首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports a quantitative study of the effect of ring substituents in the 1-position of the aromatic ring on the rate of monophenol hydroxylation and o-diphenol oxidation catalyzed by tyrosinase. A possible correlation between the electron density of the carbon atom supporting the oxygen from the monophenolic hydroxyl group and the V Mmax values for each monophenol was found. In the case of o-diphenols the same effect was observed but the size of the side-chain became very important. NMR studies on the monophenols justified the sequence of the V Mmax values obtained. As regards the o-diphenols, on the other hand, only a fair correlation between NMR and V Dmax values was observed due to the effect of the molecular size of the ring substituent. From these data, it can be concluded that the redox step (k33) is not the rate-determining step of the reaction mechanism. Thus, the monophenols are converted into diphenols, but the order of specificities towards monophenols is different to that of o-diphenols. The rate-limiting step of the monophenolase activity could be the nucleophilic attack (k51) of the oxygen atom of the hydroxyl group on the copper atoms of the active site of the enzyme. This step could also be similar to or have a lower rate of attack than the electrophilic attack (k52) of the oxygen atom of the active site of oxytyrosinase on the C-3 of the monophenolic ring. However, the rate-limiting step in the diphenolase activity of tyrosinase could be related to both the nucleophilic power of the oxygen atom belonging to the hydroxyl group at the carbon atom in the 3-position (k32) and to the size of the substituent side-chain. On the basis of the results obtained, kinetic and structural models describing the monophenolase and diphenolase reaction mechanisms for tyrosinase are proposed.  相似文献   

2.
We study the suicide inactivation of tyrosinase acting on o-aminophenols and aromatic o-diamines and compare the results with those obtained for the corresponding o-diphenols. The catalytic constants follow the order aromatic o-diamineso-aminophenols>aromatic o-diamines.  相似文献   

3.
Tyrosinase has a suicide inactivation reaction when it acts on omicron-diphenols. In the present paper, this reaction has been studied using a transient phase approach. Explicit equations of product vs. time have been developed for the multisubstrate mechanism of tyrosinase, and the kinetic parameters which characterize the enzyme acting on the suicide substrate catechol have been determined. The effect of pH has also been considered.  相似文献   

4.
We study the suicide inactivation of tyrosinase acting on o-aminophenols and aromatic o-diamines and compare the results with those obtained for the corresponding o-diphenols. The catalytic constants follow the order aromatic o-diamines < o-aminophenols < o-diphenols, which agrees with the view that the transfer of the proton to the peroxide group of the oxy-tyrosinase form is the slowest step in the catalytic cycle. As regards the apparent inactivation constant, it remains within the same order of magnitude, although slightly lower in the case of the aromatic o-diamines and o-aminophenols than o-diphenols: o-diamines < o-aminophenols < o-diphenols. The efficiency of the second nucleophilic attack of substrate on CuA seems to be the determining factor in the bifurcation of the inactivation and catalytic pathways. This attack is more efficient in o-diamines (where it attacks a nitrogen atom) than in o-aminophenols and o-diphenols (where it attacks an oxygen atom), favouring the catalytic pathway and slowing down the inactivation pathway. The inactivation step is the slowest of the whole process. The values of r, the number of turnovers that 1 mol of enzyme carries out before being inactivated, follows the order aromatic o-diamines < o-aminophenols < o-diphenols. As regards the Michaelis constants, that of the o-diamines is slightly lower than that of the o-diphenols, while that of the o-aminophenols is slightly greater than that observed for the o-diphenols. As a consequence of the above, the inactivation efficiency, λmax/KmS, follows this order: o-diphenols > o-aminophenols > aromatic o-diamines.  相似文献   

5.
3-hydroxykynurenine as a substrate/activator for mushroom tyrosinase   总被引:1,自引:0,他引:1  
3-Hydroxykynurenine is a tryptophan metabolite with an o-aminophenol structure. It is both a tyrosinase activator and a substrate, reducing the lag phase, stimulating the monophenolase activity, and being oxidized to xanthommatin. In the early stage of monophenol hydroxylation, catechol accumulation takes place, whereas 3-hydroxykynurenine is substantially unchanged and no significant amounts of the o-quinone are produced. These results suggest an activating action of 3-hydroxykynurenine toward o-hydroxylation of monophenols. 3-Hydroxykynurenine could therefore well act as a physiological device to control phenolics metabolism to catechols and quinonoids.  相似文献   

6.
This paper deals with the kinetic study of a multisubstrate mechanism with enzyme inactivation induced by a suicide substrate. A transient phase approach has been developed that enables the deduction of explicit equations of product concentration vs. time. From these equations kinetic constants which characterize the suicide substrate can be obtained. This study with tyrosinase enzyme, which acts on L-dopa and catechol allowed us to determine the corresponding kinetic parameters, indicating that catechol is about 8-times more powerful as a suicide substrate than is L-dopa.  相似文献   

7.
Suicide substrates are widely used in enzymology for studying enzyme mechanisms and designing potential drugs. The presence of a reversible modifier decreases or increases the rate of substrate-induced inactivation, with evident physiological and experimental consequences. To date, only the action of a competitive or uncompetitive inhibitor of an enzyme system involving suicide substrate has been reported. In this paper, we analyse the kinetics of enzyme-catalysed reactions which evolve in accordance with the general modifier mechanisms of Botts and Morales in which enzyme inactivation is induced by suicide substrate. Rapid equilibrium of all of the reversible reaction steps involved is assumed and the time course equations for the residual enzyme activity, the inactive enzyme forms and the reaction product are derived. Partition ratios giving the relative weight of the product and inactive enzyme concentrations, and the relative contribution to the product formation of each of the unmodified and modified catalytic routes, are studied. New indices pointing to the conditions under which the modifier acts as inhibitor or as activator are suggested. The goodness of the analytical solutions is tested by comparison with the simulated curves obtained by numerical integration. An experimental design and kinetic data analysis to evaluate the kinetic parameters from the time progress curves of the product are proposed. From these results, those corresponding to several reaction mechanisms involving both a suicide substrate and a modifier, and which can be regarded as particular cases of the general case analysed here, can be directly and easily derived.  相似文献   

8.
Tyrosinase is a rate-limiting enzyme in mammalian melanogenesis, and is known as a glycoprotein. Post-translational processing of mammalian tyrosinase is required for its folding, sorting, and for enzymatic activity. Here we show for the first time that the mammalian tyrosinase has beta1,6-branched N-glycan structure that can be recognized by binding with specific lectin Leukoagglutinating phytohematoagglutinin (L-PHA). Further, this specific glycoconjugate structure has been shown to have a function relationship in melanin synthesis.  相似文献   

9.
10.
Identification and characterization of PEBP as a calpain substrate   总被引:3,自引:0,他引:3  
Calpains are calcium- and thiol-dependent proteases whose dysregulation has been implicated in a number of diseases and conditions such as cardiovascular dysfunction, ischemic stroke, and Alzheimer's disease (AD). While the effects of calpain activity are evident, the precise mechanism(s) by which dysregulated calpain activity results in cellular degeneration are less clear. In order to determine the impact of calpain activity, there is a need to identify the range of specific calpain substrates. Using an in vitro proteomics approach we confirmed that phosphatidylethanolamine-binding protein (PEBP) as a novel in vitro and in situ calpain substrate. We also observed PEBP proteolysis in a model of brain injury in which calpain is clearly activated. In addition, with evidence of calpain dysregulation in AD, we quantitated protein levels of PEBP in postmortem brain samples from the hippocampus of AD and age-matched controls and found that PEBP levels were approximately 20% greater in AD. Finally, with previous evidence that PEBP may act as a serine protease inhibitor, we tested PEBP as an inhibitor of the proteasome and found that PEBP inhibited the chymostrypsin-like activity of the proteasome by approximately 30%. Together these data identify PEBP as a potential in vivo calpain substrate and indicate that increased PEBP levels may contribute to impaired proteasome function.  相似文献   

11.
We present a general kinetic analysis of enzyme catalyzed reactions evolving according to a Michaelis-Menten mechanism, in which an uncompetitive, reversible inhibitor acts. Simultaneously, enzyme inactivation is induced by an unstable suicide substrate, i.e. it is a Michaelis-Menten mechanism with double inhibition: one originating from the substrate and another originating from the reversible inhibitor. Rapid equilibrium of the reversible reaction steps involved is assumed and the time course equations for the reaction product have been derived under the assumption of limiting enzyme. The goodness of the analytical solutions has been tested by comparison with simulated curves obtained by numerical integration. A kinetic data analysis to determine the corresponding kinetic parameters from the time progress curve of the product is suggested.  相似文献   

12.
The enzymatic activity of mushroom tyrosinase was investigated using catechin as substrate in selected organic solvent media. The results showed that optimal tyrosinase activity was obtained at pH 6.2, 6.6, 6.0 and 6.2 in the organic solvent media of heptane, toluene, dichloromethane, and dichloroethane, respectively, and at a temperature between 25°C and 27.5°C. In addition, the kinetic studies showed that the Km values were 5.38, 1.03, 2.52 and 4.03 mM, for the tyrosinase-catechin biocatalysis in the reaction media of heptane, toluene, dichloromethane, and dichloroethane, respectively, while the corresponding Vmax values were 1.22×10−3, 0.33×10−3, 1.47×10−3 and 1.20×10−3 δA per μg protein per second, respectively. The use of acetone as co-solvent for the tyrosinase-catechin biocatalysis showed that acetone concentrations ranging from 5% to 30% (v/v) in the heptane reaction medium produced a decrease of 4.3% to 96.7% in tyrosinase activity. The results also indicated that the presence of 12.5% acetone in the reaction medium of dichloromethane, and 22.0% in those of toluene and dichloroethane produced a maximal increase of 42.6%, 92.1% and 71.8%, respectively, in tyrosinase activity. However, the overall findings indicated that additional increases in acetone concentration resulted in an inhibition of tyrosinase activity.  相似文献   

13.
To address the real cause of the suicide inactivation of mushroom tyrosinase (MT), under in vitro conditions, cresolase and catecholase reactions of this enzyme were investigated in the presence of three different pairs of substrates, which had been selected for their structural specifications. It was showed that the cresolase activity is more vulnerable to the inactivation. Acetylation of the free tyrosyl residues of MT did not cure susceptibility of the cresolase activity, but clearly decreased the inactivation rate of MT in the presence of 4-[(4-methylbenzo)azo]-1,2-benzenediol (MeBACat) as a catecholase substrate. Considering the results of the previous works and this research, some different possible reasons for the suicide inactivation of MT have been discussed. Accordingly, it was proposed that the interruption in the conformational changes in the tertiary and quaternary structures of MT, triggered by the substrate then mediated by the solvent molecules, might be the real reason for the suicide inactivation of the enzyme. However, minor causes like the toxic effect of the ortho-quinones on the protein body of the enzyme or the oxidation of some free tyrosyl residues on the surface of the enzyme by itself, which could boost the inactivation rate, should not be ignored.  相似文献   

14.
We find ethanenitronate (formula; see text) to be a H2O2- (and peracetic acid-) dependent suicide substrate for bovine liver catalase (E) which converts E to Em, a modified form of the enzyme. The catalytic and suicide pathways are related to E, Em, Compound I, and Compound II according to the following scheme. (formula; see text) The catalytic cycle generates free radical products (EN.) which then participate in an O2-dependent chain reaction. Within experimental error the exclusive target for inactivation by EN- is Compound II. This partitions in the ratio (k4 = 1.2 M-1 s-1)/(k3 = 1.6 M-1 s-1) to generate Em and E, respectively. The species Em acquires 1 eq of 14C/ferriheme from [1-14C]ethanenitronate which is firmly (presumably covalently) affixed to the protein moiety. According to the standard H2O2 assay, Em is 7% as active catalytically as E. We regard inactivation as resulting from that fraction of EN. in the E...EN. complex which fails to diffuse from the complex because it is trapped by reaction with a neighboring amino acid residue to generate Em irreversibly. (formula; see text) This mechanism is identical to that deduced previously for suicide inactivation of horseradish peroxidase by alkane nitronates (Porter, D. J. T., and Bright, H. J. (1983) J. Biol. Chem. 258, 9913-9924) with the exception that EN. is trapped in that case by a methine carbon at the edge of the ferriheme rather than by the apoenzyme. The labeled residue in the catalase apoenzyme probably resides at or near the site of reduction of Compound II.  相似文献   

15.
Mushroom tyrosinase catalyzes the oxidation of sinephrine showing a marked lag period during appearance of adrenochrome and simultaneously adrenaline accumulation in the reaction medium can be detected. The adrenaline accumulation follows a sigmoidal curve until a constant level of adrenaline is reached when the system is in the steady-state. These experimental results agree with a model of enzymatic catalysis that includes the chemical evolution of adrenoquinone and permit us to explain these phenomenon as well as the influence that enzyme and sinephrine concentration present on the lag period and the level of adrenaline accumulated in the steady-state.  相似文献   

16.
Tyrosinase shows kinetic cooperativity in its action on o-diphenols, but not when it acts on monophenols, confirming that the slow step is the hydroxylation of monophenols to o-diphenols. This model can be generalised to a wide range of substrates; for example, type S(A) substrates, which give rise to a stable product as the o-quinone evolves by means of a first or pseudo first order reaction (α-methyl dopa, dopa methyl ester, dopamine, 3,4-dihydroxyphenylpropionic acid, 3,4-dihydroxyphenylacetic acid, α-methyl-tyrosine, tyrosine methyl ester, tyramine, 4-hydroxyphenylpropionic acid and 4-hydroxyphenylacetic acid), type S(B) substrates, which include those whose o-quinone evolves with no clear stoichiometry (catechol, 4-methylcatechol, phenol and p-cresol) and, lastly, type S(C) substrates, which give rise to stable o-quinones (4-tert-butylcatechol/4-tert-butylphenol).  相似文献   

17.
Serpins form a family of structurally related proteins, many of which function in plasma as inhibitors of serine proteases involved in inflammation, blood coagulation, fibrinolysis, and complement activation. To further characterize the mechanism by which serpins inhibit their target enzymes, we have studied the effect of temperature on the reaction of C1 inhibitor and the serine protease plasma kallikrein. At both 38 and 4 degrees C, C1 inhibitor (Mr 105,000) is cleaved by alpha-kallikrein (Mr 85,000 and 88,000) at position P1 (Arg444) of the reactive center, a reaction that leads to the formation of a covalent bimolecular enzyme-serpin complex (Mr 195,000) and cleaved but uncomplexed serpin (Mr 95,000). Between 38 and 4 degrees C, the product distribution is temperature-dependent, with more cleaved C1 inhibitor (Mr 95,000) formed at lower temperatures and correspondingly less Mr 195,000 complex. Studies employing intrinsic tryptophan fluorescence and 1H NMR spectroscopy show that this behavior is not caused by temperature-dependent conformational changes of kallikrein or C1 inhibitor. C1 inhibitor also behaves in this manner with the light chain of kallikrein and, to a lesser extent, with plasmin and C1s. These data are best explained by a branched reaction pathway, identical with the scheme describing the mechanism of action of suicide substrates. This scheme involves the formation of an enzyme-inhibitor intermediate, which can be stabilized into a covalent complex and/or dissociate into free enzyme and cleaved inhibitor, depending on the reaction conditions.  相似文献   

18.
19.
Yamazaki S  Morioka C  Itoh S 《Biochemistry》2004,43(36):11546-11553
Tyrosinase is a copper monooxygenase containing a coupled dinuclear copper active site (type-3 copper), which catalyzes oxygenation of phenols (phenolase activity) as well as dehydrogenation of catechols (catecholase activity) using O(2) as the oxidant. In this study, catalase activity (conversion of H(2)O(2) to (1/2)O(2) and H(2)O) and peroxygenase activity (H(2)O(2)-dependent oxygenation of substrates) of mushroom tyrosinase have been examined kinetically by using amperometric O(2) and H(2)O(2) sensors. The catalase activity has been examined by monitoring the initial rate of O(2) production from H(2)O(2) in the presence of a catalytic amount of tyrosinase in 0.1 M phosphate buffer (pH 7.0) at 25 degrees C under initially anaerobic conditions. It has been found that the catalase activity of mushroom tyrosinase is three-order of magnitude greater than that of mollusk hemocyanin. The higher catalase activity of tyrosinase could be attributed to easier accessibility of H(2)O(2) to the dinuclear copper site of tyrosinase. Mushroom tyrosinase has also been demonstrated for the first time to catalyze oxygenation reaction of phenols with H(2)O(2) (peroxygenase activity). The reaction has been investigated kinetically by monitoring the H(2)O(2) consumption rate in 0.5 M borate buffer (pH 7.0) under aerobic conditions. Similarity of the substituent effects of a series of p-substituted phenols in the peroxygenase reaction with H(2)O(2) to those in the phenolase reaction with O(2) as well as the absence of kinetic deuterium isotope effect with a perdeuterated substrate (p-Cl-C(6)D(4)OH vs p-Cl-C(6)H(4)OH) clearly demonstrated that the oxygenation mechanisms of phenols in both systems are the same, that is, the electrophilic aromatic substitution reaction by a (micro-eta(2):eta(2)-peroxo)dicopper(II) intermediate of oxy-tyrosinase.  相似文献   

20.
Kinetic study of mannitol production using cashew apple juice as substrate   总被引:1,自引:0,他引:1  
The use of agriculture excess as substrate in industrial fermentations became an interesting alternative to reduce production costs and to reduce negative environmental impact caused by the disposal of these products. In this work, a kinetic study of mannitol production using cashew apple juice as substrate was studied. The carbohydrates of cashew apple juice are glucose and fructose. Sucrose addition favored the yield of mannitol (85%) at the expense of lower productivity. The best results were obtained applying only cashew apple juice as substrate, containing 50 g L−1 of total reducing sugar (28 g L−1 of fructose), yielding 18 g L−1 of mannitol with 67% of fructose conversion into mannitol and productivity of 1.8 g L−1 h−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号