首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: Xinjiang is located in the hinterland of the Eurasian arid areas, with grasslands widely distributed. Grasslands in Xinjiang provide significant economic and ecological benefits. However, research on evapotranspiration (ET) and water use efficiency (WUE) of the grasslands is still relatively weak. This study aimed to explore the spatio-temporal characteristics on ET and WUE in the grasslands of Xinjiang in the context of climate change. Methods: The Biome-BGC model was used to determine the spatio-temporal characteristics of ET and WUE of the grasslands over the period 1979-2012 across different seasons, areas and grassland types in Xinjiang. Important findings: The average annual ET in the grasslands of Xinjiang was estimated at 245.7 mm, with interannual variations generally consistent with that of precipitation. Overall, the value of ET was lower than that of precipitation. The higher values of ET mainly distributed in the Tianshan Mountains, Altai Mountains, Altun Mountains and the low mountain areas on the northern slope of Kunlun Mountains. The lower values of ET mainly distributed in the highland areas of Kunlun Mountains and the desert plains. Over the period 1979-2012, average annual ET was 183.2 mm in the grasslands of southern Xinjiang, 357.9 mm in the grasslands of the Tianshan Mountains, and 221.3 mm in grasslands of northern Xinjiang. In winter, ET in grasslands of northern Xinjiang was slightly higher than that of Tianshan Mountains. Average annual ET ranked among grassland types as: mid-mountain meadow < swamp meadow < typical grassland < desert grassland < alpine meadow < saline meadow. The highest ET value occurred in summer, and the lowest ET value occurred in winter, with ET in spring being slightly higher than that in autumn. The higher WUE values mainly distributed in the areas of Tianshan Mountains and Altai Mountains. The lower WUE values mainly distributed in the highland areas of Kunlun Mountains and part of the desert plains. The average annual WUE in the grasslands of Xinjiang was 0.56 g kg-1, with the seasonal values of 0.43 g kg-1 in spring, 0.60 g kg-1 in summer, and 0.48 g kg-1 in autumn, respectively. Over the period 1979-2012, the values of WUE displayed significant regional differences: the average values were 0.73 g kg-1 in northern Xinjiang, 0.26 g kg-1 in southern Xinjiang, and 0.69 g kg-1 in Tianshan Mountains. There were also significant differences in WUE among grassland types. The values of WUE ranked in the order of mid-mountain meadow < typical grassland < swamp meadow < saline meadow < alpine meadow < desert grassland.  相似文献   

2.
3.
Researches on rhizosphere ecological processes and the underlying mechanisms have become one of the most active and sensitive hotspots in soil science. Root exudates have specialized roles in mediating the nutrient cycling and signal transduction within root-soil-microbe interactions. They are the key driving factors in regulating the functions of rhizosphere micro-ecosystem, and serve as a major premise for the concept and ecological processes in rhizosphere. However, due to the instinctive advantages of crops, such as short life cycles and convenient operation, most previous studies on root exudation mainly focused on agricultural ecosystems and were primarily targeted at providing practical guidelines. In contrast, there have been relatively few investigations on root exudates of trees, which highly limited the comprehensive knowledge of the potential mechanisms of root exudates in mediating soil biogeochemical processes in forest ecosystems. Hence, in this review, based on the main findings in our previous studies and the emerging frontiers in rhizosphere ecology, we specifically reviewed the ecological consequences and key remaining challenges in researches on root exudation in forests. Finally, we identify several topics and research outlooks for guiding future work to facilitate studies on root exudation and its ecological consequences in forest ecosystems. © Chinese Journal of Plant Ecology  相似文献   

4.
Aims The concentration of CO2 and other greenhouse gases in the atmosphere has considerably increased over last century and is set to rise further. Forest ecosystems play a key role in reducing CO2 concentration in the atmosphere and mitigating global climate change. Our objective is to understand carbon storage and its distribution in forest ecosystems in Zhejiang Province, China. Methods By using the 8th forest resource inventory data and 2011 2012 field investigation data, we estimated carbon storage, density and its distribution in forest ecosystems of Zhejiang Province. Important findings The carbon storage of forest ecosystems in Zhejiang Province was 602.73 Tg, of which 122.88 Tg in tree layer, 16.73 Tg in shrub-herb layer, 11.36 Tg in litter layer and 451.76 Tg in soil layer accounting for 20.39%, 2.78%, 1.88% and 74.95% of the total carbon storage, respectively. The carbon storage of mixed broadleaved forests was 138.03 Tg which ranked the largest (22.90%) among all forest types. The young and middle aged forests which accounted for 70.66% of the total carbon storage were the main body of carbon storage in Zhejiang Province. The carbon density of forest ecosystems in Zhejiang Province was 120.80 t•hm2 and that in tree layer, shrub-herb layer, litter layer and soil layer were 24.65 t•hm2, 3.36 t•hm2, 2.28 t•hm2 and 90.51 t•hm2, respectively. The significant relationship between soil organic carbon storage and forest ecosystem carbon storage indicated that soil carbon played an important role in shaping forest ecosystem carbon density. Carbon density of tree layer increased with age in natural forests, but decreased in the order over-mature > near-mature > mature > middle-aged > young forest in plantations. The proportions of young and middle aged forests were larger than any other age classes. Thereby, the carbon storage of forest ecosystems in Zhejiang Province could be increased through a proper forest management.  相似文献   

5.
Aims Fujian Province has been one of the most severe soil erosion regions since Ming and Qing Dynasty in China. Recently, several ecological restoration projects have been implemented and they have significantly changed vegetation cover in this region. Methods We analyzed the four-decade vegetation cover change in Fujian Province using seven time-series data of Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), and Operational Land Imager (OLI) between 1975 and 2014. We further explored the possible drivers on vegetation cover change by incorporating statistical data of plantation, cropland and urbanized area. Important findings Vegetation coverage in Fujian Province has increased from 69.0% to 77.8% between 1975 and 2014. However, a slight decrease was observed between 1995 and 2005. Spatially, forest was the primary vegetation type in the northwest, where croplands and human settlements were scattered along rivers or oceans. Shrubs and bare lands were also scattered across the northwest. In southwest, the areas of bare land, shrub land and cropland decreased, while areas of forest and human settlements expanded. The vegetation coverage and urbanized area increased at the cost of cropland and bare land.  相似文献   

6.
Biomass allocations between aboveground and belowground organs provide pivotal information for connecting aboveground productivity and belowground carbon sequestration. As accurate measurement of belowground biomass is essential for determining the biomass allocation, we first reviewed the methods in quantifying belowground biomass and their merits. We then presented the major advances on plant biomass allocations between aboveground and belowground organs, as well as the potential drivers such as precipitation, warming, atmospheric CO2 concentration, and nitrogen deposition. We finally provided a list of challenges in studying belowground biomass allocation for the future. This review has important implications for studies on carbon cycling in grassland ecosystems under the changing climate.  相似文献   

7.
Samara (winged fruit) can be dispersed easily by wind and may be a crucial factor for angiosperm spread and diversification. In a narrow sense, a samara is an indehiscent dry fruit with wing(s) developed from fruit pericarp, while in a broad sense samaras also include all winged fruits with wings developed from both pericarp and peri-anth or bracts. According to the wing shape and growth patterns of samaras, we divided samaras into six types, i.e. single-winged, lanceolate-winged, rib-winged, sepal-winged, bract-winged, and perigynous samaras. Perigynous samaras can be further classified into two forms, i.e. round-winged and butterfly-winged samaras. Accordingly, the aerodynamic behavior of samaras can be classified into five types, autogyro, rolling autogyro, undulator, helicopter, and tumbler. The rib-winged and round-winged samaras can be found in Laurales, a basal angiosperm, and may represent the primitive type of early samaras. In the derived clades, samaras evolved enlarged but unequal wings and decreased wing loading (the ratio of fruit weight to wing size), which is likely an adaptation to gentle wind and secondary dispersal through water or ground wind. The wings of some samaras (such as sepal-winged and bract-winged samaras) may have multiple functions including wind dispersal, physical defense for the seeds, and adjust seed germination strategy. The pantropical family Malpighiaceae is extraordinarily rich in samara types, which is likely related to its multiple inter-continent dispersal in history, which is known as “Malpighiaceae Route”. Therefore, Malpighiaceae can be used as a model system for the studies on samara adaptation and evolution. We identified the following issues that deserve further examination in future studies using both ecological and evo-devo methods: 1) the adaption of different types of samaras in dispersal processes, 2) the molecular and developmental mechanism of sepal- and bract-wings, and 3) the evolution of samara types and their effects on angiosperm diversification. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

8.
The anatomical traits of xylem are the characteristics of tree rings at the cellular and subcellular scales, and are often reflection of environmental signals. Studying the relationships between anatomical traits of xylem and environmental change not only provide physiological explanations to the statistics in dendroclimatology, but can also provide a new vision for studying the adaptation process and response strategies of tree growth to climate change. In this paper, with the relationships between the anatomical characteristics of xylem in tree-rings (cell chronology) and climate change as a main thread, we first outline the basic principles and mechanisms of wood anatomical features to record environmental signals, and expounded the basic methods involved in the process of xylem anatomy. Secondly, we discuss the relationship between the anatomical features of xylem and climate factors. We then propose the following as possible directions of future research based on the existing knowledge gap in the topical area: (1) to explore the temporal and spatial variations in the anatomical characteristics of xylem in tree-rings along radial and tangential directions and the relationships with environmental changes; (2) to explore the threshold of tree growth response to environmental plasticity and adaptation processes; (3) to assess the synergistic and antagonistic effects as well as the formation mechanisms of climate response among different tree-ring proxies, and to determine the specific roles and contributions of major climatic factors during different periods of tree-ring formation.  相似文献   

9.

Background

Eating is one of the most important daily activities in managing patients with dementia. Although various eating disturbance occur as dementia progresses, to our knowledge, most of the studies focused on a part of eating disturbance such as swallowing and appetite. There have been few comprehensive studies including eating habits and food preference in patients with Alzheimer’s disease (AD). The aims of this study were to investigate almost all eating disturbance and to examine the relationship of eating disturbance to dementia stage in AD.

Methods

A total of 220 patients with AD and 30 normal elderly (NE) subjects were recruited. Eating disturbance was assessed by a comprehensive questionnaire that had been previously validated. Potential relationships between the characteristics of eating disturbance and dementia stage as classified by the Clinical Dementia Rating (CDR) were assessed.

Results

Overall, 81.4% of patients with AD showed some eating and swallowing disturbance, whereas only 26.7% of the NE subjects had such a disturbance. Even in an early stage, patients with AD had many types of eating disturbance; “Appetite change” was shown in nearly half of the mild AD patients (49.5%). In the moderate stage, the scores of “change of eating habits and food preference” were highest, and in the severe stage “swallowing disturbance” became critical.

Conclusion

In AD, the relationship of dementia stage to eating disturbance differs according to the type of eating disturbance. The relationships between various eating disturbance and the severity of dementia should be considered.  相似文献   

10.
Aims: To enhance the understanding on nitrogen (N) and phosphorus (P) physiological responses to different light environments in shade-enduring plants and provide references to improve the stand structure and ecosystem functions of plantation forests. Methods: We selected seedlings of five shade-enduring species with high ecological and economic value in subtropical area of China to study the effects of light intensity on leaf N and P contents, allocation and nutrient limitation in shade-enduring plants. A light intensity gradient of five different levels was set to simulate the varying understory light environment. Important findings: With decreasing light intensity, the total biomass and total N and P accumulation of five shade-enduring plants all showed a decreasing trend, but N, P contents in different organs increased. Among them, Gardenia jasminoides (GJ) had the highest while Illicium henryi (IH) had the lowest N content; The P contents of Quercus phillyraeoides (QP) and GJ were significantly higher than Elaeocarpus sylvestris (ES), Ardisia crenata (AC) and IH. QP and GJ had the highest N, P contents under extremely low light intensity (6% natural light intensity) condition (LIC), while AC and IH had the highest N and P contents in low (15% natural light intensity) and moderate (33% and 52% natural light intensity) LIC. ES demanded differently for LIC on N and P, which were 52% and 6% natural light intensity, respectively. N and P allocation of ES, AC and IH followed leaf < root < stem, but for QP and GJ were root < leaf < stem. Decreasing LIC significantly affected N and P allocation. N content variations shown good consistency among different organs under higher LIC (100% natural light intensity) while distinct variability under lower LIC (15% and 6% natural light intensity) in all five species. Phosphorus contents exhibited good consistency in IH, QP and GJ but varied in ES and AC. Decreasing LIC significantly affected organ N/P ratios of shade-enduring plants, but the fundamental growth restriction patterns remained. Light intensity variation and tree species co-regulated N, P utilization and allocation in shade-enduring plants, and then affected the total biomass and total N, P accumulation, which might result from the change of N and P utilization strategy. Therefore, light intensity preference and N, P nutrient balances in shade-enduring plants should be taken into account when constructing multiple layer and uneven-aged forests.  相似文献   

11.
Aims Artemisia gmelinii is a dominant specie naturally established after abandonment of cultivated lands in the Loess Plateau, and Caragana korshinskii is one of the main planted shrub species to control soil erosion. Improved understanding of water use strategies of these two species is of great significance to evaluate the sustainable development of the Loess Plateau under the trend of climate warming and increasing drought events. Methods Stable oxygen-18 isotope was used to determine seasonal variations in the water sources of native A. gmelinii communities established after abandonment of cultivated lands for 7 and 30 years and planted C. korshinskii after 30 years. The contributions of soil water from different depths to water uptake were estimated by the MixSIR Bayesian mixing model. The geometric mean regression method was used to fit the line of precipitation to get the local meteoric water line (LWML). Important findings The stable hydrogen isotope rate (δD) and stable oxygen isotope rate (δ18O) of soil water and xylem water plotted to the right side of the LWML, indicating that the isotopic compositions of soil water were enriched due to evaporation. The native A. gmelinii communities established after abandonment of cultivated lands for 7 years and planted C. korshinskii after 30 years showed plasticity in switching water sources from different soil layers, extracting water from shallow soil (0-40 cm) when soil water was available, but deeper soil (40-80 cm) when shallow soil water was dry. In contrast, A. gmelinii growing in site after cultivation abandonment for 30 years mainly relied on water from the surface soil (0-10 cm) throughout the growing season. Our results suggest that the ability of A. gmelinii to compete for soil water reduces with aging of the community while the planted C. korshinskii will have competitive advantage under the condition of increasing frequency of drought events in the future.  相似文献   

12.
Aims Estimation of gross primary productivity (GPP) of vegetation at the global and regional scales is important for understanding the carbon cycle of terrestrial ecosystems. Due to the heterogeneous nature of land surface, measurements at the site level cannot be directly up-scaled to the regional scale. Remote sensing has been widely used as a tool for up-saling GPP by integrating the land surface observations with spatial vegetation patterns. Although there have been many models based on light use efficiency and remote sensing data for simulating terrestrial ecosystem GPP, those models depend much on meteorological data; use of different sources of meteorological datasets often results in divergent outputs, leading to uncertainties in the simulation results. In this study, we examines the feasibility of using two GPP models driven by remote sensing data for estimating regional GPP across different vegetation types. Methods Two GPP models were tested in this study, including the Temperature and Greenness Model (TG) and the Vegetation Index Model (VI), based on remote sensing data and flux data from the China flux network (ChinaFLUX) for different vegatation types for the period 2003-2005. The study sites consist of eight ecological stations located in Xilingol (grassland), Changbaishan (mixed broadleaf-conifer forest), Haibei (shrubland), Yucheng (cropland), Damxung (alpine meadow), Qianyanzhou (evergreen needle-leaved forest), Dinghushan (evergreen broad-leaved forest), and Xishuangbanna (evergreen broad-leaved forest), respectively. Important findings All the remote sensing parameters employed by the TG and VI models had good relationships with the observed GPP, with the values of coefficient of determination, R2, exceeding 0.67 for majority of the study sites. However, the root mean square errors (RMSEs) varied greatly among the study sites: the RMSE of TG ranged from 0.29 to 6.40 g·m-2·d-1, and that of VI ranged from 0.31 to 7.09 g·m-2·d-1, respectively. The photosynthetic conversion coefficients m and a can be up-scaled to a regional scale based on their relationships with the annual average nighttime land surface temperature (LST), with 79% variations in m and 58% of variations in a being explainable in the up-scaling. The correlations between the simulated outputs of both TG and VI and the measured values were mostly high, with the values of correlation coefficient, r, ranging from 0.06 in the TG model and 0.13 in the VI model at the Xishuangbanna site, to 0.94 in the TG model and 0.89 in the VI model at the Haibei site. In general, the TG model performed better than the VI model, especially at sites with high elevation and that are mainly limited by temperature. Both models had potential to be applied at a regional scale in China.  相似文献   

13.
With increasing data availability in the big data era, many traditional statistical analyses based on the mean or median are insufficient or inappropriate to elucidate the complex patterns of variation. This is particularly the case when multiple factors are involved and the bivariate scatter occurs as scatter clouds. In such circumstances, constraint line (or envelope) method could be an alternative and effective tool to extract the data boundaries, thus improves our understanding of the complex relationships between limiting factor and response factor. Here, we synthesize the major findings and achievements in the field of applying the constraint line method in ecology. Specifically, we first describe the history and development of the constraint line method. We then discuss the techniques to establish the constraint lines with examples, and discuss the applications and implications of the constraint lines in species distribution, population performance, and optimization problem. We suggest simultaneously application of both constraint lines and regression techniques to the same datasets to achieve a comprehensive understanding of ecological process and underlying mechanisms. Such combined methods should be used with special attention to the role of spatial heterogeneity and scale dependency. We also discuss in detail the potential applicability of the constraint line method in studying the linkages between ecosystem services, and land system design.  相似文献   

14.
Aims: Viola philippica is a species with a typical chasmogamous-cleistogamous (CH-CL) mixed breeding system. It provides a flower model system to investigate floral organs development under different photoperiods. Morphological changes of intermediate cleistogamous (inCL) flowers have been observed, the trends in variation of changes from CH flowers to CL flowers or from CL flowers to CH flowers have been analyzed, the localized effects of poorly developed stamens and petals in CL and inCL flowers have been identified. This research provided morphology and structural changes with implication for the evolutionary significance of the dimorphic flower formation for further study in dimorphic flower development. Methods: We used methods of anatomy and structural analysis to observe the morphological structures of flowers under different photoperiods. Important findings: Photoperiod played an important role in the development of CH and CL flowers in V. philippica. Under short-day light and intermediate-day light, both CH and inCL flowers developed simultaneously. Most of the floral buds were CH flowers under a photoperiod of short-day light, but most of the floral buds were inCL flowers under mid-day light. Complete CL flowers formed under long-day lights. However, there were a series of transitional types in the number and morphology of stamens and petals among inCL flowers, including five stamens with three petals related to CH flowers and two stamens with one petal related to CL flowers. The former type was dominant under short-day light conditions, and the latter type was dominant under mid-day light. Further more, there were localized effects in stamen and petal development for CL and inCL flowers. The development of ventral lower petal (corresponding to the lower petal with spur of CH flower) and the adjacent two stamens in inCL flowers were best, and the back petal was similar to that of CL flowers, an organ primordium structure. The adjacent stamens with the back petals tended to be poorly developed. In extreme cases, these stamens in inCL flowers had no pollen sac, only a membranous appendage or even a primordium structure. When the plants with CL or CH flowers were placed under short-day light or long-day light, the newly induced flowers all showed a series of inCL flower types, finally the CL flowers transformed into CH flowers, and the CH flowers transformed into CL flowers. This result indicates the gradual effects of different photoperiods on dimorphic flowers development of V. philippica. A long photoperiod could inhibit the development of partial stamens and petals, and a short photoperiod could prevent the suppression of long-day light and promote the development of stamens and petals.  相似文献   

15.
Aims: There is increasing concern on the trade-off between carbon sequestration and water yield of forest ecosystems. Our objective was to explore the effects of vegetation composition on water and carbon trade-off in the sub-alpine watersheds of western Sichuan during 1982-2006. Methods: The WaSSI-C, which is an eco-hydrological model with coupled water and carbon cycles, was employed to calculate the key components in water balance and carbon sequestration for the 22 sub-catchments in the upper reaches of Zagunao River. Spearman's Rho trend analysis was used to examine the trends in runoff and net ecosystem productivity. Important findings: Compared with either subalpine meadow or mixed forest dominated catchments, the conifer-dominated catchments had much higher water loss due to high evapotranspiration, and the loss was not offset by its higher soil water infiltration during the growing season. The change in soil water storage for subalpine meadow, mixed forest and coniferous forest are -44 mm, -18 mm and -5 mm, respectively, which indicated significant decline in soil water storage and thus water yield particularly in alpine meadow catchments. Significant negative relationship was found between runoff and net ecosystem productivity, the alpine meadow as the dominant vegetation type showed high water yield and low carbon sequestration, and the conifer-dominant and mixed forest vegetation showed low water yield and high carbon sequestration, moreover, the higher the forest coverage, the lower the water yield. Upward trends in net ecosystem productivity were observed in the three vegetation types during the study period and the alpine meadow type was significant.  相似文献   

16.
Aims The purpose of this study is to investigate the characteristics of nutrient cycling in Cunninghamia lanceolata plantations with different ages, and to provide scientific basis for the management of high-yield plantations in China. Methods In this study, we used the ecological data of the past 25 years in Hunan Huitong Ecological Station and analyzed the nutrient cycling characteristics of the C. lanceolata plantation forests with different ages according to the law of tree growth and the dynamics of nutrient uptake. Important findings For most nutrients, their concentrations ranked in order as leaf > twig > bark > root > stem for all C. lanceolata trees with any ages. When the tree age was less than 12 years, nutrient concentrations increased with age, while they decreased with age when the tree was more than 12 years old. The changes in average annual nutrient uptake with age showed two peaks. Nutrient return gradually increases with age. For the same age, the nutrient use efficiency followed the order of phosphorus (P) > potassium (K) > nitrogen (N) > magnesium (Mg) > calcium (Ca). After the stand was closed, the nutrient utilization efficiency increases with the growth and development of trees. The cycling intensity of Ca and Mg was greater than that of N and P at the same stand age. The changes in nutrient cycling intensity with age varying curve with stand age acted as parabolic curve. Utilization of N, P and K was longer than displayed a parabolic shape for all elements. The utilization time of each element got shorter with increasing stand age. These results suggested that the nutrient uptake in different growth stages was not only controlled by the quantity of biomass, but also affected by the difference in nutrient concentration between previous and current stages. The nutrient cycling processes were jointly controlled by the mechanisms of nutrient redistribution and storage in Cunninghamia lanceolata, during the growth and development stages, and the nutrient use efficiency during different growth stages. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

17.
The loss of genetic diversity is accelerating due to habitat loss and population reduction caused by global change and anthropologenic activities. For species-poor ecosystems, the effect of genetic diversity on ecosystem functioning may not be smaller than that of species diversity. Therefore, understanding the relationship between genetic diversity and ecosystem functioning (GD-EF) and its underlying mechanisms is important for biodiversity conservation, responses of ecosystems to environmental change and ecological restoration. Here, we reviewed the studies on the effects of plant genetic diversity on ecosystem structures (community structure of the higher tropic level) and ecosystem functions (primary production, nutrient cycling and ecosystem stability), and the mechanisms underlying these relationships. We also discussed the influence of functional diversity on GD-EF, the comparison of effects of the genetic and species diversity on ecosystem functioning, and the application of GD-EF in the ecological restorations. We finally pointed out the limitations in current studies to provide references for the future: (1) further studies on the mechanisms of GD-EF are needed; (2) no study has evaluated the influence of genetic diversity on maltifunctinarity; (3) the impacts of different measurements of genetic diversity on ecosystem functioning are unclear; (4) there are lack of long-time GD-EF studies and GD-EF studies conducted at multidimensional scales; (5) the relative importance of genetic diversity and other factors on ecosystem functioning in the nature is unclear. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All Rights Reserved.  相似文献   

18.
19.
Aims Monitoring and quantifying the biomass and its distribution in urban trees and forests are crucial to understanding the role of vegetation in an urban environment. In this paper, an estimation method for biomass of urban forests was developed for the Shanghai metropolis, China, based on spatial analysis and a wide variety of data from field inventory and remote sensing. Methods An optimal regression model between forest biomass and auxiliary variables was established by stepwise regression analysis. The residual value of regression model was computed for each of the sites sampled and interpolated by Inverse-distance weighting (IDW) to predict residual errors of other sites not subjected to sampling. Forest biomass in the study area was estimated by combining the regression model based on remote sensing image data and residual errors of spatial distribution map. According to the distribution of plantations and management practices, a total of 93 sample plots were established between June 2011 and June 2012 in the Shanghai metropolis. To determine a suitable model, several spectral vegetation indices relating to forest biomass and structure such as normalized difference vegetation index (NDVI), ratio vegetation index (RVI), difference vegetation index (DVI), soil-adjusted vegetation index (SAVI), and modified soil-adjusted vegetation index (MSAVI), and new images synthesized through band combinations such as the sum of TM2, TM3 and TM4 (denoted Band 234), and the sum of TM3, TM4 and TM5 (denoted Band 345) were used as alternative auxiliary parameters . Important findings The biomass density in urban forests of the Shanghai metropolis varied from 15 to 120 t•hm2. The higher densities of forest biomass concentrated mostly in the urban areas, e.g. in districts of Jing'an and Huangpu, mostly ranging from 35 to 70 t•hm2. Suburban localities such as the districts of Jiading and Qingpu had lower biomass densities at around 15 to 50 t•hm2. The biomass density of Cinnamomum camphora trees across the Shanghai metropolis varied between 20 and 110 t•hm2. The spatial biomass distribution of urban forests displayed a tendency of higher densities in northeastern areas and lower densities in southwestern areas. The total biomass was 3.57 million tons (Tg) for urban forests and 1.33 Tg for C. camphora trees. The overall forest biomass was also found to be distributed mostly in the suburban areas with a fraction of 93.9%, whereas the urban areas shared a fraction of only 6.1%. In terms of the areas, the suburban and urban forests accounted for 95.44% and 4.56%, respectively, of the total areas in the Shanghai metropolis. Among all the administrative districts, the Chongming county and the new district of Pudong had the highest and the second highest biomass, accounting for 20.1% and 19.18% of the total forest biomass, respectively. In contrast, the Jing'an district accounted for only 0.11% of the total forest biomass. The root-mean-square error (RMSE), mean absolute error (MAE) and mean relative error (MRE) of the model for estimating urban forest biomass in this study were 8.39, 6.86 and 24.22%, respectively, decreasing by 57.69%, 55.43% and 64.00% compared to the original simple regression model and by 62.21%, 58.50%, 65.40% compared to the spatial analysis method. Our results indicated that a more efficient way to estimate urban forest biomass in the Shanghai metropolis might be achieved by combining spatial analysis with regression analysis. In fact, the estimated results based on the proposed model are also more comparable to the up-scaled forest inventory data at a city scale than the results obtained using regression analysis or spatial analysis alone.  相似文献   

20.
Heterostyly is a floral polymorphism that increases pollination efficiency by promoting cross-pollination and reducing pollen wastage. Efficiency in pollination has been related to plant investment in gamete production and to the pollen to ovule ratio (P/O), which has been proposed as an indication of the likelihood of enough pollen grains reaching the stigmas to result in maximum reproductive success. In heterostylous species, cross-pollination is promoted by the reciprocal position of sexual organs between morphs and a heteromorphic incompatibility system, which precludes selfing and fertilizations among plants of the same morph. Morphological features like reciprocity (between morphs) and herkogamy (within morph) together with the breeding system are thought to influence pollination quality. Therefore, a close relationship between the pollination efficiency, morphological characteristics, and incompatibility would be expected. Pollination treatments and morphological measurements were carried out to describe the breeding system, herkogamy, and reciprocity of six Melochia species. Afterward, the relation between the P/O (as a surrogate of the efficiency in pollination), and reciprocity, herkogamy and incompatibility was evaluated. Monomorphic M. nodiflora and distylous M. pyramidata are self-compatible species, whereas the rest of the species are self- and morph-incompatible. There was a positive relationship between the P/O value and the degree of herkogamy and incompatibility. However, P/O values appear to increase when higher reciprocity is found in the populations. As expected, the lower values of P/O are associated with lower levels of herkogamy and compatibility in the Melochia species studied. The relationship between the factors is discussed under different scenarios of the pollinators’ predictability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号