共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lisandro Lungato Marcos L. Gazarini Edgar J. Paredes-Gamero Ivarne l.S. Tersariol Sergio Tufik Vânia D'Almeida 《Biochimica et Biophysica Acta (BBA)/General Subjects》2012
Background
Sleep is a physiological event that directly influences health by affecting the immune system, in which calcium (Ca2 +) plays a critical signaling role. We performed live cell measurements of cytosolic Ca2 + mobilization to understand the changes in Ca2 + signaling that occur in splenic immune cells after various periods of sleep deprivation (SD).Methods
Adult male mice were subjected to sleep deprivation by platform technique for different periods (from 12 to 72 h) and Ca2 + intracellular fluctuations were evaluated in splenocytes by confocal microscopy. We also performed spleen cell evaluation by flow cytometry and analyzed intracellular Ca2 + mobilization in endoplasmic reticulum and mitochondria. Additionally, Ca2 + channel gene expression was evaluatedResults
Splenocytes showed a progressive loss of intracellular Ca2 + maintenance from endoplasmic reticulum (ER) stores. Transient Ca2 + buffering by the mitochondria was further compromised. These findings were confirmed by changes in mitochondrial integrity and in the performance of the store operated calcium entry (SOCE) and stromal interaction molecule 1 (STIM1) Ca2 + channels.Conclusions and general significance
These novel data suggest that SD impairs Ca2 + signaling, most likely as a result of ER stress, leading to an insufficient Ca2 + supply for signaling events. Our results support the previously described immunosuppressive effects of sleep loss and provide additional information on the cellular and molecular mechanisms involved in sleep function. 相似文献3.
Depletion of intracellular Ca2 + stores in mammalian cells results in Ca2 + entry across the plasma membrane mediated primarily by Ca2 + release-activated Ca2 + (CRAC) channels. Ca2 + influx through these channels is required for the maintenance of homeostasis and Ca2 + signaling in most cell types. One of the main features of native CRAC channels is fast Ca2 +-dependent inactivation (FCDI), where Ca2 + entering through the channel binds to a site near its intracellular mouth and causes a conformational change, closing the channel and limiting further Ca2 + entry. Early studies suggested that FCDI of CRAC channels was mediated by calmodulin. However, since the discovery of STIM1 and Orai1 proteins as the basic molecular components of the CRAC channel, it has become apparent that FCDI is a more complex phenomenon. Data obtained using heterologous overexpression of STIM1 and Orai1 suggest that, in addition to calmodulin, several cytoplasmic domains of STIM1 and Orai1 and the selectivity filter within the channel pore are required for FCDI. The stoichiometry of STIM1 binding to Orai1 also has emerged as an important determinant of FCDI. Consequently, STIM1 protein expression levels have the potential to be an endogenous regulator of CRAC channel Ca2 + influx. This review discusses the current understanding of the molecular mechanisms governing the FCDI of CRAC channels, including an evaluation of further experiments that may delineate whether STIM1 and/or Orai1 protein expression is endogenously regulated to modulate CRAC channel function, or may be dysregulated in some pathophysiological states. 相似文献
4.
Karin C. Larsson Peter KjällAgneta Richter-Dahlfors 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
A major challenge when creating interfaces for the nervous system is to translate between the signal carriers of the nervous system (ions and neurotransmitters) and those of conventional electronics (electrons).Scope of review
Organic conjugated polymers represent a unique class of materials that utilizes both electrons and ions as charge carriers. Based on these materials, we have established a series of novel communication interfaces between electronic components and biological systems. The organic electronic ion pump (OEIP) presented in this review is made of the polymer–polyelectrolyte system poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The OEIP translates electronic signals into electrophoretic migration of ions and neurotransmitters.Major conclusions
We demonstrate how spatio-temporally controlled delivery of ions and neurotransmitters can be used to modulate intracellular Ca2 + signaling in neuronal cells in the absence of convective disturbances. The electronic control of delivery enables strict control of dynamic parameters, such as amplitude and frequency of Ca2 + responses, and can be used to generate temporal patterns mimicking naturally occurring Ca2 + oscillations. To enable further control of the ionic signals we developed the electrophoretic chemical transistor, an analog of the traditional transistor used to amplify and/or switch electronic signals. Finally, we demonstrate the use of the OEIP in a new “machine-to-brain” interface by modulating brainstem responses in vivo.General significance
This review highlights the potential of communication interfaces based on conjugated polymers in generating complex, high-resolution, signal patterns to control cell physiology. We foresee widespread applications for these devices in biomedical research and in future medical devices within multiple therapeutic areas. This article is part of a Special Issue entitled Organic Bioelectronics—Novel Applications in Biomedicine. 相似文献5.
6.
Giuseppe Inesi Francesco Tadini-Buoninsegni 《Journal of cell communication and signaling》2014,8(1):5-11
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis. 相似文献
7.
8.
9.
《Channels (Austin, Tex.)》2013,7(5):387-388
Channels and transporters play essential biological roles primarily through the transportation of ions and small molecules that are required to maintain cellular activities across the biomembrane. Secondary to transportation, channels and transporters also integrate and coordinate biological functions at different levels, ranging from the subcellular (nm) to multicellular (μm) scales. This is underpinned by efficient functional coupling within molecular assemblies of channels, transporters, proteins, small molecules, and lipids. 相似文献
10.
Ligand binding to transport sites constitutes the initial step in the catalytic cycle of transport ATPases. Here, we consider the well characterized Ca2+ ATPase of sarcoplasmic reticulum (SERCA) and describe a series of Ca2+ binding isotherms obtained by equilibrium measurements in the presence of various H+ and Mg2+ concentrations. We subject the isotherms to statistical mechanics analysis, using a model based on a minimal number of mechanistic steps. The analysis allows satisfactory fits and yields information on occupancy of the specific Ca2+ sites under various conditions. It also provides a fundamental method for analysis of binding specificity to transport sites under equilibrium conditions that lead to tightly coupled catalytic activation. 相似文献
11.
Naranjan S. Dhalla Vincenzo Panagia Naoki Makino Robert E. Beamish 《Molecular and cellular biochemistry》1988,82(1-2):75-79
In order to identify defects in Na+-Ca2+ exchange and Ca2+-pump systems in cardiomyopathic hearts, the activities of sarcolemmal Na+-dependent Ca2+ uptake, Na+-induced Ca2+ release, ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase were examined by employing cardiomyopathic hamsters (UM-X7.1) and catecholamine-induced cardiomyopathy produced by injecting isoproterenol into rats. The rates of Na+-dependent Ca2+ uptake, ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase activities of sarcolemmal vesicles from genetically-linked cardiomyopathic as well as catecholamine-induced cardiomyopathic hearts were decreased without any changes in Na+-induced Ca2+-release. Similar results were obtained in Ca2+-paradox when isolated rat hearts were perfused for 5 min with a medium containing 1.25 mM Ca2+ following a 5 min perfusion with Ca2+-free medium. Although a 2 min reperfusion of the Ca2+-free perfused hearts depressed sarcolemmal Ca2+-pump activities without any changes in Na+-induced Ca2+-release, Na+-dependent Ca2+ uptake was increased. These results indicate that alterations in the sarcolemmal Ca2+-efflux mechanisms may play an important role in cardiomyopathies associated with the development of intracellular Ca2+ overload. 相似文献
12.
Enn K. Seppet Frantisek Kolar Ian M. C. Dixon Tomoji Hata Naranjan S. Dhalla 《Molecular and cellular biochemistry》1993,129(2):145-159
In order to examine the regulatory role of thyroid hormone on sarcolemmal Ca2+-channels, Na+–Ca2+ exchange and Ca2+-pump as well as heart function, the effects of hypothyroidism and hyperthyroidism on rat heart performance and sarcolemmal Ca2+-handling were studied. Hyperthyroid rats showed higher values for heart rate (HR), maximal rates of ventricular pressure development+(dP/dt)max and pressure fall–(dP/dt)max, but shorter time to peak ventricular pressure (TPVP) and contraction time (CT) when compared with euthyroid rats. The left ventricular systolic pressure (LVSP) and left ventricular end-diastolic pressure (LVEDP), as well as aortic systolic and diastolic pressures (ASP and ADP, respectively) were not significantly altered. Hypothyroid rats exhibited decreased values of LVSP, HR, ASP, ADP, +(dP/dt)max and –(dP/dt)max but higher CT when compared with euthyroid rats; the values of LVEDP and TPVP were not changed. Studies with isolated-perfused hearts showed that while hypothyroidism did not modulate the inotropic response to extracellular Ca2+ and Ca2+ channel blocker verapamil, hyperthyroidism increased sensitivity to Ca2+ and decreased sensitivity to verapamil in comparison to euthyroid hearts. Studies of [3H]-nitrendipine binding with purified cardiac sarcolemmal membrane revealed decreased number of high affinity binding sites (Bmax) without any change in the dissociation constant for receptor-ligand complex (Kd) in the hyperthyroid group when compared with euthyroid sarcolemma; hypothyroidism had no effect on these parameters. The activities of sarcolemmal Ca2+-stimulated ATPase, ATP-dependent Ca2+ uptake and ouabain-sensitive Na+–K+ ATPase were decreased whereas the Mg2+-ATPase activity was increased in hypothyroid hearts. On the other hand, sarcolemmal membranes from hyperthyroid samples exhibited increased ouabain-sensitive Na+–K+ ATPase activity, whereas Ca2+-stimulated ATPase, ATP-dependent Ca2+ uptake, and Mg2+-ATPase activities were unchanged. The Vmax and Ka for Ca2+ of cardiac sarcolemmal Na+–Ca2+ exchange were not altered in both hyperthyroid and hypothyroid states. These results indicate that the status of sarcolemmal Ca2+-transport processes is regulated by thyroid hormones and the modification of Ca2+-fluxes across the sarcolemmal membrane may play a crucial role in the development of thyroid state-dependent contractile changes in the heart. 相似文献
13.
Joon-Chul Kim Krishna P. Subedi Joung Real Ahn 《Progress in biophysics and molecular biology》2010,103(1):59-70
In atrial myocytes lacking t-tubules, action potential triggers junctional Ca2+ releases in the cell periphery, which propagates into the cell interior. The present article describes growing evidence on atrial local Ca2+ signaling and on the functions of inositol 1,4,5-trisphosphate receptors (IP3Rs) in atrial myocytes, and show our new findings on the role of IP3R subtype in the regulation of spontaneous focal Ca2+ releases in the compartmentalized areas of atrial myocytes. The Ca2+ sparks, representing focal Ca2+ releases from the sarcoplasmic reticulum (SR) through the ryanodine receptor (RyR) clusters, occur most frequently at the peripheral junctions in isolated resting atrial cells. The Ca2+ sparks that were darker and longer lasting than peripheral and non-junctional (central) sparks, were found at peri-nuclear sites in rat atrial myocytes. Peri-nuclear sparks occurred more frequently than central sparks. Atrial cells express larger amounts of IP3Rs compared with ventricular cells and possess significant levels of type 1 IP3R (IP3R1) and type 2 IP3R (IP3R2). Over the last decade the roles of atrial IP3R on the enhancement of Ca2+-induced Ca2+ release and arrhythmic Ca2+ releases under hormonal stimulations have been well documented. Using protein knock-down method and confocal Ca2+ imaging in conjunction with immunocytochemistry in the adult atrial cell line HL-1, we could demonstrate a role of IP3R1 in the maintenance of peri-nuclear and non-junctional Ca2+ sparks via stimulating a posttranslational organization of RyR clusters. 相似文献
14.
Interdomain interactions within ryanodine receptors regulate Ca2+ spark frequency in skeletal muscle.
下载免费PDF全文
![点击此处可从《The Journal of general physiology》网站下载免费的PDF全文](/ch/ext_images/free.gif)
Alexander Shtifman Christopher W Ward Takeshi Yamamoto Jianli Wang Beth Olbinski Hector H Valdivia Noriaki Ikemoto Martin F Schneider 《The Journal of general physiology》2002,119(1):15-32
DP4 is a 36-residue synthetic peptide that corresponds to the Leu(2442)-Pro(2477) region of RyR1 that contains the reported malignant hyperthermia (MH) mutation site. It has been proposed that DP4 disrupts the normal interdomain interactions that stabilize the closed state of the Ca(2)+ release channel (Yamamoto, T., R. El-Hayek, and N. Ikemoto. 2000. J. Biol. Chem. 275:11618-11625). We have investigated the effects of DP4 on local SR Ca(2)+ release events (Ca(2)+ sparks) in saponin-permeabilized frog skeletal muscle fibers using laser scanning confocal microscopy (line-scan mode, 2 ms/line), as well as the effects of DP4 on frog SR vesicles and frog single RyR Ca(2)+ release channels reconstituted in planar lipid bilayers. DP4 caused a significant increase in Ca(2)+ spark frequency in muscle fibers. However, the mean values of the amplitude, rise time, spatial half width, and temporal half duration of the Ca(2)+ sparks, as well as the distribution of these parameters, remained essentially unchanged in the presence of DP4. Thus, DP4 increased the opening rate, but not the open time of the RyR Ca(2)+ release channel(s) generating the sparks. DP4 also increased [(3)H]ryanodine binding to SR vesicles isolated from frog and mammalian skeletal muscle, and increased the open probability of frog RyR Ca(2)+ release channels reconstituted in bilayers, without changing the amplitude of the current through those channels. However, unlike in Ca(2)+ spark experiments, DP4 produced a pronounced increase in the open time of channels in bilayers. The same peptide with an Arg(17) to Cys(17) replacement (DP4mut), which corresponds to the Arg(2458)-to-Cys(2458) mutation in MH, did not produce a significant effect on RyR activation in muscle fibers, bilayers, or SR vesicles. Mg(2)+ dependence experiments conducted with permeabilized muscle fibers indicate that DP4 preferentially binds to partially Mg(2)+-free RyR(s), thus promoting channel opening and production of Ca(2)+ sparks. 相似文献
15.
In the present paper we studied the involvement of the phosphatidylinositol-specific PLC (PI-PLC)/protein kinase C (PKC) pathway in (Na+ + K+)ATPase stimulation by heme in Leishmania amazonensis promastigotes. Heme stimulated the PKC-like activity with a concentration of 50 nM. Interestingly, the maximal stimulation of the PKC-like activity promoted by phorbol ester was of the same magnitude promoted by heme. However, the stimulatory effect of heme is completely abolished by ET-18-OCH3 and U73122, specific inhibitors of PI-PLC. (Na+ + K+)ATPase activity is increased in the presence of increased concentrations of heme, being maximally affected at 50 nM. This effect was completely reversed by 10 nM calphostin C, an inhibitor of PKC. Thus, the effect of 50 nM heme on (Na+ + K+)ATPase activity is completely abolished by ET-18-OCH3 and U73122. Taken together, these results demonstrate that the heme receptor mediates the stimulatory effect of heme on the (Na+ + K+)ATPase activity through a PI-PLC/PKC signaling pathway. 相似文献
16.
Yasushi Sakai Michio Hashimoto Budbazar Enkhjargal Hisashi Mitsuishi Hiromi Nobe Ichiro Horie Takahiro Iwamoto Kenichi Yanagimoto 《Life sciences》2014
Aims
To investigate the effects of n − 3 polyunsaturated fatty acids on cerebral circulation, ovariectomized (OVX) rats were administered with phospholipids in krill oil (KPL) or triglycerides in fish oil (FTG); effects on the Ca2 + regulating system in their basilar artery (BA) were then analyzed.Main methods
The rats were divided into 4 groups: control, OVX, OVX given KPL (OVXP), and OVX given FTG (OVXT) orally, daily for 2 weeks. Time dependent relaxation (TDR) of contractile response to 5HT in BA was determined myographically, Na+/Ca2 + exchanger (NCX) 1 mRNA expression was determined by real time PCR, and nucleotides were analyzed by HPLC.Key findings
The level of TDR in OVX that was significantly lower in the control was inhibited by l-NAME and indomethacin; TEA inhibited TDR totally in the control but only partly in OVXP and OVXT. Relaxation induced by the addition of 5 mM KCl to the BA pre-contracted with 5-HT was inhibited by TEA in the controls, OVXP and OVXT, but not in OVX. Overexpression of NCX1 mRNA in the BA from OVX was significantly inhibited by FTG. The ratio of ADP/ATP in cerebral arteries from OVX was significantly inhibited by KPL and FTG. Levels of triglyceride and arachidonic acid in the plasma of OVX increased, but were significantly inhibited by KPL and FTG.Significance
Ovarian dysfunction affects Ca2 + activated-, ATP-sensitive-K+ channels and NCX1, which play crucial roles in the autoregulation of cerebral blood flow. Also, KPL may become as good a supplement as FTG for postmenopausal women. 相似文献17.
Thanutchaporn Kumrungsee Tomomi SaikiSayaka Akiyama Kentaro NakashimaMitsuru Tanaka Yutaro KobayashiToshiro Matsui 《Biochimica et Biophysica Acta (BBA)/General Subjects》2014
Background
Tryptophan-histidine (Trp-His) was found to suppress the activity of the Ca2 +/calmodulin (CaM)-dependent protein kinases II (CaMKII), which requires the Ca2 +-CaM complex for an initial activation. In this study, we attempted to clarify whether Trp-His inhibits Ca2 +-CaM complex formation, a CaMKII activator.Methods
The ability of Trp-His and other peptides to inhibit Ca2 +-CaM complex formation was investigated by a Ca2 +-encapsulation fluorescence assay. The peptide-CaM interactions were illustrated by molecular dynamic simulation.Results
We showed that Trp-His inhibited Ca2 +-CaM complex formation with a 1:1 binding stoichiometry of the peptide to CaM, considering that Trp-His reduced Hill coefficient of Ca2 +-CaM binding from 2.81 to 1.92. His-Trp also showed inhibitory activity, whereas Trp + His, 3-methyl His-Trp, and Phe-His did not show significant inhibitory activity, suggesting that the inhibitory activity was due to a peptide skeleton (irrespective of the sequence), a basic amino acid, a His residue, the N hydrogen atom of its imidazole ring, and Trp residue. In silico studies suggested the possibility that Trp-His and His-Trp interacted with the Ca2 +-binding site of CaM by forming hydrogen bonds with key Ca2 +-binding residues of CaM, with a binding free energy of − 49.1 and − 68.0 kJ/mol, respectively.Conclusions
This is the first study demonstrating that the vasoactive dipeptide Trp-His possesses inhibitory activity against Ca2 +-CaM complex formation, which may elucidate how Trp-His inhibited CaMKII in a previous study.General significance
The results provide a basic idea that could lead to the development of small peptides binding with high affinity to CaM and inhibiting Ca2 +-CaM complex formation in the future. 相似文献18.
Cefaratti C 《Molecular and cellular biochemistry》2007,295(1-2):241-247
Isolated hepatocytes release 2–3 nmol Mg2+/mg protein or ~10% of the total cellular Mg2+ content within 2 minutes from the addition of agonists that increase cellular cAMP, for example, isoproterenol (ISO). During
Mg2+ release, a quantitatively similar amount of Ca2+ enters the hepatocyte, thus suggesting a stoichiometric exchange ratio of 1 Mg2+:1Ca2+. Calcium induced Mg2+ extrusion is also observed in apical liver plasma membranes (aLPM), in which the process presents the same 1 Mg2+:1Ca2+ exchange ratio. The uptake of Ca2+ for the release of Mg2+ occurs in the absence of significant changes in Δψ as evidenced by electroneutral exchange measurements with a tetraphenylphosphonium
(TPP+) electrode or 3H-TPP+. Collapsing the Δψ by high concentrations of TPP+ or protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) does not inhibit the Ca2+-induced Mg2+ extrusion in cells or aLPM. Further, the process is strictly unidirectional, serving only in Ca2+ uptake and Mg2+ release. These data demonstrate the operation of an electroneutral Ca2+/Mg2+ exchanger which represents a novel pathway for Ca2+ accumulation in liver cells following adrenergic receptor stimulation.
This work was supported by National Institutes of Health Grant HL 18708. 相似文献
19.
20.
Plasma membrane (PM) Na+, K+-ATPase, plays crucial roles in numerous physiological processes. Cardiac steroids (CS), such as ouabain and bufalin, specifically bind to the Na+, K+-ATPase and affect ionic homeostasis, signal transduction, and endocytosed membrane traffic. CS-like compounds, synthesized in and released from the adrenal gland, are considered a new family of steroid hormones. Previous studies showed that ouabain induces slow Ca2+ oscillations in COS-7 cells by enhancing the interactions between Na+, K+-ATPase, inositol 1,4,5-trisphosphate receptor (IP3R) and Ankyrin B (Ank-B) to form a Ca2+ signaling micro-domain. The activation of this micro-domain, however, is independent of InsP3 generation. Thus, the mechanism underlying the induction of these slow Ca2+ oscillations remained largely unclear. We now show that other CS, such as bufalin, can also induce Ca2+ oscillations. These oscillations depend on extracellular Ca2+ concentrations [Ca2+]out and are inhibited by Ni2+. Furthermore, we found that these slow oscillations are Na+out dependent, abolished by Na+/Ca2+ exchanger1 (NCX1)-specific inhibitors and markedly attenuated by NCX1 siRNA knockdown. Based on these results, a model is presented for the CS-induced slow Ca2+ oscillations in COS-7 cells. 相似文献