首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Plant lectins have attracted great interest in cancer studies due to their antitumor activities. These proteins or glycoproteins specifically and reversibly bind to different types of carbohydrates or glycoproteins. Breast cancer, which presents altered glycosylation of cell surface glycoproteins, is one of the most frequent malignant diseases in women. In this work, we describe the effect of the lectin Bauhinia forficata lectin (BfL), which was purified from B. forficata Link subsp. forficata seeds, on the MCF7 human breast cancer cellular line, investigating the mechanisms involved in its antiproliferative activity.

Methods

MCF7 cells were treated with BfL. Viability and adhesion alterations were evaluated using flow cytometry and western blotting.

Results

BfL inhibited the viability of the MCF7 cell line but was ineffective on MDA-MB-231 and MCF 10A cells. It inhibits MCF7 adhesion on laminin, collagen I and fibronectin, decreases α1, α6 and β1 integrin subunit expression, and increases α5 subunit expression. BfL triggers necrosis and secondary necrosis, with caspase-9 inhibition. It also causes deoxyribonucleic acid (DNA) fragmentation, which leads to cell cycle arrest in the G2/M phase and a decrease in the expression of the regulatory proteins pRb and p21.

Conclusion

BfL shows selective cytotoxic effect and adhesion inhibition on MCF7 breast cancer cells.

General significance

Cell death induction and inhibition of cell adhesion may contribute to understanding the action of lectins in breast cancer.  相似文献   

2.

Background and purpose

The persistent influx of neutrophils into the lung and subsequent tissue damage are characteristics of COPD, cystic fibrosis and acute lung inflammation. VAP-1/SSAO is an endothelial bound adhesion molecule with amine oxidase activity that is reported to be involved in neutrophil egress from the microvasculature during inflammation. This study explored the role of VAP-1/SSAO in neutrophilic lung mediated diseases and examined the therapeutic potential of the selective inhibitor PXS-4728A.

Methods

Mice treated with PXS-4728A underwent intra-vital microscopy visualization of the cremaster muscle upon CXCL1/KC stimulation. LPS inflammation, Klebsiella pneumoniae infection, cecal ligation and puncture as well as rhinovirus exacerbated asthma models were also assessed using PXS-4728A.

Results

Selective VAP-1/SSAO inhibition by PXS-4728A diminished leukocyte rolling and adherence induced by CXCL1/KC. Inhibition of VAP-1/SSAO also dampened the migration of neutrophils to the lungs in response to LPS, Klebsiella pneumoniae lung infection and CLP induced sepsis; whilst still allowing for normal neutrophil defense function, resulting in increased survival. The functional effects of this inhibition were demonstrated in the RV exacerbated asthma model, with a reduction in cellular infiltrate correlating with a reduction in airways hyperractivity.

Conclusions and implications

This study demonstrates that the endothelial cell ligand VAP-1/SSAO contributes to the migration of neutrophils during acute lung inflammation, pulmonary infection and airway hyperractivity. These results highlight the potential of inhibiting of VAP-1/SSAO enzymatic function, by PXS-4728A, as a novel therapeutic approach in lung diseases that are characterized by neutrophilic pattern of inflammation.  相似文献   

3.

Background

Chronic inflammation in lung diseases contributes to lung tissue destruction leading to the formation of chemotactic collagen fragments such as N-acetylated proline–glycine–proline (N-ac-PGP). In the current study, we investigate whether N-ac-PGP influences β2-integrin activation and function in neutrophilic firm adhesion to endothelium.

Methods

Human polymorphonuclear leukocytes (PMNs) were isolated from fresh human blood. Subsequently, a transmigration assay was performed to evaluate the active migration of PMNs towards N-ac-PGP. Furthermore, the effect of the tripeptide on β2-integrin activation was assessed by performing the adhesion assay using fibrinogen as a ligand. To determine whether this effect was due to conformational change of β2-integrins, antibodies against CD11b and CD18 were used in the adhesion assay and the expression pattern of CD11b was determined.

Results

Human neutrophils transmigrated through an endothelial cell layer in response to basolateral N-ac-PGP. N-ac-PGP induced also a neutrophil adherence to fibrinogen. Using functional blocking antibodies against CD11b and CD18, it was demonstrated that CD11b/CD18 (Mac-1) was responsible for the N-ac-PGP-induced firm adhesion of neutrophils to fibrinogen. Pertussis toxin decreased the Mac-1 activation indicating the involvement of G-proteins. N-ac-PGP most likely activated Mac-1 by initiating a conformational change, since the expression pattern of Mac-1 on the cell surface did not change significantly.

Conclusions

Chemo-attractant N-acetyl proline–glycine–proline induces CD11b/CD18-dependent neutrophil adhesion.

General significance

This is the first study to describe that the chemo-attractant N-ac-PGP also activates Mac-1 on the surface of neutrophils, which can additionally contribute to neutrophilic transmigration into the lung tissue during lung inflammation.  相似文献   

4.

Background

Arginine-specific (RgpB and RgpA) and lysine-specific (Kgp) gingipains are secretory cysteine proteinases of Porphyromonas gingivalis that act as important virulence factors for the organism. They are translated as zymogens with both N- and C-terminal extensions, which are proteolytically cleaved during secretion. In this report, we describe and characterize inhibition of the gingipains by their N-terminal prodomains to maintain latency during their export through the cellular compartments.

Methods

Recombinant forms of various prodomains (PD) were analyzed for their interaction with mature gingipains. The kinetics of their inhibition of proteolytic activity along with the formation of stable inhibitory complexes with native gingipains was studied by gel filtration, native PAGE and substrate hydrolysis.

Results

PDRgpB and PDRgpA formed tight complexes with arginine-specific gingipains (Ki in the range from 6.2 nM to 0.85 nM). In contrast, PDKgp showed no inhibitory activity. A conserved Arg-102 residue in PDRgpB and PDRgpA was recognized as the P1 residue. Mutation of Arg-102 to Lys reduced inhibitory potency of PDRgpB by one order of magnitude while its substitutions with Ala, Gln or Gly totally abolished the PD inhibitory activity. Covalent modification of the catalytic cysteine with tosyl-l-Lys-chloromethylketone (TLCK) or H-D-Phe-Arg-chloromethylketone did not affect formation of the stable complex.

Conclusion

Latency of arginine-specific progingipains is efficiently exerted by N-terminal prodomains thus protecting the periplasm from potentially damaging effect of prematurely activated gingipains.

General significance

Blocking progingipain activation may offer an attractive strategy to attenuate P. gingivalis pathogenicity.  相似文献   

5.

Background

Agonists of P2X7 receptors increase the production of reactive oxygen species (ROS) in immunocytes. In this work we tested this response and its effect on mitochondrial inner membrane potential (Δψm) in exocrine glands.

Methods

The production of ROS by rat submandibular glands was investigated by measuring the oxidation of dichlorodihydrofluorescein (DCFH), a fluorescent probe. The Δψm was estimated with tetramethylrhodamine.

Results

Activation of P2X7 receptors by ATP or Bz-ATP increased the production of ROS. This response was not modified by inhibitors of phospholipase A2 or of various kinases. The effect of ATP was calcium-dependent and was blocked by diphenyliodonium, an inhibitor of flavoproteins. It was not affected by rotenone, an inhibitor of the complex I of the mitochondrial electron transfer chain. Scavengers of ROS had no effect on the dissipation of Δψm by ATP.

Conclusions

We conclude that, in rat submandibular glands, P2X7 receptors stimulate in a calcium-dependent manner an oxidase generating ROS, suggesting the involvement of the dual oxidase Duox2. The production of ROS does not contribute to the depolarization of mitochondria by purinergic agonists.

General significance

Purinergic receptors could be regulators of the bactericidal properties of saliva by promoting both the secretion of peroxidase from acinar cells and by activating Duox2.  相似文献   

6.

Background

Reactive oxygen species (ROS) are not only cytotoxic compounds leading to oxidative damage, but also signaling molecules for regulating plant responses to stress and hormones. Arabidopsis cytosolic ascorbate peroxidase 1 (APX1) is thought to be a central regulator for cellular ROS levels. However, it remains unclear whether APX1 is involved in plant tolerance to wounding and methyl jasmonate (MeJA) treatment, which are known to enhance ROS production.

Methods

We studied the effect of wounding and MeJA treatment on the levels of H2O2 and oxidative damage in the Arabidopsis wild-type plants and knockout mutants lacking APX1 (KO-APX1).

Results

The KO-APX1 plants showed high sensitivity to wounding and MeJA treatment. In the leaves of wild-type plants, H2O2 accumulated only in the vicinity of the wound, while in the leaves of the KO-APX1 plants it accumulated extensively from damaged to undamaged regions. During MeJA treatment, the levels of H2O2 were much higher in the leaves of KO-APX1 plants. Oxidative damage in the chloroplasts and nucleus was also enhanced in the leaves of KO-APX1 plants. These findings suggest that APX1 protects organelles against oxidative stress by wounding and MeJA treatment.

General significance

This is the first report demonstrating that H2O2-scavenging in the cytosol is essential for plant tolerance to wounding and MeJA treatment.  相似文献   

7.

Background

Warfarin directly inhibits vitamin K 2,3-epoxide reductase (VKOR) enzymes. Since the early 1970s, warfarin inhibition of vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1), an essential enzyme for proper function of blood coagulation in higher vertebrates, has been studied using an in vitro dithiothreitol (DTT) driven enzymatic assay. However, various studies based on this assay have reported warfarin dose–response data, usually summarized as half-maximal inhibitory concentration (IC50), that vary over orders of magnitude and reflect the broad range of conditions used to obtain VKOR assay data.

Methods

We standardized the implementation of the DTT-driven VKOR activity assay to measure enzymatic Michaelis constants (Km) and warfarin IC50 for human VKORC1. A data transformation is defined, based on the previously confirmed bi bi ping-pong mechanism for VKORC1, that relates assay condition-dependent IC50 to condition-independent Ki.

Results

Determination of the warfarin Ki specifically depends on measuring both substrate concentrations, both Michaelis constants for the VKORC1 enzyme, and pH in the assay.

Conclusion

The Ki is not equal to the IC50 value directly measured using the DTT-driven VKOR assay.

General significance

In contrast to warfarin IC50 values determined in previous studies, warfarin inhibition expressed as Ki can now be compared between studies, even when the specific DTT-driven VKOR assay conditions differ. This implies that warfarin inhibition reported for wild-type and variant VKORC1 enzymes from previous reports should be reassessed and new determinations of Ki are required to accurately report and compare in vitro warfarin inhibition results.  相似文献   

8.

Background

The peptide mastoparan 7 (MST7) stimulated ATP release in human erythrocytes. We explored intra- and extracellular processes governing the time-dependent accumulation of extracellular ATP (i.e., ATPe kinetics).

Methods

Human erythrocytes were treated with MST7 in the presence or absence of two blockers of pannexin 1. ATPe concentration was monitored by luciferin–luciferase based real-time luminometry.

Results

Exposure of human erythrocytes to MST7 led to an acute increase in [ATPe], followed by a slower increase phase. ATPe kinetics reflected a strong activation of ATP efflux and a low rate of ATPe hydrolysis by ectoATPase activity. Enhancement of [ATPe] by MST7 required adhesion of erythrocytes to poly-D-lysin-coated coverslips, and correlated with a 31% increase of cAMP and 10% cell swelling. However, when MST7 was dissolved in a hyperosmotic medium to block cell swelling, ATPe accumulation was inhibited by 49%.Erythrocytes pre-exposure to 10 μM of either carbenoxolone or probenecid, two blockers of pannexin 1, exhibited a partial reduction of ATP efflux.Erythrocytes from pannexin 1 knockout mice exhibited similar ATPe kinetics as those of wild type mice erythrocytes exposed to pannexin 1 blockers.

Conclusions

MST7 induced release of ATP required either cell adhesion or strong activation of cAMP synthesis. Part of this release required cell swelling. Kinetic analysis and a data driven model suggested that ATP efflux is mediated by two ATP conduits displaying different kinetics, with one conduit being fully blocked by pannexin 1 blockers.

General significance

Kinetic analysis of extracellular ATP accumulation from human erythrocytes and potential effects on microcirculation.  相似文献   

9.

Background

Breast cancer–endothelium interactions provide regulatory signals facilitating tumor progression. The endothelial cells have so far been mainly viewed in the context of tumor perfusion and relatively little is known regarding the effects of such paracrine interactions on the expression of extracellular matrix (ECM), proteasome activity and properties of endothelial cells.

Methods

To address the effects of breast cancer cell (BCC) lines MDA-MB-231 and MCF-7 on the endothelial cells, two cell culture models were utilized; one involves endothelial cell culture in the presence of BCCs-derived conditioned media (CM) and the other co-culture of both cell populations in a Transwell system. Real-time PCR was utilized to evaluate gene expression, an immunofluorescence assay for proteasome activity, and functional assays (migration, adhesion and invasion) and immunofluorescence microscopy for cell integrity and properties.

Results

BCC-CM decreases the cell migration of HUVEC. Adhesion and invasion of BCCs are favored by HUVEC and HUVEC-CM. HA levels and the expression of CD44 and HA synthase-2 by HUVEC are substantially upregulated in both cell culture approaches. Adhesion molecules, ICAM-1 and VCAM-1, are also highly upregulated, whereas MT1-MMP and MMP-2 expressions are significantly downregulated in both culture systems. Notably, the expression and activity of the proteasome β5 subunit are increased, especially by the action of MDA-MB-231-CM on HUVEC.

Conclusions and general significance

BCCs significantly alter the expression of matrix macromolecules, proteasome activity and functional properties of endothelial cells. Deep understanding of such paracrine interactions will help to design novel drugs targeting breast cancer at the ECM level. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

10.

Background

The phagocyte NADPH-oxidase is a multicomponent enzyme that generates superoxide anions. It comprises a membrane redox component flavocytochrome b558 and four cytosolic proteins (p67phox, p47phox, p40phox and Rac) that must assemble to produce an active system. In this work we focused on the spatio-temporal control of the activation process of phagocyte NADPH oxidase.

Methods

A wide range of techniques including fast kinetics with a stopped-flow apparatus and various combinations of the activating factors was used to test the order of assembly and the role of the p47phox–p67phox complex.

Results

The data presented here are consistent with the absence of a catalytic role of the p47phox–p67phox interacting state and support the idea of independent binding sites for the cytosolic proteins on the flavocytochrome b558 allowing random binding order. However, the formation of the active complex appears to involve a synergistic process of binding of the activated cytosolic subunits to cytochrome b558. All partners should be in the vicinity for optimal assembly, a delay or the absence of one of the partners in this process seems to lead to a decrease in the efficiency of the catalytic core.

Conclusion and general significance

The activation and assembly of the NADPH oxidase components have to be achieved simultaneously for the formation of an efficient and optimal enzyme complex. This mechanism appears to be incompatible with continuous fast exchanges of the cytosolic proteins during the production of superoxide ion in the phagosome.  相似文献   

11.

Background

Aggregation of amyloid-beta (Aβ) has been proposed as the main cause of Alzheimer's disease (AD). Vitamin K deficiency has been linked to the pathogenesis of AD. Therefore, 15 synthesized vitamin K3 (VK3) analogues were studied for their anti-amyloidogenic activity.

Methods

Biological and spectroscopic assays were used to characterize the effect of VK3 analogues on amyloidogenic properties of Aβ, such as aggregation, free radical formation, and cell viability. Molecular dynamics simulation was used to calculate the binding affinity and mode of VK3 analogue binding to Aβ.

Results

Both numerical and experimental results showed that several VK3 analogues, including VK3-6, VK3-8, VK3-9, VK3-10, and VK3-224 could effectively inhibit Aβ aggregation and conformational conversion. The calculated inhibition constants were in the μM range for VK3-10, VK3-6, and VK3-9 which was similar to the IC50 of curcumin. Cell viability assays indicated that VK3-9 could effectively reduce free radicals and had a protective effect on cytotoxicity induced by Aβ.

Conclusions

The results clearly demonstrated that VK3 analogues could effectively inhibit Aβ aggregation and protect cells against Aβ induced toxicity. Modified VK3 analogues can possibly be developed as effective anti-amyloidogenic drugs for the treatment of AD.

General significance

VK3 analogues effectively inhibit Aβ aggregation and are highly potent as anti-amyloidogenic drugs for therapeutic treatment of AD.  相似文献   

12.

Background

Fosfomycin is widely used to treat urinary tract and pediatric gastrointestinal infections of bacteria. It is supposed that this antibiotic enters cells via two transport systems, including the bacterial Glycerol-3-phosphate Transporter (GlpT). Impaired function of GlpT is one mechanism for fosfomycin resistance.

Methods

The interaction of fosfomycin with the recombinant and purified GlpT of Escherichia coli reconstituted in liposomes has been studied. IC50 and the half-saturation constant of the transporter for external fosfomycin (Ki) were determined by transport assay of [14C]glycerol-3-phosphate catalyzed by recombinant GlpT. Efficacy of fosfomycin on growth rates of GlpT defective bacteria strains transformed with recombinant GlpT was measured.

Results

Fosfomycin, externally added to the proteoliposomes, poorly inhibited the glycerol-3-phosphate/glycerol-3-phosphate antiport catalyzed by the reconstituted transporter with an IC50 of 6.4 mM. A kinetic analysis revealed that the inhibition was completely competitive, that is, fosfomycin interacted with the substrate-binding site and the Ki measured was 1.65 mM. Transport assays performed with proteoliposomes containing internal fosfomycin indicate that it was not very well transported by GlpT. Complementation study, performed with GlpT defective bacteria strains, indicated that the fosfomycin resistance, beside deficiency in antibiotic transporter, could be due to other gene defects.

Conclusions

The poor transport observed in a reconstituted system together with the high value of Ki and the results of complementation study well explain the usual high dosage of this drug for the treatment of the urinary tract infections.

General significance

This is the first report regarding functional analysis of interaction between fosfomycin and GlpT.  相似文献   

13.

Background

Routine black box approaches quantify fluorescence intensity to profile the uptake of fluorophores, providing limited insight into microscopic events. Spatial intensity distribution analysis has previously been reported to quantify oligomerisation and number of particles from selected regions and profile intracellular distributions of labelled moieties.

Methods

In this study, the concentration and time-dependent behaviour of CellTrace™ calcein red-orange (AM) intracellular accumulation was examined in colorectal adenocarcinoma cell line and bovine aortic endothelial cells. Monolayers were subjected to fluorescence correlation spectroscopy, fluorescence intensity and SpIDA measurements to determine differences in the rate and extent of intracellular accumulation.

Results

Intracellular accumulation data derived from Spatial intensity distribution analysis were found to correlate with that of fluorescence correlation spectroscopy and fluorescence intensity profiles. The extent of intracellular accumulation was found to be time and concentration-dependent in both cell lines examined, with no significant differences in the rate of intracellular accumulation.

Conclusions

Spatial intensity distribution analysis applied at ‘proof of concept’ level is a rapid and user-friendly tool that can be applied to the quantification of intracellular concentration and kinetics of fluorophore uptake.

General significance

Confocal imaging as a routinely implemented tool for profiling fluorescently-labelled species is often under-exploited for yielding quantitative parameters.  相似文献   

14.
15.

Background

Abnormal adhesion of red blood cells (RBCs) to vascular endothelium is often associated with reduced levels of sialic acids on RBC membranes and with elevated levels of pro-adhesive plasma proteins. However, the synergistic effects of these two factors on the adhesion are not clear. In this work, we tested the hypothesis that macromolecular depletion interaction originating from non-adsorbing macromolecules can promote the adhesion of RBCs with reduced sialic acid content to the endothelium.

Methods

RBCs are treated with neuraminidase to specifically remove sialic acids from their surface followed by the evaluation of their deformability, zeta potential and membrane proteins. The adhesion of these enzyme-treated RBCs to cultured human umbilical vein endothelial cells (ECs) is studied in the presence of 70 or 500 kDa dextran with a flow chamber assay.

Results

Our results demonstrate that removal of sialic acids from RBC surface can induce erythrocyte adhesion to endothelial cells and that such adhesion is significantly enhanced in the presence of high-molecular weight dextran. The adhesion-promoting effect of dextran exhibits a strong dependence on dextran concentration and molecular mass, and it is concluded to originate from macromolecular depletion interaction.

Conclusion

These results suggest that elevated levels of non-adsorbing macromolecules in plasma might play a significant role in promoting endothelial adhesion of erythrocytes with reduced sialic acids.

General significance

Our findings should therefore be of great value in understanding abnormal RBC–EC interactions in pathophysiological conditions (e.g., sickle cell disease and diabetes) and after blood transfusions.  相似文献   

16.

Background

Peroxiredoxins are important heterogeneous thiol-dependent hydroperoxidases with a variety of isoforms and enzymatic mechanisms. A special subclass of glutaredoxin/glutathione-dependent peroxiredoxins has been discovered in bacteria and eukaryotes during the last decade, but the exact enzymatic mechanisms of these enzymes remain to be unraveled.

Methods

We performed a comprehensive analysis of the enzyme kinetics and redox states of one of these glutaredoxin/glutathione-dependent peroxiredoxins, the antioxidant protein from the malaria parasite Plasmodium falciparum, using steady-state kinetic measurements, site-directed mutagenesis, redox mobility shift assays, gel filtration, and mass spectrometry.

Results

P. falciparum antioxidant protein requires not only glutaredoxin but also glutathione as a true substrate for the reduction of hydroperoxides. One peroxiredoxin cysteine residue and one glutaredoxin cysteine residue are sufficient for catalysis, however, additional cysteine residues of both proteins result in alternative redox states and conformations in vitro with implications for redox regulation. Our data furthermore point to a glutathione-dependent peroxiredoxin activation and a negative subunit cooperativity.

Conclusions

The investigated glutaredoxin/glutathione/peroxiredoxin system provides numerous new insights into the mechanism and redox regulation of peroxiredoxins.

General significance

As a member of the special subclass of glutaredoxin/glutathione-dependent peroxiredoxins, the P. falciparum antioxidant protein could become a reference protein for peroxiredoxin catalysis and regulation.  相似文献   

17.

Background

Nucleolar targeting peptides (NrTPs), resulting from structural minimization of the rattlesnake toxin crotamine, are a novel family of cell-penetrating peptides (CPPs) shown to internalize and deliver cargos into different cell types.

Methods

In this study, we address NrTP kinetics of translocation into primary cells. We used flow cytometry to measure the intracellular uptake of rhodamine B-labeled NrTPs in peripheral blood mononucleated cells (PBMCs).

Results

The kinetic profiles for each peptide are concentration-independent but significantly different among NrTPs, pointing out for the amino acid sequence importance. Arginine-containing peptides (NrTP7 and Tat48–60, used for comparison) were found to be more toxic than lysine-containing ones, as expected. On the other hand, one same peptide behaves differently in each of the lymphocyte and monocyte cell populations, suggesting differences in entry mechanism that in turn reflect diversity in cell functionality. Uptake results obtained at 4 °C or using chemical endocytosis inhibitors support the importance of non-endocytic mechanisms in the cellular internalization of NrTP1 and NrTP5, while confirming endocytosis as the main mechanism of NrTPs entry.

Conclusion

Overall, both direct translocation and endocytosis mechanisms play a role in NrTP entry. Yet, there is predominance of endocytosis-mediated mechanisms. NrTPs (especially NrTP6) are an excellent intracellular delivery tool, with efficient internalization and no toxicity.

General significance

This work validates NrTPs as potential therapeutic tools for, e.g., cancer or inhibition of viral replication and establishes a new comparative and quantitative method to test CPP efficiency.  相似文献   

18.

Background

Glutathione transferases (GSTs) are members of a major family of detoxification enzymes. Here, we report the crystal structure of a sigma-class GST of Bombyx mori, bmGSTS1, to gain insight into the mechanism catalysis.

Methods

The structure of bmGSTS1 and its complex with glutathione were determined at resolutions of 1.9 Å and 1.7 Å by synchrotron radiation and the molecular replacement method.

Results

The three-dimensional structure of bmGSTS1 shows that it exists as a dimer and is similar in structure to other GSTs with respect to its secondary and tertiary structures. Although striking similarities to the structure of prostaglandin D synthase were also detected, we were surprised to find that bmGSTS1 can convert prostaglandin H2 into its E2 form. Comparison of bmGSTS1 with its glutathione complex showed that bound glutathione was localized to the glutathione-binding site (G-site). Site-directed mutagenesis of bmGSTS1 mutants indicated that amino acid residues Tyr8, Leu14, Trp39, Lys43, Gln50, Met51, Gln63, and Ser64 in the G-site contribute to catalytic activity.

Conclusion

We determined the tertiary structure of bmGSTS1 exhibiting prostaglandin E synthase activity.

General significance

These results are, to our knowledge, the first report of a prostaglandin synthase activity in insects.  相似文献   

19.

Background

Cysteinyl leukotrienes (LTs) are key mediators in inflammation. To explore the structure of the antigen-recognition site of a monoclonal antibody against LTC4 (mAbLTC), we previously isolated full-length cDNAs for heavy and light chains of the antibody and prepared a single-chain antibody comprising variable regions of these two chains (scFvLTC).

Methods

We examined whether mAbLTC and scFvLTC neutralized the biological activities of LTC4 and LTD4 by competing their binding to their receptors.

Results

mAbLTC and scFvLTC inhibited their binding of LTC4 or LTD4 to CysLT1 receptor (CysLT1R) and CysLT2 receptor (CysLT2R) overexpressed in Chinese hamster ovary cells. The induction by LTD4 of monocyte chemoattractant protein-1 and interleukin-8 mRNAs in human monocytic leukemia THP-1 cells expressing CysLT1R was dose-dependently suppressed not only by mAbLTC but also by scFvLTC. LTC4- and LTD4-induced aggregation of mouse platelets expressing CysLT2R was dose-dependently suppressed by either mAbLTC or scFvLTC. Administration of mAbLTC reduced pulmonary eosinophil infiltration and goblet cell hyperplasia observed in a murine model of asthma. Furthermore, mAbLTC bound to CysLT2R antagonists but not to CysLT1R antagonists.

Conclusions

These results indicate that mAbLTC and scFvLTC neutralize the biological activities of LTs by competing their binding to CysLT1R and CysLT2R. Furthermore, the binding of cysteinyl LT receptor antagonists to mAbLTC suggests the structural resemblance of the LT-recognition site of the antibody to that of these receptors.

General significance

mAbLTC can be used in the treatment of inflammatory diseases such as asthma.  相似文献   

20.

Background

Metal oxide nanoparticles are well known to generate oxidative stress and deregulate normal cellular activities. Among these, transition metals copper oxide nanoparticles (CuO NPs) are more compelling than others and able to modulate different cellular responses.

Methods

In this work, we have synthesized and characterized CuO NPs by various biophysical methods. These CuO NPs (~ 30 nm) induce autophagy in human breast cancer cell line, MCF7 in a time- and dose-dependent manner. Cellular autophagy was tested by MDC staining, induction of green fluorescent protein-light chain 3 (GFP-LC3B) foci by confocal microscopy, transfection of pBABE-puro mCherry-EGFP-LC3B plasmid and Western blotting of autophagy marker proteins LC3B, beclin1 and ATG5. Further, inhibition of autophagy by 3-MA decreased LD50 doses of CuO NPs. Such cell death was associated with the induction of apoptosis as revealed by FACS analysis, cleavage of PARP, de-phosphorylation of Bad and increased cleavage product of caspase 3. siRNA mediated inhibition of autophagy related gene beclin1 also demonstrated similar results. Finally induction of apoptosis by 3-MA in CuO NP treated cells was observed by TEM.

Results

This study indicates that CuO NPs are a potent inducer of autophagy which may be a cellular defense against the CuO NP mediated toxicity and inhibition of autophagy switches the cellular response into apoptosis.

Conclusions

A combination of CuO NPs with the autophagy inhibitor is essential to induce apoptosis in breast cancer cells.

General significance

CuO NP induced autophagy is a survival strategy of MCF7 cells and inhibition of autophagy renders cellular fate to apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号