mr 80 000), which forms an equilibrium complex with lumazine protein. Under the experimental conditions used (2 degrees C) the biexponential anisotropy decay can best be described with correlation times of 20 and 60 ns, representing the uncomplexed and luciferase-associated lumazine proteins, respectively. The unbound 6,7-dimethyl-8-ribityllumazine itself (tau = 9 ns) was used as a model compound for determining correlation times in the picosecond time range. In the latter case rigorous deconvolution from the excitation profile was required to recover the correlation time, which was shorter (100-200 ps) than the measured laser excitation pulse width (500 ps).  相似文献   

5.
A reference method for the deconvolution of polarized fluorescence decay data is described. Fluorescence lifetime determinations for p-terphenyl, p-bis[2-(5-phenyloxazolyl)]benzene and N-acetyltryptophanamide (AcTrpNH2) show that with this method more reliable fits of the decays can be made than with the scatterer method, which is most frequently used. Analysis of the AcTrpNH2 decay with p-terphenyl as the reference compound yields an excellent fit with lifetimes of 2.985 ns for AcTrpNH2 and 1.099 ns for p-terphenyl (20 degrees C), whereas the AcTrpNH2 decay cannot be satisfactorily fitted when the scatterer method is used. The frequency of the detected photons is varied to determine the conditions where pulse pile-up starts to affect the measured decays. At detection frequencies of 5 kHz and 15 kHz, which corresponds to 1.7% and 5% respectively of the rate of the excitation photons no effects are found. Decays measured at 30 kHz (10%) are distorted, indicating that pile-up effects play a role at this frequency. The fluorescence and fluorescence anisotropy decays of the tryptophan residues in the proteins human serum albumin, horse liver alcohol dehydrogenase and lysozyme have been reanalysed with the reference method. The single tryptophan residue of the albumin is shown to be characterized by a triple-exponential fluorescence decay. The anisotropy decay of albumin was found to be mono-exponential with a rotational correlation time of 26 ns (20 degrees C). The alcohol dehydrogenase has two different tryptophan residues to which single lifetimes are assigned. It is found that the rotational correlation time for the dehydrogenase changes with excitation wavelength (33 ns for lambda ex = 295 nm and 36 ns for lambda ex = 300 nm at 20 degrees C), indicating a nonspherical protein molecule. Lysozyme has six tryptophan residues, which give rise to a triple-exponential fluorescence decay. A single-exponential decay with a rotational correlation time of 3.8 ns is found for the anisotropy. This correlation time is significantly shorter than that arising from the overall rotation and probably originates from intramolecular, segmental motion.  相似文献   

6.
Cofilin increases the torsional flexibility and dynamics of actin filaments   总被引:1,自引:0,他引:1  
We have measured the effects of cofilin on the conformation and dynamics of actin filaments labeled at Cys374 with erythrosin-iodoacetemide (ErIA), using time-resolved phosphorescence anisotropy (TPA). Cofilin quenches the phosphorescence intensity of actin-bound ErIA, indicating that binding changes the local environment of the probe. The cofilin concentration-dependence of the phosphorescence intensity is sigmoidal, consistent with cooperative actin filament binding. Model-independent analysis of the anisotropies indicates that cofilin increases the rates of the microsecond rotational motions of actin. In contrast to the reduction in phosphorescence intensity, the changes in the rates of rotational motions display non-nearest-neighbor cooperative interactions and saturate at substoichiometric cofilin binding densities. Detailed analysis of the TPA decays indicates that cofilin decreases the torsional rigidity (C) of actin, increasing the thermally driven root-mean-square torsional angle between adjacent filament subunits from approximately 4 degrees (C = 2.30 x 10(-27) Nm2 radian(-1)) to approximately 17 degrees (C = 0.13 x 10(-27) Nm2 radian(-1)) at 25 degrees C. We favor a mechanism in which cofilin binding shifts the equilibrium between thermal ErIA-actin filament conformers, and facilitates two distinct structural changes in actin. One is local in nature, which affects the structure of actin's C terminus and is likely to mediate nearest-neighbor cooperative binding and filament severing. The second is a change in the internal dynamics of actin, which displays non-nearest-neighbor cooperativity and increases the torsional flexibility of filaments. The long-range effects of cofilin on the torsional dynamics of actin may accelerate P(i) release from filaments and modulate interactions with other regulatory actin filament binding proteins.  相似文献   

7.
The rotational mobility of the phosphate translocator from the chloroplast envelope and of lipid molecules in the membrane of unilamellar azolectin liposomes has been investigated. The rotational dynamics of the liposome membrane were investigated by measuring the rotational diffusion of eosin-5-isothiocyanate(EITC)-labeled L-alpha-dipalmitoylglycerophosphoethanolamine (Pam2 GroPEtn) in the lipid phase of the vesicles, either in the presence or absence of the reconstituted phosphate translocator. The temperature dependence of the anisotropy decay showed that above 25 degrees C the main contribution to the anisotropy decay was caused by uniaxial anisotropic rotation of the labelled lipid molecules around the axis normal to the membrane plane. The rate of rotation of the labelled lipid molecules was strongly dependent on the viscosity of the medium (eta 1). Extrapolation to eta 1 = 0 Pa.s yielded a correlation time of phi = 20 +/- 5 ns, t = 30 degrees C, for lipid rotation with respect to the membrane normal. The rotational diffusion coefficient of the lipid molecules was calculated to be Dr = 2.0 x 10(9) rad2.s-1 and the apparent microviscosity in the vesicle membrane, as derived from the rotational correlation time, was eta 2 approximately 12 mPa.s. The rotational correlation time of the phosphate translocator in the membrane was only slightly dependent on the viscosity of the medium. The temperature dependence of the protein rotation also indicated that the rotation of the protein in the membrane was largely restricted and occurred mainly about the axis normal to the membrane plane. Measurements at a medium viscosity of eta 1 = 1 mPa.s yielded a value of phi r approximately 450 ns corresponding to Dr = 8.8 x 10(7) rad2.s-1 for protein rotation with respect to the membrane normal. From this value and the data of the lipid rotation, the cross-sectional area of the protein part embedded in the membrane was calculated to be approximately 9 nm2. This cross-sectional area is large enough to include at most 14 membrane-spanning helices. Our results also indicated that at lipid/protein molar ratios greater than or equal to 1.5 x 10(4): 1 aggregation occurred in the model membranes below 30 degrees C. However, above 30 degrees C and at a high dilution of the protein in the membrane it appeared that the membrane viscosity monitored by lipid and protein rotational diffusion were identical.  相似文献   

8.
Measurements on unstrained linear and weakly strained large (> or =340 bp) circular DNAs yield torsional rigidities in the range C = 170-230 fJ fm. However, larger values, in the range C = 270-420 fJ fm, are typically obtained from measurements on sufficiently small (< or =247 bp) circular DNAs, and values in the range C = 300-450 fJ fm are obtained from experiments on linear DNAs under tension. A new method is proposed to estimate torsional rigidities of weakly supercoiled circular DNAs. Monte Carlo simulations of the supercoiling free energies of solution DNAs, and also of the structures of surface-confined supercoiled plasmids, were performed using different trial values of C. The results are compared with experimental measurements of the twist energy parameter, E(T), that governs the supercoiling free energy, and also with atomic force microscopy images of surface-confined plasmids. The results clearly demonstrate that C-values in the range 170-230 fJ fm are compatible with experimental observations, whereas values in the range C > or = 269 fJ fm, are incompatible with those same measurements. These results strongly suggest that the secondary structure of DNA is altered by either sufficient coherent bending strain or sufficient tension so as to enhance its torsional rigidity.  相似文献   

9.
Time-resolved fluorescence studies have been performed on (+)-anti-7,8-dihydrodiol-9,10-epoxybenzo[a]pyrene adducts in double-stranded poly(dG-dC).(dG-dC). Part of the adduct population gives rise to excimer fluorescence. The heterogeneous fluorescence emission decay curves at 22 degrees C could be resolved into three components with lifetimes: 0.4 ns, 3 ns and 24 ns for the total fluorescence (monomer and excimer emission), and 0.5 ns, 5 ns and 24 ns, respectively, for excimer emission alone. The relative amplitudes for the longer lifetimes were larger for the pure excimer population than for the mixed population. The fluorescence polarization anisotropy decay curves were resolved into two components of rotational correlation times: 0.4 ns and 25 ns for the total fluorescence and 0.3 ns and 33 ns for the excimer fluorescence. We interpret the two rotational correlation times to correspond to local motion of the adduct and segmental motion of the polynucleotide, respectively.  相似文献   

10.
Spectroscopic parameters for two novel ruthenium complexes on binding to nucleic acids of varying sequences and conformations have been determined. These complexes, Ru(bpy)2dppz2+ and Ru(phen)2dppz2+ (bpy = 2,2'-bipyridine; phen = 1,10-phenanthroline; dppz = dipyrido[3,2:a-2',3':c]-phenazine) serve as "molecular light switches" for DNA, displaying no photoluminescence in aqueous solution but luminescing intensely in the presence of DNA. The luminescent enhancement observed upon binding is attributed to the sensitivity of the excited state to quenching by water; in DNA, the metal complex, upon intercalation into the helix, is protected from the aqueous solvent, thereby preserving the luminescence. Correlations between the extent of protection (depending upon the DNA conformation) and the luminescence parameters are observed. Indeed, the strongest luminescent enhancement is observed for intercalation into DNA conformations which afford the greatest amount of overlap with access from the major groove, such as in triple helices. Differences are observed in the luminescent parameters between the two complexes which also correlate with the level of water protection. In the presence of nucleic acids, both complexes exhibit biexponential decays in emission. Quenching studies are consistent with two intercalative binding modes for the dppz ligand from the major groove: one in which the metal-phenazine axis lies along the DNA dyad axis and another where the metal-phenazine axis lies almost perpendicular to the DNA dyad axis. Ru(bpy)2dppz2+ and Ru(phen)2dppz2+ are shown here to be unique reporters of nucleic acid structures and may become valuable in the design of new diagnostics for DNA.  相似文献   

11.
The subnanosecond fluorescence and motional dynamics of the tryptophan residue in the bacteriophage M13 coat protein incorporated within pure dioleoylphosphatidylcholine (DOPC) as well as dioleoylphosphatidylcholine/dioleoylphosphatidylglycerol (DOPC/DOPG) and dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) bilayers (80/20 w/w) with various L/P ratio have been investigated. The fluorescence decay is decomposed into four components with lifetimes of about 0.5, 2.0, 4.5 and 10.0 ns, respectively. In pure DOPC and DOPC/DOPG lipid bilayers, above the phase transition temperature, the rotational diffusion of the protein molecules contributes to the depolarization and the anisotropy of tryptophan is fitted to a dual exponential function. The longer correlation time, describing the rotational diffusion of the whole protein, shortens with increasing temperature and decreasing protein aggregation number. In DMPC/DMPG lipid bilayers, below the phase transition, the rotational diffusion of the protein is slowed down such that the subnanosecond anisotropy decay of tryptophan in this system reflects only the segmental motion of the tryptophan residue. Because of a heterogeneous microenvironment, the anisotropy decay must be described by three exponentials with a constant term, containing a negative coefficient and a negative decay time constant. From such a decay, the tryptophan residue within the aggregate undergoes a more restricted motion than the one exposed to the lipids. At 20 degrees C, the order parameter of the transition moment of the isolated tryptophan is about 0.9 and that for the exposed one is about 0.5.  相似文献   

12.
The FK506-binding protein (FKBP12) is important in the immunosuppressant action of FK506 and rapamycin. We have investigated Trp side chain dynamics in FKBP12, with and without a bound immunosuppressant, by measuring the Trp time-resolved fluorescence anisotropy decay r(t). The r(t) for W59 in aqueous uncomplexed FKBP12 at 20 degrees C is well described by a single exponential with a recovered initial anisotropy, r(eff)o, of 0.192 and an overall rotational correlation time for the protein, phi p, of 4.7 ns; r(eff)o = 0.214 and phi p = 4.2 ns for the FKBP12/FK506 complex. Using an expression for the order parameter squared, namely S2 = r(eff)o/rTo, where rTo is the vitrified steady-state excitation anisotropy, we recovered an S2 of 0.75 for W59 fluorescence in uncomplexed FKBP12 and S2 approximately equal to 1 in the FKBP12/FK506 complex. Results obtained for the FKBP12/rapamycin complex are similar to those found for the FKBP12/FK506 complex. Minimum perturbation mapping simulations were performed on the free and complexed forms of FKBP12 and the results were generally in agreement with the experimental data.  相似文献   

13.
We extended the technique of frequency-domain fluorometry to an upper frequency limit of 2000 MHz. This was accomplished by using the harmonic content of a laser pulse train (3.76 MHz, 5 ps) from a synchronously pumped and cavity-dumped dye laser. We used a microchannel plate photomultiplier as the detector to obtain the 2-GHz bandwidth. This new instrument was used to examine tyrosine intensity and anisotropy decays from peptides and proteins. These initial data sets demonstrate that triply exponential tyrosine intensity decays are easily recoverable, even if the mean decay time is less than 1 ns. Importantly, the extended frequency range provides good resolution of rapid and/or multiexponential tyrosine anisotropy decays. Correlation times as short as 15 ps have been recovered for indole, with an uncertainty of +/- 3 ps. We recovered a doubly exponential anisotropy decay of oxytoxin (29 and 454 ps), which probably reflects torsional motions of the phenol ring and overall rotational diffusion, respectively. Also, a 40-ps component was found in the anisotropy decay of bovine pancreatic trypsin inhibitor, which may be due to rapid torsional motions of the tyrosine residues and/or energy transfer among these residues. The rapid component has an amplitude of 0.05, which is about 16% of the total anisotropy. The availability of 2-GHz frequency-domain data extends the measurable time scale for fluorescence to overlap with that of molecular dynamics calculations.  相似文献   

14.
The rotational diffusion of erythrocyte spectrin has been measured using time-resolved phosphorescence anisotropy. The anisotropy of the spectrin dimer decays to zero with a time constant of 3 microseconds at 21 degrees C. The results are compared with the correlation times predicted for the anisotropy decay of an equivalent sphere and rigid rod. The data indicate that the ribbon-like spectrin molecule possesses considerable torsional and segmental flexibility. These motions are restricted, but not abolished, when spectrin is reconstituted into cross-linked cytoskeletal protein networks, or bound to spectrin-actin depleted erythrocyte membrane vesicles.  相似文献   

15.
J Lee  D J O'Kane  B G Gibson 《Biochemistry》1989,28(10):4263-4271
The mechanism of the shifting of the bioluminescence spectrum from the reaction of bacterial luciferase by lumazine protein is investigated by methods of fluorescence dynamics. A metastable intermediate is produced on reaction of Vibrio harveyi luciferase with FMNH2 and O2. It has an absorption maximum at 374 nm and a rotational correlation time (phi) derived from the decay of its fluorescence (maximum 500 nm) anisotropy of 90 ns (2 degrees C). Lumazine protein from Photobacterium phosphoreum has an absorption maximum at 417 nm and a fluorescence maximum at 475 nm. Lumazine protein forms a protein-protein complex with luciferase, and the complex has a phi of approximately 100 ns. A mixture of lumazine protein and the intermediate would be expected to have an average correlation time (phi av) around 100 ns, but instead, the result is anomalous. The phi av is much lower and is also wavelength dependent. For excitation at 375 nm, which is mainly absorbed in the flavin chromophore of the intermediate, phi av = 25 ns, but at 415 nm, mainly absorbed by the lumazine derivative ligand of lumazine protein, phi av approximately 50 ns. It is proposed that protein-protein complexation occurs between lumazine protein and the luciferase intermediate and that in this complex energy transfer from the flavin to the lumazine is the predominant channel of anisotropy loss. A distance of 20 A between the donor and acceptor is calculated. In the bioluminescence reaction of intermediate with tetradecanal, a fluorescent transient species is produced which is the bioluminescence emitter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We describe the use of asymmetric Ru-ligand complexes as a new class of luminescent probes that can be used to measure rotational motions of proteins. These complexes are known to display luminescent lifetimes ranging from 10 to 4000 ns. In this report, we show that the asymmetric complex Ru(bpy)2(dcbpy) (PF6)2 displays a high anisotropy value when excited in the long wavelength absorption band. For covalent linkage to proteins, we synthesized the N-hydroxy succinimide ester of this metal-ligand complex. To illustrate the usefulness of these probes, we describe the intensity and anisotropy decays of [Ru(bpy)2(dcbpy)] when covalently linked to human serum albumin, concanavalin A (ConA), human immunoglobulin G (IgG), and Ferritin, and measured in solutions of increased viscosity. These data demonstrate that the probes can be used to measure rotational motions on the 10 ns to 1.5 microseconds timescale, which so far has been inaccessible using luminescence methods. The present probe [Ru(bpy)2(dcbpy)] can be regarded as the first of a class of metal-ligand complexes, each with different chemical reactivity and spectral properties, for studies of macromolecular dynamics.  相似文献   

17.
Dynamic fluorescence properties of bacterial luciferase intermediates   总被引:1,自引:0,他引:1  
J Lee  D J O'Kane  B G Gibson 《Biochemistry》1988,27(13):4862-4870
Three fluorescent species produced by the reaction of bacterial luciferase from Vibrio harveyi with its substrates have the same dynamic fluorescence properties, namely, a dominant fluorescence decay of lifetime of 10 ns and a rotational correlation time of 100 ns at 2 degrees C. These three species are the metastable intermediate formed with the two substrates FMNH2 and O2, both in its low-fluorescence form and in its high-fluorescence form following light irradiation, and the fluorescent transient formed on including the final substrate tetradecanal. For native luciferase, the rotational correlation time is 62 or 74 ns (2 degrees C) derived from the decay of the anisotropy of the intrinsic fluorescence at 340 nm or the fluorescence of bound 8-anilino-1-naphthalenesulfonic acid (470 nm), respectively. The steady-state anisotropy of the fluorescent intermediates is 0.34, and the fundamental anisotropy from a Perrin plot is 0.385. The high-fluorescence intermediate has a fluorescence maximum at 500 nm, and its emission spectrum is distinct from the bioluminescence spectrum. The fluorescence quantum yield is 0.3 but decreases on dilution with a quadratic dependence on protein concentration. This, and the large value of the rotational correlation time, would be explained by protein complex formation in the fluorescent intermediate states, but no increase in protein molecular weight is observed by gel filtration or ultracentrifugation. The results instead favor a proposal that, in these intermediate states, the luciferase undergoes a conformational change in which its axial ratio increases by 50%.  相似文献   

18.
P Wu  J M Schurr 《Biopolymers》1989,28(10):1695-1703
The magnitude and uniformity of the torsion elastic constant (alpha) of linear and supercoiled pBR322 DNAs are measured in 3 mM Tris as a function of added chloroquine/basepair ratio (chl/bp) by studying the fluorescence polarization anisotropy of intercalated ethidium dye. The time-resolved FPA is measured using a picosecond dye-laser for excitation and time-correlated single-photon counting detection. For both linear and supercoiled DNAs, alpha remains uniform except at the very highest chl/bp ratio examined. For the linear DNA, alpha decreases from 5.0 x 10(-12) dyne-cm at chl/bp = 0 to about 3.5 x 10(-12) dyne-cm at chl/bp = 0.5, and remains at that value up to chl/bp = 5, whereupon it increases back up to its original value. For the supercoiled DNA, alpha remains constant at about 5.2 x 10(-12) dyne-cm from chl/bp = 0 up to chl/bp = 5, whereupon it increases in parallel with the linear DNA. The effect of chloroquine on the secondary structure, torsion constant, and torsional dynamics evidently differs substantially between linear and supercoiled DNAs, even under conditions where the supercoiled DNA is completely relaxed and both DNAs bind the same amount of dye. This strongly contradicts any notion that the local structures of linear and relaxed supercoiled DNA/dye complexes with the same binding ratio are identical. The increase in apparent alpha at chl/bp = 5 for both DNAs may be due to stacking of the chloroquine in the major groove and consequent stiffening of the filament.  相似文献   

19.
The fluorescence decay of ethidium intercalated into the DNA of nucleosome core particles increases in average lifetime from about 22 ns in H2O to about 39 ns in D2O. This increase, combined with the acquisition of large amounts of data (on the order of 10(8) counts per decay), allows measurement of anisotropy decays out to more than 350 ns. The overall slow rotational motions of the core particle may thereby be more clearly distinguished from the faster torsional motions of the DNA. In 10 mM NaCl at 20 degrees C, we recover a long correlation time of 198 ns in D2O (159 ns when corrected to a viscosity of 1.002 cP), in agreement with the value of 164 ns obtained in H2O. These values are consistent with hydrodynamic calculations based on the expected size and shape of the hydrated particle. To support our conclusion that this long correlation time derives from Brownian rotational diffusion, we show that the value is directly proportional to the viscosity and inversely proportional to the temperature. No significant changes in the rotational correlation time are observed between 1 and 500 mM ionic strength. Below 1 mM, the particle undergoes the "low-salt transition" as measured by steady-state tyrosine fluorescence anisotropy. However, we observe little change in shape until the ionic strength is decreased below approximately 0.2 mM, where the correlation time increases nearly 2-fold, indicating that the particle has opened up into an extended form. We have previously shown that the transition becomes nonreversible below 0.2 mM salt.  相似文献   

20.
[Ru(2,2'-bipyridine)(2)(4,4'-dicarboxy-2,2'-bipyridine)](2+) (RuBDc) is a very photostable probe that possesses favorable photophysical properties including long lifetime, high quantum yield, large Stokes' shift, and highly polarized emission. In the present study, we demonstrated the usefulness of this probe for monitoring the rotational diffusion of high-molecular-weight (MW) proteins. Using frequency-domain fluorometry with a high-intensity, blue light-emitting diode (LED) as the modulated light source, we compared the intensity and anisotropy decays of RuBDc conjugated to immunoglobulin G (IgG) and immunoglobulin M (IgM), which show a six-fold difference in MW We obtained slightly longer lifetimes for IgM (=428 ns in buffer) than IgG (=422 ns in buffer) in the absence and presence of glycerol, suggesting somewhat more efficient shielding of RuBDc from water in IgM than in IgG. The anisotropy decay data showed longer rotational correlation times for IgM (1623 and 65.7 ns in buffer) as compared to IgG (264 and 42.5 ns in buffer). Importantly, the ratio of the long rotational correlation times of IgM to IgG in buffer was 6.2, which is very close to that of MW of IgM to IgG (6.0). The shorter correlation times are most likely to be associated with domain motions within the proteins. The anisotropy decays reflect both the molecular size and shape of the immunoglobulins, as well as the viscosity. These results show that RuBDc can have numerous applications in studies of high-MW protein hydrodynamics and in fluorescence polarization immunoassays (FPI) of high-MW analytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号