首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alpha-tubulin suppressor 1 ( ATS1 ) gene and the killer toxin-insensitive 13 ( KTI13 ) locus from Saccharomyces cerevisiae are allelic. The Ats1/Kti13 gene product interacts with the cell polarity factor Nap1 and promotes growth inhibition of S. cerevisiae by zymocin, a tRNAse toxin complex from Kluyveromyces lactis . Kti13 removal causes zymocin resistance, a trait that is typical of defects in the Elongator complex. Here, we show that Kti13 co-purifies with the Elongator partner protein Kti11 and that the Kti11 interaction, not the Nap1 partnership, requires the C-terminus of Kti13. Moreover, Kti13 functionally relates to roles of the Elongator complex in tRNA wobble uridine modification, tRNA suppression of nonsense ( SUP4 ) and missense ( SOE1 ) mutations and tRNA restriction by zymocin. Also, inactivation of Kti13 or Elongator rescues the thermosensitive growth defect of secretory mutants ( sec2-59 ts, sec12-4 ts), suggesting that Kti13 and Elongator affect secretion processes that depend on the GTP exchange factors Sec2 and Sec12 respectively. Distinct from tandem deletions in KTI13 and Elongator genes, a kti13 Δ kti11 Δ double deletion induces synthetic sickness or lethality. In sum, our data suggest that Kti13 and Kti11 support Elongator functions and that they both share Elongator-independent role(s) that are important for cell viability.  相似文献   

2.
3.
The toxin target (TOT) function of the Saccharomyces cerevisiae Elongator complex enables Kluyveromyces lactis zymocin to induce a G1 cell cycle arrest. Loss of a ubiquitin-related system (URM1-UBA4 ) and KTI11 enhances post-translational modification/proteolysis of Elongator subunit Tot1p (Elp1p) and abrogates its TOT function. Using TAP tagging, Kti11p contacts Elongator and translational proteins (Rps7Ap, Rps19Ap Eft2p, Yil103wp, Dph2p). Loss of YIL103w and DPH2 (involved in diphtheria toxicity) suppresses zymocicity implying that both toxins overlap in a manner mediated by Kti11p. Among the pool that co-fractionates with RNA polymerase II (pol II) and nucleolin, Nop1p, unmodified Tot1p dominates. Thus, modification/proteolysis may affect association of Elongator with pol II or its localization. Consistently, an Elongator-nuclear localization sequence (NLS) targets green fluorescent protein (GFP) to the nucleus, and its truncation yields TOT deficiency. Similarly, KAP120 deletion rescues cells from zymocin, suggesting that Elongator's TOT function requires NLS- and karyopherin-dependent nuclear import.  相似文献   

4.
In yeast, the role for the Elongator complex in tRNA anticodon modification is affected by phosphorylation of Elongator subunit Elp1. Thus, hyperphosphorylation of Elp1 due to inactivation of protein phosphatase Sit4 correlates with Elongator-minus phenotypes including resistance towards zymocin, a tRNase cleaving anticodons of Elongator-dependent tRNAs. Here we show that zymocin resistance of casein kinase hrr25 mutants associates with hypophosphorylation of Elp1 and that nonsense suppression by the Elongator-dependent SUP4 tRNA is abolished in hrr25 or sit4 mutants. Thus changes that perturb the evenly balanced ratio between hyper- and hypophosphorylated Elp1 forms present in wild-type cells lead to Elongator inactivation. Antagonistic roles for Hrr25 and Sit4 in Elongator function are further supported by our data that Sit4 inactivation is capable of restoring both zymocin sensitivity and normal ratios between the two Elp1 forms in hrr25 mutants. Hrr25 binds to Elongator in a fashion dependent on Elongator partner Kti12. Like sit4 mutants, overexpression of Kti12 triggers Elp1 hyperphosphorylation. Intriguingly, this effect of Kti12 is blocked by hrr25 mutations, which also show enhanced binding of Kti12 to Elongator. Collectively, our data suggest that rather than directly targeting Elp1, the Hrr25 kinase indirectly affects Elp1 phosphorylation states through control of Sit4-dependent dephosphorylation of Elp1.  相似文献   

5.
Kluyveromyces lactis zymocin, a trimeric (alphabetagamma) protein toxin complex, inhibits proliferation of Saccharomyces cerevisiae cells. Here we present an analysis of kti6 mutants, which resist exogenous zymocin but are sensitive to intracellular expression of its inhibitory gamma-toxin subunit, suggesting that KTI6 encodes a factor needed for toxin entry into the cell. Consistent with altered cell surface properties, kti6 cells resist hygromycin B, syringomycin E, and nystatin, antibiotics that require intact membrane potentials or provoke membrane disruption. KTI6 is allelic to IPT1, coding for mannosyl-diinositolphospho-ceramide [M(IP)(2)C] synthase, which produces M(IP)(2)C, the major plasma membrane sphingolipid. kti6 membranes lack M(IP)(2)C and sphingolipid mutants that have reduced levels of M(IP)(2)C precursors, including the sphingolipid building block ceramide survive zymocin. In addition, kti6/ipt1 cells allow zymocin docking but prevent import of its toxic gamma-subunit. Genetic analysis indicates that Kti6 is likely to act upstream of lipid raft proton pump Kti10/Pma1, a previously identified zymocin sensitivity factor. In sum, M(IP)(2)C operates in a plasma membrane step that follows recognition of cell wall chitin by zymocin but precedes the involvement of elongator, the potential toxin target.  相似文献   

6.
Zymocin, a toxic protein complex produced by Kluyveromyces lactis, inhibits cell cycle progression in Saccharomyces cerevisiae. In studying its action, a resistant mutant ( kti14-1) was found to express the tot-phenotype typical of totDelta cells, toxin target (TOT) mutants that are impaired in RNA polymerase II Elongator function. Phenotypic analysis of a kti14-1 tot3Delta double mutant revealed a functional link between KTI14 and TOT/Elongator. Unlike totDelta cells, the kti14-1 mutant is sensitive to the drug methylmethane sulfonate (MMS), indicating that, besides being affected in TOT function, kti14-1 cells are also compromised in DNA repair. Single-copy complementation identified HRR25, which codes for casein kinase I (CKI), as KTI14. Kinase-minus hrr25 mutations (K38A and T176I) conferred zymocin resistance, while deletion of the other yeast CKI genes ( YCK1-3) had no effect. A mutation in KTI14 that truncates the P/Q-rich C-terminus of Hrr25p also dissociates MMS sensitivity from zymocin resistance; this mutant is resistant to the toxin, but shows normal sensitivity to MMS. Thus, although kinase-minus mutations are sufficient to protect yeast cells from zymocin, toxicity is also dependent on the integrity of the C-terminal region of Hrr25p, which has been implicated in determining the substrate specificity or localization of Hrr25p.  相似文献   

7.
Sun J  Zhang J  Wu F  Xu C  Li S  Zhao W  Wu Z  Wu J  Zhou CZ  Shi Y 《Biochemistry》2005,44(24):8801-8809
Kti11p is a small, highly conserved CSL zinc finger-containing protein found in many eukaryotes. It was first identified as one of the factors required for maintaining the sensitivity of Saccharomyces cerevisiae to Kluyveromyces lactis zymocin. Then, it was found to be identical to Dph3, a protein required for diphthamide biosynthesis on eEF-2, the target of diphtheria toxin and Pseudomonas exotoxin A, in both yeast and higher eukaryotes. Furthermore, Kti11p/Dph3 was found to physically interact with core-Elongator, ribosomal proteins, eEF-2, two other proteins required for diphthamide modification on eEF-2, and DelGEF. Here, we determined the solution structure of Kti11p using NMR, providing the first structure of the CSL-class zinc-binding protein family. We present the first experimental evidence that Kti11p can bind a single Zn(2+) ion by its four conserved cysteine residues. The major structure of Kti11p comprises a beta sandwich as well as an alpha helix. Moreover, a structure-based similarity search suggests that it represents a novel structure and may define a new family of the zinc ribbon fold group. Therefore, our work provides a molecular basis for further understanding the multiple functions of Kti11p/Dph3 in different biological processes.  相似文献   

8.
Roy V  Ghani K  Caruso M 《PloS one》2010,5(12):e15753
Diphtheria toxin (DT), Pseudomonas aeruginosa Exotoxin A (ETA) and cholix toxin from Vibrio cholerae share the same mechanism of toxicity; these enzymes ADP-rybosylate elongation factor-2 (EF-2) on a modified histidine residue called diphthamide, leading to a block in protein synthesis. Mutant Chinese hamster ovary cells that are defective in the formation of diphthamide have no distinct phenotype except their resistance to DT and ETA. These observations led us to predict that a strategy that prevents the formation of diphthamide to confer DT and ETA resistance is likely to be safe. It is well documented that Dph1 and Dph2 are involved in the first biochemical step of diphthamide formation and that these two proteins interact with each other. We hypothesized that we could block diphthamide formation with a dominant negative mutant of either Dph1 or Dph2. We report in this study the first cellular-targeted strategy that protects against DT and ETA toxicity. We have generated Dph2(C-), a dominant-negative mutant of Dph2, that could block very efficiently the formation of diphthamide. Cells expressing Dph2(C-) were 1000-fold more resistant to DT than parental cells, and a similar protection against Pseudomonas exotoxin A was also obtained. The targeting of a cellular component with this approach should have a reduced risk of generating resistance as it is commonly seen with antibiotic treatments.  相似文献   

9.
10.
Liu S  Leppla SH 《Molecular cell》2003,12(3):603-613
Retroviral insertional mutagenesis was used to produce a mutant Chinese hamster ovary cell line that is completely resistant to several different bacterial ADP-ribosylating toxins. The gene responsible for toxin resistance, termed diphtheria toxin (DT) and Pseudomonas exotoxin A (ETA) sensitivity required gene 1 (DESR1), encodes two small protein isoforms of 82 and 57 residues. DESR1 is evolutionally conserved and ubiquitously expressed. Only the longer isoform is functional because the mutant cell line can be complemented by transfection with the long but not the short isoform. We demonstrate that DESR1 is required for the first step in the posttranslational modification of elongation factor-2 at His(715) that yields diphthamide, the target site for ADP ribosylation by DT and ETA. KTI11, the analog of DESR1 in yeast, which was originally identified as a gene regulating the sensitivity of yeast to zymocin, is also required for diphthamide biosynthesis, implicating DESR1/KTI11 in multiple biological processes.  相似文献   

11.
12.
Zymocin, a three-subunit (alpha beta gamma) toxin complex from Kluyveromyces lactis, imposes a cell cycle block on Saccharomyces cerevisiae. Phenotypic analysis of the resistant kti10 mutant implies a membrane defect, suggesting that KTI10 represents a gene involved early in the zymocin response. Consistently, KTI10 is shown here to be allelic to PMA1 encoding H(+)-ATPase, a plasma membrane H(+) pump vital for membrane energization (Delta Psi). Like pma1 mutants, kti10 cells lose viability at low pH, indicating a pH homeostasis defect, and resist the antibiotic hygromycin B, uptake of which is known to be Pma1 and Delta Psi sensitive. Similar to kti10 cells, pma1 mutants with reported H(+) pump defects survive in the presence of exozymocin but do not resist endogenous expression of its lethal gamma-toxin subunit. Based on DNA sequence data, kti10 cells are predicted to produce a malfunctional Pma1 variant with expression levels that are normal. Intriguingly, zymocin protection of kti10 cells is suppressed by excess H(+), a scenario ineffective in bypassing resistance of chitin or toxin target mutants. Together with unaltered zymocin docking and gamma-toxin import events in kti10 cells, our data suggest that Pma1's role in zymocin action is likely to involve activation of gamma-toxin in a step following its cellular uptake.  相似文献   

13.
Kluyveromyces lactis zymocin, a heterotrimeric toxin complex, imposes a G1 cell cycle block on Saccharomyces cerevisiae that requires the toxin-target (TOT) function of holo-Elongator, a six-subunit histone acetylase. Here, we demonstrate that Elongator is a phospho-complex. Phosphorylation of its largest subunit Tot1 (Elp1) is supported by Kti11, an Elongator-interactor essential for zymocin action. Tot1 dephosphorylation depends on the Sit4 phosphatase and its associators Sap185 and Sap190. Zymocin-resistant cells lacking or overproducing Elongator-associator Tot4 (Kti12), respectively, abolish or intensify Tot1 phosphorylation. Excess Sit4.Sap190 antagonizes the latter scenario to reinstate zymocin sensitivity in multicopy TOT4 cells, suggesting physical competition between Sit4 and Tot4. Consistently, Sit4 and Tot4 mutually oppose Tot1 de-/phosphorylation, which is dispensable for integrity of holo-Elongator but crucial for the TOT-dependent G1 block by zymocin. Moreover, Sit4, Tot4, and Tot1 cofractionate, Sit4 is nucleocytoplasmically localized, and sit4Delta-nuclei retain Tot4. Together with the findings that sit4Delta and totDelta cells phenocopy protection against zymocin and the ceramide-induced G1 block, Sit4 is functionally linked to Elongator in cell cycle events targetable by antizymotics.  相似文献   

14.
In response to the Kluyveromyces lactis zymocin, the gamma-toxin target (TOT) function of the Saccharomyces cerevisiae RNA polymerase II (pol II) Elongator complex prevents sensitive strains from cell cycle progression. Studying Elongator subunit communications, Tot1p (Elp1p), the yeast homologue of human IKK-associated protein, was found to be essentially involved in maintaining the structural integrity of Elongator. Thus, the ability of Tot2p (Elp2p) to interact with the HAT subunit Tot3p (Elp3p) of Elongator and with subunit Tot5p (Elp5p) is dependent on Tot1p (Elp1p). Also, the association of core-Elongator (Tot1-3p/Elp1-3p) with HAP (Elp4-6p/Tot5-7p), the second three-subunit subcomplex of Elongator, was found to be sensitive to loss of TOT1 (ELP1) gene function. Structural integrity of the HAP complex itself requires the ELP4/TOT7, ELP5/TOT5, and ELP6/TOT6 genes, and elp6Delta/tot6Delta as well as elp4Delta/tot7Delta cells can no longer promote interaction between Tot5p (Elp5p) and Tot2p (Elp2p). The association between Elongator and Tot4p (Kti12p), a factor that may modulate the TOT activity of Elongator, requires Tot1-3p (Elp1-3p) and Tot5p (Elp5p), indicating that this contact requires a preassembled holo-Elongator complex. Tot4p also binds pol II hyperphosphorylated at its C-terminal domain Ser(5) raising the possibility that Tot4p bridges the contact between Elongator and pol II.  相似文献   

15.
The translation elongation factor 2 in eukaryotes (eEF-2) contains a unique posttranslationally modified histidine residue, termed diphthamide, which serves as the only target for diphtheria toxin and Pseudomonas aeruginosa exotoxin A. Diphthamide biosynthesis is carried out by five highly conserved proteins, Dph1 to Dph5, and an as-yet-unidentified amidating enzyme. The evolutionary conservation of the complex diphthamide biosynthesis pathway throughout eukaryotes implies a key role for diphthamide in normal cellular physiology. Of the proteins required for diphthamide synthesis, Dph3 is the smallest, containing only 82 residues. In addition to having a role in diphthamide biosynthesis, Dph3 is also involved in modulating the functions of the Elongator complex in yeast. To explore the physiological roles of Dph3 and to begin to investigate the function of diphthamide, we generated dph3 knockout mice and showed that dph3+/- mice are phenotypically normal, whereas dph3-/- mice, which lack the diphthamide modification on eEF-2, are embryonic lethal. Loss of both dph3 alleles causes a general delay in embryonic development accompanied by lack of allantois fusion to the chorion and increased degeneration and necrosis in neural tubes and is not compatible with life beyond embryonic day 11.5. The dph3-/- placentas also developed abnormally, showing a thinner labyrinth lacking embryonic erythrocytes and blood vessels. These results attest to the physiological importance of Dph3 in development. The biological roles of Dph3 are also discussed.  相似文献   

16.
17.
18.
mTn3-tagging identified Kluyveromyces lactis zymocin target genes from Saccharomyces cerevisiae as TOT1-3/ELP1-3 coding for the RNA polymerase II (pol II) Elongator histone acetyltransferase (HAT) complex. tot phenotypes resulting from mTn3 tagging were similar to totDelta null alleles, suggesting loss of Elongator's integrity. Consistently, the Tot1-3/Elp1-3 proteins expressed from the mTn3-tagged genes were all predicted to be C-terminally truncated, lacking approximately 80% of Tot1p, five WD40 Tot2p repeats and two HAT motifs of Tot3p. Besides its role as a HAT, Tot3p assists subunit communication within Elongator by mediating Tot2-Tot4, Tot2-Tot5, Tot2-Tot1 and Tot4-Tot5 protein-protein interactions. TOT1 and TOT2 are essential for Tot4-Tot2 and Tot4-Tot3 interactions respectively. The latter was lost with a C-terminal Tot2p truncation; the former was affected by progressively truncating TOT1. Despite being dispensable for Tot4-Tot2 interaction, the extreme C-terminus of Tot1p may play a role in TOT/Elongator function, as its truncation confers zymocin resistance. Tot4p/Kti12p, an Elongator-associated factor, also interacted with pol II and could be immunoprecipitated while being bound to the ADH1 promoter. Two-hybrid analysis showed that Tot4p also interacts with Cdc19p, suggesting that Tot4p plays an additional role in concert with Cdc19p, perhaps co-ordinating cell growth with carbon source metabolism.  相似文献   

19.
Diphthamide is a post-translational derivative of histidine in protein synthesis elongation factor-2 (eEF-2) that is present in all eukaryotes with no known normal physiological role. Five proteins Dph1–Dph5 are required for the biosynthesis of diphthamide. Chinese hamster ovary (CHO) cells mutated in the biosynthetic genes lack diphthamide and are resistant to bacterial toxins such as diphtheria toxin. We found that diphthamide-deficient cultured cells were threefold more sensitive than their parental cells towards ricin, a r ibosome- i nactivating p rotein (RIP). RIPs bind to ribosomes at the same site as eEF-2 and cleave the large ribosomal RNA, inhibiting translation and causing cell death. We hypothesized that one role of diphthamide may be to protect ribosomes, and therefore all eukaryotic life forms, from RIPs, which are widely distributed in nature. A protective role of diphthamide against ricin was further demonstrated by complementation where dph mutant CHO cells transfected with the corresponding DPH gene acquired increased resistance to ricin in comparison with the control-transfected cells, and resembled the parental CHO cells in their response to the toxin. These data show that the presence of diphthamide in eEF-2 provides protection against ricin and suggest the hypothesis that diphthamide may have evolved to provide protection against RIPs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号