首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wheat (Triticum aestivum L. cv Jubilar) seedlings were grown for 10 days in hydroponics with or without calcium. In the leaves, Ca deficiency caused the level of ethanol soluble carbohydrate to increase between 2-and 10-fold, enhanced dark respiration and decreased CO2 fixation capacity. Sucrose was the major carbohydrate to accumulate in wheat roots.  相似文献   

2.
The main goal of the study was to determine the structure of endophytic bacteria inhabiting different parts (endosperm, germ, roots, coleoptiles, and leaves) of two wheat species, Triticum aestivum L. (cv. ‘Hondia’) and Triticum spelta L. (cv. ‘Rokosz’), in order to provide new knowledge about the stability and/or changeability of the core microbiome in different plant organs. The endophytic core microbiome is associated with plants throughout their whole life cycle; however, plant organs can determine the actual endophytic community. Therefore, next generation sequencing with MiSeq Illumina technology was applied to identify the endophytic microbiome of T. aestivum and T. spelta. Bioinformatic analyses were performed with the use of the DADA2(1.8) package and R software (3.5.1).It was demonstrated that wheat, which is an important crop plant, was associated with beneficial endophytic bacteria inside the endosperms, germs, roots, leaves, and coleoptiles. Importantly, for the first time, biodiversity was recognized in the coleoptiles of the investigated wheat species. Flavobacterium, Pseudomonas and Janthinobacterium were shown to be common genera for both tested wheat cultivars. Among them, Pseudomonas was found to be the only endophytic genus accompanying both wheat species from the endosperm stage to the development of the leaf. Paenibacillus was recognized as a core genus for the ‘Hondia’ cv., whereas Pedobacter and Duganella constituted the core microbiome in the ‘Rokosz’ cv. In addition, the first insight into the unique and yet unrecognized endophytic microbiome of T. spelta is presented.  相似文献   

3.
An antibiotic-resistant strain of Pseudomonas fluorescens, that suppresses take-all of wheat, was used to study the distribution of the bacteria on seminal roots of wheat after being introduced onto seeds. Cells of P. fluorescens were isolated from the entire length of the root, and density of the introduced bacteria declined with the distance from the base of the root. Maximum populations of 105 to 106 CFU and 103 to 105 CFU per cm of root were detected on sections of roots near the seed and root tip, respectively. The introduced bacteria competed well with indigenous bacteria, comprising at least 25% of the fluorescent pseudomonads detected by plate counts for 48 days after planting.  相似文献   

4.
Take-all of wheat, caused by Gaeumannomyces graminis var tritici (Ggt), is reduced by ammoniacal fertilizers as compared to nitrate sources. This influence of nitrogen on the disease is only observed on nodal roots at flowering. But soil conduciveness to take-all, as measured in a soil bioassay, is modified earlier. Forty days after nitrogen application at early tillering, the NH4-treated soil became less conducive than the NO3-treated one. When nitrogen applications are done at sowing and at tillering, differences in disease propagation between the two soils are enhanced. Results from four years of experimentation show that when the level of natural soil inoculum is high, disease severity is reduced by ammonium, showing an effect on the parasitic phase of Ggt. At a low level of natural inoculum the effect of the source of nitrogen is mainly observed on the percent of infected plants, indicating that the saprophytic and preparasitic phases are affected. Rhizospheric bacterial populations increase from sowing to tillering, but differences on take-all conduciveness after tillering are not correlated with differences in the amounts of aerobic bacteria or fluorescent pseudomonads isolated from soils treated with different sources of nitrogen. Qualitative changes in fluorescent Pseudomonas spp. populations, like in vitro antagonism, are more likely to explain differences in soil conduciveness to take-all than are quantitative changes in this group. Nevertheless, the introduction of Ggt in a cropped soil leads to a greater increase in fluorescent pseudomonads populations than in total aerobic bacteria.The delay between reducing soil conduciveness and reducing disease in the field with ammonium nitrogen fertilization, the qualitative change of fluorescent pseudomonads populations and the role of necroses in rhizobacteria multiplication, provide information leading to our representation of a dynamic model based on the differentiation of the wheat root system into seminal and nodal roots.  相似文献   

5.
The antibiotics phenazine-1-carboxylic acid (PCA) and 2,4-diacetylphloroglucinol (Phl) are major determinants of biological control of soilborne plant pathogens by various strains of fluorescent Pseudomonas spp. In this study, we described primers and probes that enable specific and efficient detection of a wide variety of fluorescent Pseudomonas strains that produce various phenazine antibiotics or Phl. PCR analysis and Southern hybridization demonstrated that specific genes within the biosynthetic loci for Phl and PCA are conserved among various Pseudomonas strains of worldwide origin. The frequency of Phl- and PCA-producing fluorescent pseudomonads was determined on roots of wheat grown in three soils suppressive to take-all disease of wheat and four soils conducive to take-all by colony hybridization followed by PCR. Phenazine-producing strains were not detected on roots from any of the soils. However, Phl-producing fluorescent pseudomonads were isolated from all three take-all-suppressive soils at densities ranging from approximately 5 x 10(sup5) to 2 x 10(sup6) CFU per g of root. In the complementary conducive soils, Phl-producing pseudomonads were not detected or were detected at densities at least 40-fold lower than those in the suppressive soils. We speculate that fluorescent Pseudomonas spp. that produce Phl play an important role in the natural suppressiveness of these soils to take-all disease of wheat.  相似文献   

6.
Seed bacterization with five plant growth promoting fluorescent Pseudomonas strains isolated from Indian and Swedish soils and three Rhizobium leguminosarumbiovar viceae strains isolated from Swedish soils were shown to promote plant growth in Pisum sativum L. cv. Capella. Co-inoculation of the fluorescent pseudomonads and Rhizobium improved plant growth in terms of shoot height, root length and dry weight. Both the fluorescent pseudomonads and Rhizobium were shown to exhibit a wide range of antifungal activity against pathogens specific to pea. Seed bacterization with plant growth promoting strains alone and together with a rhizobial isolate, R 361-27 reduced the number of infected peas grown in Fusarium oxysporum infested soils. We found that the introduced organisms were able to colonize the roots, which was confirmed using immunofluorescence staining and drug resistant mutant strains. In a synthetic culture medium, all the plant growth promoting fluorescent pseudomonads strains produced siderophores, which shown to express antifungal and antibacterial activity. Our results suggest the potential use of these bacteria to induce plant growth and disease suppression in sustainable agriculture production systems.  相似文献   

7.
以新疆、福建和浙江等地采集的132份土壤样品为对象,利用平板计数和Biolog等方法研究了不同耕作与栽培制度下瓜类土壤细菌数量及瓜类枯萎病拮抗细菌的分布与主要类群.结果表明,瓜类耕作土壤中的可培养细菌种群数量平均为非耕作土壤的16.2倍,根际为根围的2.0倍,轮作为连作的3.5倍,未嫁接平均为嫁接的1.5倍;水旱轮作和嫁接处理的瓜类土壤易获得拮抗细菌,其中荧光假单胞菌是主要类群,占总数的80%以上.  相似文献   

8.
Microbial communities in rhizosphere soil from sugarcane (Saccharum inter-specific hybrids) and bulk soil were compared at paired field sites with and without a sugarcane cropping history to determine whether monoculture affects soil microbial community composition. Differences were evaluated for culturable microorganisms and functional diversity indicated by community level physiological profiles (CLPP). Qualitative differences in rhizosphere bacterial communities were detected between sites with no sugarcane cropping history (Nsite) and sites with a long-term sugarcane cropping history (Lsite). More fluorescent pseudomonads were detected in Nsite than Lsite rhizosphere soil at two of three sites, and Actinobacteria were more numerous in Nsite than Lsite rhizosphere soil at one site. Fusarial fungi were more numerous in Nsite than Lsite rhizosphere soils. Bacteria were more numerous in rhizosphere soil compared to bulk soil. Total bacterial, pseudomonad, and Actinobacteria population densities were greater in bulk soil from an Nsite compared to an Lsite. CLPP distinguished bulk from rhizosphere soil at one of two sites and Nsite and Lsite rhizosphere soils at two of four sites. Site affected CLPP similarity more than cropping history. The results demonstrated that sugarcane monoculture can affect the composition of the microbial community in field soil. The findings have possible implications for reduced yields associated with sugarcane monoculture.  相似文献   

9.
Both antibiotics and siderophores have been implicated in the control of soilborne plant pathogens by fluorescent pseudomonads. In Pseudomonas fluorescens 2–79, which suppresses take-all of wheat, the importance of the antibiotic phenazine-1-carboxylic acid was established with mutants deficient or complemented for antiobiotic production and by isolation of the antibiotic from the roots of wheat colonized by the bacteria. Genetic and biochemical studies of phenazine synthesis have focused on two loci; the first is involved in production of both anthranilic acid and phenazine-1-carboxylic acid, and the second encodes genes involved directly in phenazine synthesis. Because the antibiotic does not account fully for the suppressiveness of strain 2-79, additional mutants were analyzed to evaluate the role of the fluorescent siderophore and of an antifungal factor (Aff, identified as anthranilic acid) that accumulates when iron is limiting. Whereas strains producing only the siderophore conferred little protection against take-all, Aff+ strains were suppressive, but much less so than phenazine-producing strains. Iron-regulated nonsiderophore antibiotics may be produced by fluorescent pseudomonads more frequently than previously recognized, and could be partly responsible for beneficial effects that were attributed in the past to fluorescent siderophores.  相似文献   

10.
Total aerobic bacteria and fluorescent pseudomonads were counted in bulk and rhizospheric soils of banana plants of 14 plantations in Martinique (French West Indies). Fluorescent Pseudomonas isolates were then identified and investigated for in vitro antagonism towards Cylindrocladium sp., a fungal pathogen of banana roots. Total aerobic bacteria and fluorescent pseudomonads were significantly more abundant in rhizospheric soils than in bulk soils. Among 58 fluorescent Pseudomonas isolates, 41 were identified as Pseudomonas fluorescens biovar V and 17 as Ps. putida biovar A. Six strains exhibited an antagonism towards Cylindrocladium isolates. Among them, Ps. putida strain 93.1 totally blocked fungal growth. No relationship was established between the antifungal effect and enzyme or hydrogen cyanide production by bacteria, suggesting that siderophores and other compounds were involved in fungal inhibition. Antagonistic fluorescent pseudomonads represent a potential for the biological control of banana root infections by Cylindrocladium sp.  相似文献   

11.
The structure of syncytia induced by Heterodera avenae in roots of susceptible Triticum aestivum cv. ‘Capa’ and resistant wheat AUS 10894 was investigated. In susceptible plants the first syncytia were observed 4 days after placing the seedlings into a substrate containing nematode cysts. They were located on different root levels. In resistant plants syncytia were first found after 14 days, exclusively in the root maturity zone. In both wheats syncytia consisted mostly of stelar parenchymatic cells. The syncytia induced in roots of Triticum aestivum AUS 10894 were characterized by less immediate contact with the host tracheary elements than the syncytia induced in roots of susceptible Triticum aestivum cv. ‘Capa’. In both wheats a stimulation of pericycle cell divisions, giving rise to lateral roots, was found in parts where the syncytia developed.  相似文献   

12.
Sorghum [Sorghum bicolor (L.) Moench] is valued for bioenergy, feed and food. Potential of sorghum genotypes to support differing populations of root- and soil-associated fluorescent Pseudomonas spp. or Fusarium spp., in two soils, was assessed. Culturable pseudomonads were enumerated from roots and soil of sorghum (Redlan and RTx433) and wheat (Lewjain) seedlings repeatedly grown in cycled soils in the growth chamber. Pseudomonads and Fusarium spp. were assessed from roots and soil of field-grown sorghum along with biological control traits hydrogen cyanide (HCN) and 2,4-diacetylphlorogluconol (phl) production. After four 4-week cycles, soil associated with Redlan seedlings had greater numbers of fluorescent pseudomonads than Lewjain. In dryland field conditions, RTx433 roots had greater numbers of pseudomonads than Redlan before anthesis but similar numbers after. There were no differences in numbers of pseudomonads from dryland soil or roots or soil of irrigated plants. Percentages of HCN-producing root isolates and phl soil isolates declined on irrigated Redlan plants, but percentages of HCN-producers increased in dryland conditions. Redlan roots had greater percentages of Fusarium isolates in the Gibberella fujikuroi complex. Results indicated that sorghum genotype affected root-associated populations of fluorescent Pseudomonas spp. and Fusarium spp. across soil environments.  相似文献   

13.
Fluorescent pseudomonads were present in chernozem soil not influenced by plant roots (10(3)-10(4) per g dry soil) in the rhizosphere soil of various plants (10(4)-10(5) per g soil) and on roots (10(3) to 10(7) per g fresh roots), depending on the species and age of the plant. Relative species representation of fluorescent pseudomonads changed on the roots and in the plant rhizosphere as compared with free soil. Pseudomonas fluorescens, representing 60-93% of the population of fluorescent pseudomonads predominated on the roots of all plants investigated. Somewhat different results were obtained in rhizosphere soil. Relatively higher numbers of P. fluorescens were detected in the rhizosphere soil of cucumber and maize, numbers in the rhizosphere soil of wheat were practically the same as in free soil and higher numbers of P. putida were found in the rhizosphere soil of barley. Almost all components contained in the root exudates of the plants studied, including beta-pyrazolylalanine from the root exudates of cucumbers were utilized as carbon and energy sources. Root exudates of wheat and maize were utilized by the strain P. putida K2 with an efficiency of 73-91%, depending on species and age of the plant.  相似文献   

14.
Severe yield depressions observed in high frequency potato cropping caused by microbial factors other than eelworms or known pathogens (narrow rotation effect) were reproduced in pot experiments. Total plant weight in a soil continuously cropped with potatoes was only 69% of that in a similar soil continuously cropped with wheat. Tuber weight in potato-soil was only 13 % and number of tubers only 10% of that in wheat-soil. Seed tuber treatment with cell suspensions of fluorescent antagonistic pseudomonads in carboxymethylcellulose (CMC) raised tuber yield in potato-soil up to 70% (550 % increase), number of tubers up to 93% (934 % increase) and total plant weight up to 90% (31 % increase) as compared with CMC-treatment in wheat-soil. Antagonistic fluorescent Pseudomonas isolates WCS 365, WCS 358 and WCS 374 producing mainly siderophores, with little or no production of other inhibitory substances, were more effective in diminishing the narrow rotation effect than the isolates that produced mainly inhibitory substances of different nature.  相似文献   

15.
Type III secretion systems (T3SSs) of Gram-negative bacteria mediate direct interactions with eukaryotic cells. Pseudomonas spp. harboring T3SS genes (T3SS+) were previously shown to be more abundant in the rhizosphere than in bulk soil. To discriminate the contribution of roots and associated arbuscular mycorrhizal fungi (AMF) on the enrichment of T3SS+ fluorescent pseudomonads in the rhizosphere of Medicago truncatula, their frequency was assessed among pseudomonads isolated from mycorrhizal and nonmycorrhizal roots and from bulk soil. T3SS genes were identified by PCR targeting a conserved hrcRST DNA fragment. Polymorphism of hrcRST in T3SS+ isolates was assessed by PCR-restriction fragment length polymorphism and sequencing. Genotypic diversity of all pseudomonads isolated, whether or not harboring T3SS, was described by BOX-PCR. T3SS+ pseudomonads were significantly more abundant in mycorrhizal than in nonmycorrhizal roots and in bulk soil, and all were shown to belong to the phylogenetic group of Pseudomonas fluorescens on the basis of 16S rRNA gene identity. Four hrcRST genotypes were described; two only included isolates from mycorrhizal roots. T3SS+ and T3SS- pseudomonads showed different genetic backgrounds as indicated by their different BOX-PCR types. Taken together, these data suggest that T3SSs are implicated in interactions between fluorescent pseudomonads and AM in medic rhizosphere.  相似文献   

16.
An emerging body of evidence indicates a role for plant genotype as a determinant of the species and genetic composition of the saprophytic microbial community resident to the rhizosphere. In this study, experiments were conducted to determine the capacity of five different wheat cultivars to enhance resident populations and support introduced strains of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing fluorescent pseudomonads, a group of bacteria known to provide biological control of several soilborne diseases. When soils were cropped with three successive 28-day growth cycles of wheat, the 2,4-DAPG-producing strains were consistently recovered from the rhizosphere of the cultivar Lewjain, and commonly were present at populations higher than those recovered from other wheat cultivars. Based on restriction fragment length polymorphism and sequence analyses of phlD, a key gene involved in 2,4-DAPG production, two previously undefined phlD+ genotypes, referred to as genotypes PfZ and PfY, were discovered. Wheat cultivar Lewjain was the primary source of genotype PfY while cultivar Penawawa yielded the majority of genotype PfZ. Based on 16S rDNA sequence analysis, both new phlD genotypes were classified as P. fluorescens. Comparison of the rhizosphere competence of 2,4-DAPG-producing P. fluorescens Q2-87 (genotype B) and P. fluorescens LR3-A28 (genotype PfY) showed that both strains persisted at similar populations in the rhizosphere of all cultivars tested over a 30 day period when introduced as a seed inoculant. However, when strain LR3-A28 was applied as a soil inoculant, this strain was recovered at higher populations from the rhizosphere of wheat cultivar Lewjain than from the rhizospheres of two other cultivars. No cultivar effects were shown for strain Q2-87. Collectively, these results add further to evidence indicating a degree of specificity in interactions between plant cultivars and specific members of the saprophytic microbial community. Furthermore, as 2,4-DAPG-producing fluorescent Pseudomonas spp. have a central role in the spontaneous reduction in severity of take-all disease of wheat in response to continuous wheat monoculture, we postulate that the use of specific cultivars, such as Lewjain, which possess a superior capacity to enhance resident soil populations of these bacteria may have potential to reduce the length of the monoculture period required to induce natural suppressiveness of soils toward this disease.  相似文献   

17.
An 11-year field study was initiated in 1979 to monitor population development of Heterodera glycines. Fifty cysts of a race 5 population were introduced into plots in a field with no history of soybean production and that had been in sod for 20 years. Soybean cultivars either susceptible or resistant to H. glycines were grown either in monoculture or rotated with maize in a 2-year rotation. During the first 5 years, resistant cultivars with the Peking source of resistance were planted. After year 5, monocuhure of Peking resistance resulted in 18 cysts/250 cm³ of soil, whereas populations resulting from the continuous cropping of susceptible soybean resulted in 45 cysts/250 cm³. Some plots in all treatments, including control plots, were contaminated at the end of year 5. Crop rotation delayed population development of H. glycines. During years 6 through 11 cv. Fayette (PI88.788 source of resistance) was planted. In year 6 numbers of cysts declined to 1/250 cm³ of soil in the treatment consisting of monocultured Fayette. At the end of year 10, cysts were below the detection level in all treatments in which Fayette was planted. Yield of susceptible soybean in monoculture with or without H. glycines infestation was lower beginning in year 6 when compared to yield of soybean grown in rotation and remained lower throughout the duration of the experiment except for 1987 (year 9). Yields of susceptible and resistant soybean were different each year except for drought years in 1980 and 1988. From 1979 to 1982 differences in yield were due to lower yield potential of resistant cultivars. Except for the drought year, yield of cv. Fayette was greater than susceptible Williams 82 during years 6 through 11.  相似文献   

18.
The impact of repeated culture of perennial plants (i.e. in long-term monoculture) on the ecology of plant-beneficial bacteria is unknown. Here, the influence of extremely long-term monocultures of grapevine (up to 1603 years) on rhizosphere populations of fluorescent pseudomonads carrying the biosynthetic genes phlD for 2,4-diacetylphloroglucinol and/or hcnAB for hydrogen cyanide was determined. Soils from long-term and adjacent short-term monoculture vineyards (or brushland) in four regions of Switzerland were baited with grapevine or tobacco plantlets, and rhizosphere pseudomonads were studied by most probable number (MPN)-PCR. Higher numbers and percentages of phlD + and of hcnAB + rhizosphere pseudomonads were detected on using soil from long-term vineyards. On focusing on phlD , restriction fragment length polymorphism profiling of the last phlD -positive MPN wells revealed seven phlD alleles (three exclusively on tobacco, thereof two new ones). Higher numbers of phlD alleles coincided with a lower prevalence of the allele displayed by the well-studied biocontrol strain Pseudomonas fluorescens F113. The prevalence of this allele was 35% for tobacco in long-term monoculture soils vs. >60% in the other three cases. We conclude that soils from long-term grapevine monocultures represent an untapped resource for isolating novel biocontrol Pseudomonas strains when tobacco is used as bait.  相似文献   

19.
Fresh sporocarps and root and soil samples were collected under a monospecific forest plantation of Acacia mangium in Dagana in Northern Senegal and checked for the presence of fluorescent pseudomonads. No bacteria were detected except from sporocarps collected with adhering soil and hyphal strands. Pisolithus sporocarps were dried at 30 degrees C for 2 weeks, ground, passed through a 2-mm sieve and mixed together. This dry sporocarp powder (DSP) was used to inoculate and form mycorrhizas on A. mangium seedlings in a glasshouse experiment. After 3 months culture, plant growth was increased in the DSP treatment but no ectomycorrhizas were present on the A. mangium root systems; however fluorescent pseudomonads were recorded in the cultural soil. The stimulatory effects on the plant growth were maintained for 6 months. However, fluorescent pseudomonads were no longer detected and 35% of the short roots were ectomycorrhizal. Some of the fluorescent pseudomonad isolates detected after 3 months stimulated the radial fungal growth in axenic conditions. These observations suggest that these bacteria are closely associated with the Pisolithus fructifications and could interact with the ectomycorrhizal symbiosis establishment.  相似文献   

20.
  • 1 Cixiid planthoppers (Hemiptera: Fulgoromorpha: Cixiidae) are considered to be important economic pests because of their ability to transmit phloem‐restricted prokaryotes causing emerging plant diseases worldwide. However, little information is available on the biology and ecology of such species. This is the case for Pentastiridius leporinus (Linnaeus), a cixiid planthopper reported to live on common reed across Countries of Central and Northern Europe. However, in the east of France, the same planthopper species appears to complete its life cycle in the sugar beet‐wheat cropping system and has been repeatedly shown to transmit prokaryotic plant pathogens that are associated with an emerging disease of sugar beet called syndrome ‘basses richesses'.
  • 2 To gather evidence on the biology of the planthopper in the cropping rotation, we analysed the flight activity of adults. We used transparent sticky traps for sampling migrating adults and quantified nymphs as well as emerging adults on the roots of wheat plants.
  • 3 Results showed a significant correlation between disappearance of nymphs and emerging adults from wheat roots and the occurrence of migrant adults in nearby sugar beet fields. Planthoppers migrated more abundantly and colonized sugar beet for longer periods than any other crop available. Flight activity was very pronounced during the migratory phase that was extended from the middle of June to the middle of July. A geographic information system and geostatical analysis revealed that planthoppers flew and colonized the centre of the sugar beet field rather than the borders.
  • 4 Overall, results obtained in the present study suggest that the ecology and biology of the planthopper vector in the cropping rotation is a primary factor that leads to the emergence of the syndrome ‘basses richesses' disease of sugar beet.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号