首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The urokinase-type plasminogen activator (uPA) in concert with other proteolytic enzymes plays a critical role in cartilage degradation during osteoarthritis. Urokinase receptor (uPAR), a glycosyl-phosphatidylinositol-linked glycoprotein present on the cell surface of various cell types such as cancer cells, fibroblasts, synoviocytes, and chondrocytes, is a key regulator of the plasmin-mediated pericellular proteolysis. Recently, in arthritic synovial tissue increased uPAR expression has been detected. By immunohistochemical analysis we observed, in addition, enhanced expression of uPAR in chondrocytes of arthritic samples of human cartilage compared to non-arthritic controls. Using in vitro cultured human chondrocytes, we analyzed whether uPAR is associated with structural proteins, which are known to be involved in cell signaling and activation. uPAR in phorbol-12-myristate-13-acetate-stimulated chondrocytes colocalized with caveolin as well as beta 1-integrin, as demonstrated by double immunostaining with specific antibodies. Furthermore, uPAR was present in caveolae-like structures of chondrocytes as detected by immunoelectron microscopy. Finally, both caveolin and beta 1-integrin were coprecipitated with uPAR-specific antibodies from cell extracts suggesting that these proteins may form functional complexes in human chondrocytes. The localization of uPAR in caveolae and its close association with caveolin and beta 1-integrin points to a significance of uPAR-mediated signaling pathways in human chondrocytes.  相似文献   

2.
The cellular receptor for urokinase-type plasminogen activator (uPAR) is a glycolipid-anchored three-domain membrane protein playing a central role in pericellular plasminogen activation. We have found that urokinase (uPA) can cleave its receptor between domains 1 and 2 generating a cell-associated uPAR variant without ligand-binding properties. In extracts of U937 cells there are two uPAR variants which after complete deglycosylation have apparent molecular masses of 35,000 and 27,000. Analysis with monoclonal antibodies showed that these variants represented the intact uPAR and a two-domain form, uPAR(2+3), lacking ligand-binding domain 1. Trypsin treatment showed that both variants are present on the outside of the cells. Addition to the culture medium of an anticatalytic monoclonal antibody to uPA inhibited the formation of the uPAR(2+3), indicating that uPA is involved in its generation. Purified uPAR can be cleaved directly by uPA as well as by plasmin. The uPA-catalyzed cleavage does not require binding of the protease to the receptor through its epidermal growth factor-like receptor-binding domain, since low molecular weight uPA that lacks this domain also cleaves uPAR. This unusual reaction in which a specific binding protein is proteolytically inactivated by its own ligand may represent a regulatory step in the plasminogen activation cascade.  相似文献   

3.
Previous studies have shown that the urokinase-type plasminogen activator receptor (uPAR) is localized to the adherence sites of leukocytes and tumor cells suggesting that pericellular proteolysis may accompany focal activation of adherence. To assess for focused pericellular proteolytic activity, we prepared two-dimensional substrates coated with FITC-casein or Bodipy FL-BSA. These molecules are poorly fluorescent, but become highly fluorescent after proteolytic degradation. Fluorescent peptide products were observed at adherence sites of stationary human neutrophils and at lamellipodia of polarized neutrophils. During cell migration, multiple regions of proteolysis appeared sequentially beneath the cell. Similarly, proteolytic action was restricted to adherence sites of resting HT1080 tumor cells but localized to the invadopodia of active cells. Using an extracellular fluorescence quenching method, we demonstrate that these fluorescent peptide products are extracellular. The uPA/uPAR system played an important role in the observed proteolytic activation. Plasminogen activator inhibitor-1 significantly reduced focal proteolysis. Sites of focal proteolysis matched the membrane distribution of uPAR. When uPA was dissociated from uPAR by acid washing, substantially reduced pericellular proteolysis was found. uPAR-negative T47D tumor cells did not express significant levels of substrate proteolysis. However, transfectant clones expressing uPAR (for example, T47D-26) displayed high levels of fluorescence indicating proteolysis at adherence sites. To provide further evidence for the role of the uPA/uPAR system in pericellular proteolysis, peritoneal macrophages from uPA knock-out (uPA–/–) and control (uPA+/+) mice were studied. Pericellular proteolysis was dramatically reduced in uPA-negative peritoneal macrophages. Thus, we have: (1) developed a novel methodology to detect pericellular proteolytic function, (2) demonstrated focused activation of proteolytic enzymatic activity in several cell types, (3) demonstrated its usefulness in real-time studies of cell migration, and (4) showed that the uPA/uPAR system is an important contributor to focal pericellular proteolysis.  相似文献   

4.
The high affinity interaction between the urokinase-type plasminogen activator (uPA) and its glycolipid-anchored cellular receptor (uPAR) promotes plasminogen activation and the efficient generation of pericellular proteolytic activity. We demonstrate here that expression of the tetraspanin CD82/KAI1 (a tumor metastasis suppressor) leads to a profound effect on uPAR function. Pericellular plasminogen activation was reduced by approximately 50-fold in the presence of CD82, although levels of components of the plasminogen activation system were unchanged. uPAR was present on the cell surface and molecularly intact, but radioligand binding analysis with uPA and anti-uPAR antibodies revealed that it was in a previously undetected cryptic form unable to bind uPA. This was not due to direct interactions between uPAR and CD82, as they neither co-localized on the cell surface nor could be co-immunoprecipitated. However, expression of CD82 led to a redistribution of uPAR to focal adhesions, where it was shown by double immunofluorescence labeling to co-localize with the integrin alpha(5)beta(1), which was also redistributed in the presence of CD82. Co-immunoprecipitation experiments showed that, in the presence of CD82, uPAR preferentially formed stable associations with alpha(5)beta(1), but not with a variety of other integrins, including alpha(3)beta(1). These data suggest that CD82 inhibits the proteolytic function of uPAR indirectly, directing uPAR and alpha(5)beta(1) to focal adhesions and promoting their association with a resultant loss of uPA binding. This represents a novel mechanism whereby tetraspanins, integrins, and uPAR, systems involved in cell adhesion and migration, cooperate to regulate pericellular proteolytic activity and may suggest a mechanism for the tumor-suppressive effects of CD82/KAI1.  相似文献   

5.
The urokinase plasminogen activator receptor (uPAR) is a membrane protein active in localizing the plasminogen activation cascade system on the cell surface. The resulting pericellular proteolytic activity is responsible for degradation reactions in the extracellular matrix that are needed for the invasion of cancer cells, thus making uPAR a potential target for anti-invasive therapy based on binding antagonists. A remarkable property of the uPA-uPAR system is a pronounced species specificity in ligand recognition. We have now cloned and studied uPAR from four primate species and show that even though these sequences contain very few substitutions relative to the human uPAR, the receptor protein products differ markedly in terms of ligand selectivity. Thus, a well described competitive peptide antagonist directed against the human uPAR reacts with only one of the monkey receptors (chimpanzee uPAR), in spite of the fact that uPAR from all of the four species cross-reacts with human uPA. Notably, uPAR from African green monkey, which is completely devoid of reactivity with the peptide, contains only three substitutions relative to chimpanzee uPAR in the molecular regions critical for binding. These findings aid the elucidation of the structure/function relationship of uPAR and, unexpectedly, identify a structural distinction governing the binding of uPA and a very similar peptide antagonist.  相似文献   

6.
Accumulated data indicate that endocytosis of the glycosylphosphatidyl-inositol-anchored protein urokinase plasminogen activator receptor (uPAR) depends on binding of the ligand uPA:plasminogen activator inhibitor-1 (PAI-1) and subsequent interaction with internalization receptors of the low-density lipoprotein receptor family, which are internalized through clathrin-coated pits. This interaction is inhibited by receptor-associated protein (RAP). We show that uPAR with bound uPA:PAI-1 is capable of entering cells in a clathrin-independent process. First, HeLaK44A cells expressing mutant dynamin efficiently internalized uPA:PAI-1 under conditions in which transferrin endocytosis was blocked. Second, in polarized Madin–Darby canine kidney (MDCK) cells, which expressed human uPAR apically, the low basal rate of uPAR ligand endocytosis, which could not be inhibited by RAP, was increased by forskolin or phorbol ester (phorbol 12-myristate 13-acetate), which selectively up-regulate clathrin-independent endocytosis from the apical domain of epithelial cells. Third, in subconfluent nonpolarized MDCK cells, endocytosis of uPA:PAI-1 was only decreased marginally by RAP. At the ultrastructural level uPAR was largely excluded from clathrin-coated pits in these cells and localized in invaginated caveolae only in the presence of cross-linking antibodies. Interestingly, a larger fraction of uPAR in nonpolarized relative to polarized MDCK cells was insoluble in Triton X-100 at 0°C, and by surface labeling with biotin we also show that internalized uPAR was mainly detergent insoluble, suggesting a correlation between association with detergent-resistant membrane microdomains and higher degree of clathrin-independent endocytosis. Furthermore, by cryoimmunogold labeling we show that 5–10% of internalized uPAR in nonpolarized, but not polarized, MDCK cells is targeted to lysosomes by a mechanism that is regulated by ligand occupancy.  相似文献   

7.
Using confocal fluorescence microscopy with a monoclonal antibody, we have localized the receptor for urokinase plasminogen activator (uPAR) in MDA-MB-231 human breast cancer cells migrating into a reconstituted basement membrane. Patchy and polarized uPAR immunoreactivity was found at the cell membrane, and strong staining was found both in the ruffled border or leading edge of the cells and at pseudopodia penetrating into the membrane. Intracellular uPAR staining was localized in the paranuclear region and in rounded granule-like structures: some of these were identified as lysosomes by double staining for uPAR and the lysosomal enzyme cathepsin D. Urokinase plasminogen activator (uPA) activity has previously been shown to play a role in migration of cells into basement membranes, and it has been proposed that uPAR also is involved in this process. uPA is known to be internalized and degraded after complex formation with the inhibitor PAI-1. Lysosomal uPAR immunoreactivity may result from concomitant internalization of the receptor.  相似文献   

8.
Plasma membrane urokinase-type plasminogen activator (uPA)-receptor (uPAR) is a GPI-anchored protein that binds with high-affinity and activates the serine protease uPA, thus regulating proteolytic activity at the cell surface. In addition, uPAR is a signaling receptor that often does not require its protease ligand or its proteolytic function.uPAR is highly expressed during tissue reorganization, inflammation, and in virtually all human cancers. Since its discovery, in vitro and in vivo models, as well as retrospective clinical studies have shown that over-expression of components of the uPA/uPAR-system correlates with increased proliferation, migration, and invasion affecting the malignant phenotype of cancer. uPAR regulates the cells-extracellular matrix interactions promoting its degradation and turnover through the plasminogen activation cascade.  相似文献   

9.
Urokinase plasminogen activator (uPA) and its high affinity receptor (uPAR) play crucial proteolytic and non-proteolytic roles in cancer metastasis. In addition to promoting plasmin-mediated degradation of extracellular matrix barriers, cell surface engagement of uPA through uPAR binding results in the activation of a suite of diverse cellular signal transduction pathways. Because uPAR is bound to the plasma membrane through a glycosyl-phosphatidylinositol anchor, these signalling sequelae are thought to occur through the formation of multi-protein cell surface complexes involving uPAR. To further characterize uPAR-driven protein complexes, we co-immunoprecipitated uPAR from the human ovarian cancer cell line, OVCA 429, and employed sensitive proteomic methods to identify the uPAR-associated proteins. Using this strategy, we identified several known, as well as numerous novel, uPAR associating proteins, including the epithelial restricted integrin, alphavbeta6. Reverse immunoprecipitation using anti-beta6 integrin subunit monoclonal antibodies confirmed the co-purification of this protein with uPAR. Inhibition of uPAR and/or beta6 integrin subunit using neutralizing antibodies resulted in the inhibition of uPA-mediated ERK 1/2 phosphorylation and subsequent cell proliferation. These data suggest that the association of beta6 integrin (and possibly other lynchpin cancer regulatory proteins) with uPAR may be crucial in co-transmitting uPA signals that induce cell proliferation. Our findings support the notion that uPAR behaves as a lynchpin in promoting tumorigenesis by forming functionally active multiprotein complexes.  相似文献   

10.
The high-affinity interaction between urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) plays an important role in pericellular plasminogen activation. Since proteolytic degradation of the extracellular matrix has an established role in tumor invasion and metastasis, the uPA-uPAR interaction represents a potential target for therapeutic intervention. By affinity maturation using combinatorial chemistry we have now developed and characterized a 9-mer, linear peptide antagonist of the uPA-uPAR interaction demonstrating specific, high-affinity binding to human uPAR (K(d) approximately 0.4 nM). Studies by surface plasmon resonance reveal that the off-rate for this receptor-peptide complex is comparable to that measured for the natural protein ligand, uPA. The functional epitope on human uPAR for this antagonist has been delineated by site-directed mutagenesis, and its assignment to loop 3 of uPAR domain III (Met(246), His(249), His(251), and Phe(256)) corroborates data previously obtained by photoaffinity labeling and provides a molecular explanation for the extreme selectivity observed for the antagonist toward human compared to mouse, monkey, and hamster uPAR. When human HEp-3 cancer cells were inoculated in the presence of this peptide antagonist, a specific inhibition of cancer cell intravasation was observed in a chicken chorioallantoic membrane assay. These data imply that design of small organic molecules mimicking the binding determinants of this 9-mer peptide antagonist may have a potential application in combination therapy for certain types of cancer.  相似文献   

11.
The urokinase-type plasminogen activator receptor (uPAR) is a glycolipid-anchored membrane protein with an established role in focalizing uPA-mediated plasminogen activation on cell surfaces. Distinct from this function, uPAR also modulates cell adhesion and migration on vitronectin-rich matrices. Although uPA and vitronectin engage structurally distinct binding sites on uPAR, they nonetheless cooperate functionally, as uPA binding potentiates uPAR-dependent induction of lamellipodia on vitronectin matrices. We now present data advancing the possibility that it is the burial of the β-hairpin in uPA per se into the hydrophobic ligand binding cavity of uPAR that modulates the function of this receptor. Based on these data, we now propose a model in which the inherent interdomain mobility in uPAR plays a major role in modulating its function. Particularly one uPAR conformation, which is stabilized by engagement of the β-hairpin in uPA, favors the proper assembly of an active, compact receptor structure that stimulates lamellipodia induction on vitronectin. This molecular model has wide implications for drug development targeting uPAR function.  相似文献   

12.
The generation of the broad specificity serine protease plasmin in the pericellular environment is regulated by binding of the urokinase-type plasminogen activator (uPA) to its specific glycosylphosphatidylinositol (GPI)-anchored cell-surface receptor, uPAR. This interaction potentiates the reciprocal activation of the cell-associated zymogens pro-uPA and plasminogen. To further study the role of uPAR in this mechanism, we have expressed two directly membrane-anchored chimeric forms of uPA, one anchored by a C-terminal GPI-moiety (GPI-uPA), the other with a C-terminal transmembrane peptide (TM-uPA). These were expressed in the monocyte-like cell lines U937 and THP-1, which are excellent models for kinetic and mechanistic studies of cell-surface plasminogen activation. In both cell-lines, GPI-uPA activated cell-associated plasminogen with characteristics both qualitatively and quantitatively indistinguishable from those of uPAR-bound uPA. By contrast, TM-uPA activated cell-associated plasminogen less efficiently. This was due to effects on the K, for plasminogen activation (which was increased up to five-fold) and the efficiency of pro-uPA activation (which was decreased approximately four-fold). These observations suggest that uPAR serves two essential roles in mediating efficient cell-surface plasminogen activation. In addition to confining uPA to the cell-surface, the GPI-anchor plays an important role by increasing accessibility to substrate plasminogen and, thus, enhancing catalysis. However, the data also demonstrate that, in the presence of an alternative mechanism for uPA localization, uPAR is dispensable and, therefore, unlikely to participate in any additional interactions that may be necessary for the efficiency of this proteolytic system. In these experiments zymogen pro-uPA was unexpectedly found to be constitutively activated when expressed in THP-1 cells, suggesting the presence of an alternative plasmin-independent proteolytic activation mechanism in these cells.  相似文献   

13.
Urokinase-type plasminogen activator (uPA) is a potent catalyst of extracellular proteolysis, which also binds to a high-affinity plasma membrane receptor (uPAR). Binding of uPA may influence pericellular proteolysis and/or activate intracellular signal transduction. Transgenic mice overexpressing either uPA or uPAR in basal epidermis and hair follicles had no detectable cutaneous alterations. In contrast, bi-transgenic mice overexpressing both uPA and uPAR, obtained by crossing the two transgenic lines, developed extensive alopecia induced by involution of hair follicles, epidermal thickening and sub-epidermal blisters. The phenotype was due to uPA catalytic activity since combined overexpression of uPAR and uPAR-binding but catalytically inactive uPA in the same tissue was not detrimental in another bi-transgenic line. It was accompanied by increased plasmin-generating capacity, up-regulation and activation of matrix metalloproteinases type-2 and -9, and cleavage of uPAR. Thus, combined overexpression of uPA and uPAR acts in synergy to promote pathogenic extracellular proteolysis.  相似文献   

14.
《The Journal of cell biology》1995,131(6):1609-1622
The GPI-anchored urokinase plasminogen activator receptor (uPAR) does not internalize free urokinase (uPA). On the contrary, uPAR-bound complexes of uPA with its serpin inhibitors PAI-1 (plasminogen activator inhibitor type-1) or PN-1 (protease nexin-1) are readily internalized in several cell types. Here we address the question whether uPAR is internalized as well upon binding of uPA-serpin complexes. Both LB6 clone 19 cells, a mouse cell line transfected with the human uPAR cDNA, and the human U937 monocytic cell line, express in addition to uPAR also the endocytic alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (LRP/alpha 2-MR) which is required to internalize uPAR-bound uPA-PAI-1 and uPA-PN-1 complexes. Downregulation of cell surface uPAR molecules in U937 cells was detected by cytofluorimetric analysis after uPA-PAI-1 and uPA-PN-1 incubation for 30 min at 37 degrees C; this effect was blocked by preincubation with the ligand of LRP/alpha 2-MR, RAP (LRP/alpha 2-MR- associated protein), known to block the binding of the uPA complexes to LRP/alpha 2-. MR. Downregulation correlated in time with the intracellular appearance of uPAR as assessed by confocal microscopy and immuno-electron microscopy. After 30 min incubation with uPA-PAI-1 or uPA-PN-1 (but not with free uPA), confocal microscopy showed that uPAR staining in permeabilized LB6 clone 19 cells moved from a mostly surface associated to a largely perinuclear position. This effect was inhibited by the LRP/alpha 2-MR RAP. Perinuclear uPAR did not represent newly synthesized nor a preexisting intracellular pool of uPAR, since this fluorescence pattern was not modified by treatment with the protein synthesis inhibitor cycloheximide, and since in LB6 clone 19 cells all of uPAR was expressed on the cell surface. Immuno-electron microscopy confirmed the plasma membrane to intracellular translocation of uPAR, and its dependence on LRP/alpha 2-MR in LB6 clone 19 cells only after binding to the uPA-PAI-1 complex. After 30 min incubation at 37 degrees C with uPA-PAI-1, 93% of the specific immunogold particles were present in cytoplasmic vacuoles vs 17.6% in the case of DFP-uPA. We conclude therefore that in the process of uPA-serpin internalization, uPAR itself is internalized, and that internalization requires the LRP/alpha 2-MR.  相似文献   

15.
The urokinase receptor urokinase-type plasminogen activator receptor (uPAR) is a surface receptor capable of not only focalizing urokinase-type plasminogen activator (uPA)-mediated fibrinolysis to the pericellular micro-environment but also promoting cell migration and chemotaxis. Consistent with this multifunctional role, uPAR binds several extracellular ligands, including uPA and vitronectin. Structural studies suggest that uPAR possesses structural flexibility. It is, however, not clear whether this flexibility is an inherent property of the uPAR structure per se or whether it is induced upon ligand binding. The crystal structure of human uPAR in its ligand-free state would clarify this issue, but such information remains unfortunately elusive. We now report the crystal structures of a stabilized, human uPAR (H47C/N259C) in its ligand-free form to 2.4 Å and in complex with amino-terminal fragment (ATF) to 3.2 Å. The structure of uPARH47C/N259C in complex with ATF resembles the wild-type uPAR·ATF complex, demonstrating that these mutations do not perturb the uPA binding properties of uPAR. The present structure of uPARH47C/N259C provides the first structural definition of uPAR in its ligand-free form, which represents one of the biologically active conformations of uPAR as defined by extensive biochemical studies. The domain boundary between uPAR DI–DII domains is more flexible than the DII–DIII domain boundary. Two important structural features are highlighted by the present uPAR structure. First, the DI–DIII domain boundary may face the cell membrane. Second, loop 130–140 of uPAR plays a dynamic role during ligand loading/unloading. Together, these studies provide new insights into uPAR structure–function relationships, emphasizing the importance of the inter-domain dynamics of this modular receptor.  相似文献   

16.
Urokinase-type plasminogen activator (uPA) induces cell adhesion and chemotactic movement. uPA signaling requires its binding to uPA receptor (uPAR/CD87), but how glycosylphosphatidylinositol-anchored uPAR mediates signaling is unclear. uPAR is a ligand for several integrins (e.g. alpha 5 beta 1) and supports cell-cell interaction by binding to integrins on apposing cells (in trans). We studied whether binding of uPAR to alpha 5 beta 1 in cis is involved in adhesion and migration of Chinese hamster ovary cells in response to immobilized uPA. This process was temperature-sensitive and required mitogen-activated protein kinase activation. Anti-uPAR antibody or depletion of uPAR blocked, whereas overexpression of uPAR enhanced, cell adhesion to uPA. Adhesion to uPA was also blocked by deletion of the growth factor domain (GFD) of uPA and by anti-GFD antibody, whereas neither the isolated uPA kringle nor serine protease domain supported adhesion directly. Interestingly, anti-alpha 5 antibody, RGD peptide, and function-blocking mutations in alpha 5 beta 1 blocked adhesion to uPA. uPA-induced cell migration also required GFD, uPAR, and alpha 5 beta 1, but alpha 5 beta 1 alone did not support uPA-induced adhesion and migration. Thus, binding of uPA causes uPAR to act as a ligand for alpha 5 beta 1 to induce cell adhesion, intracellular signaling, and cell migration. We demonstrated that uPA induced RGD-dependent binding of uPAR to alpha 5 beta 1 in solution. These results suggest that uPA-induced adhesion and migration of Chinese hamster ovary cells occurs as a consequence of (a) uPA binding to uPAR through GFD, (b) the subsequent binding of a uPA.uPAR complex to alpha 5 beta 1 via uPAR, and (c) signal transduction through alpha 5 beta 1.  相似文献   

17.
The receptor for urokinase-type plasminogen activator (uPAR) plays important roles in a number of physiological and pathological processes by virtue of its interactions with urokinase-type plasminogen activator (uPA), vitronectin (Vn), and several other proteins. The uPA binding site spans all three domains (D1 to D3) of uPAR. However, the nature of the Vn binding site within uPAR is still not clear. In this study, we conducted homolog-scanning mutagenesis on uPAR by switching 14 individual segments of 4-8 residues to their counterpart sequences of a uPAR homolog CD59. All 14 mutants were well expressed, reacted with a panel of monoclonal antibodies, and exhibited correct molecular weights. Of these 14 mutants, six mutants were defective in both uPA and Vn binding. Most importantly, we found two unique mutants uPAR(Asn172-Lys175) and uPAR(Glu183-Asn186) within the D2 domain, which displayed differential ligand binding activity: both had high affinity uPA binding, but completely lost Vn binding, indicating that these two sequences constitute a novel Vn binding site. Indeed, two peptides, P1 (153CPGSNGFHNNDTFHFLKC) and P2 (171CNTTKCNEGPILELENLPQ), derived from the sequences of the identified uPA and Vn binding pockets within D2, respectively, behaved like bona fide ligand binding sites: peptide P1 bound uPA but not Vn, whereas peptide P2 bound Vn and inhibited uPAR-mediated cell adhesion, but did not interact with uPA. Altogether, our data demonstrated that uPAR D2 contains two distinct ligand binding sites for uPA and Vn. Such information will help us better understand the complex roles of uPAR in cell adhesion, migration, and tumor metastasis.  相似文献   

18.
The interaction between urokinase plasminogen activator (uPA) and its cellular receptor (uPAR) is a key event in cell surface-associated plasminogen activation, relevant for cell migration and invasion. In order to define receptor recognition sites for uPA, we have expressed uPAR fragments as fusion products with the minor coat protein on the surface of M13 bacteriophages. Sequence analysis of cDNA fragments encoding uPA-binding peptides indicated the existence of a composite uPA-binding structure including all three uPAR domains. This finding was confirmed by experiments using an overlapping 15-mer peptide array covering the entire uPAR molecule. Four regions within the uPAR sequence were found to directly bind to uPA: two distinct regions containing amino acids 13--20 and amino acids 74--84 of the uPAR domain I, and regions in the putative loop 3 of the domains II and III. All the uPA-binding fragments from the three domains were shown to have an agonistic effect on uPA binding to immobilized uPAR. Furthermore, uPAR-(154--176) increased uPAR-transfected BAF3-cell adhesion on vitronectin in the presence of uPA, whereas uPAR-(247--276) stimulated the cell adhesion both in the absence or presence of uPA. The latter fragment was also able to augment the binding of vitronectin to uPAR in a purified system, thereby mimicking the effect of uPA on this interaction. These results indicate that uPA binding can take place to particular part(s) on several uPAR molecules and that direct uPAR-uPAR contacts may contribute to receptor activation and ligand binding.  相似文献   

19.
Low-density lipoprotein receptor-related protein (LRP) mediates internalization of urokinase:plasminogen activator inhibitor complexes (uPA:PAI-1) and the urokinase receptor (uPAR). Here we investigated whether direct interaction between uPAR, a glycosyl-phosphatidylinositol-anchored protein, and LRP, a transmembrane receptor, is required for clearance of uPA:PAI-1, regeneration of unoccupied uPAR, activation of plasminogen, and the ability of HT1080 cells to invade extracellular matrix. We found that in the absence of uPA:PAI-1, uPAR is randomly distributed along the plasma membrane, whereas uPA:PAI-1 promotes formation of uPAR-LRP complexes and initiates redistribution of occupied uPAR to clathrin-coated pits. uPAR-LRP complexes are endocytosed via clathrin-coated vesicles and traffic together to early endosomes (EE) because they can be coimmunoprecipitated from immunoisolated EE, and internalization is blocked by depletion of intracellular K(+). Direct binding of domain 3 (D3) of uPAR to LRP is required for clearance of uPA-PAI-1-occupied uPAR because internalization is blocked by incubation with recombinant D3. Moreover, uPA-dependent plasmin generation and the ability of HT1080 cells to migrate through Matrigel-coated invasion chambers are also inhibited in the presence of D3. These results demonstrate that GPI-anchored uPAR is endocytosed by piggybacking on LRP and that direct binding of occupied uPAR to LRP is essential for internalization of occupied uPAR, regeneration of unoccupied uPAR, plasmin generation, and invasion and migration through extracellular matrix.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号