首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Insight into the conformations and aggregation of alginic acid was gained by measuring its diffusion coefficient at very dilute concentrations using fluorescence correlation spectroscopy. Both the pH and ionic strength (I) had an important influence on the diffusion coefficient of the polysaccharide. For pH, three effects were isolated: (i) below pH 4, the charge density decreased causing increased aggregation; (ii) between pH 4 and 8, a molecular expansion was observed with increasing pH, whereas (iii) above pH 8 some dissociation of the polymer was observed. Increasing I from 0.001 to 0.1 M resulted in a ca. 20% increase in the diffusion coefficient. By coupling these measurements to molar mass determinations obtained by size exclusion chromatography and monomer size estimations determined from ab initio calculations, it was possible to determine the radii of gyration via de Gennes renormalization theory. From diffusion coefficients and radii of gyration obtained as a function of ionic strength, persistence lengths (total, electrostatic, and intrinsic) were calculated from the Benoit-Doty relationship.  相似文献   

2.
The viscosity of an exocellular polysaccharide (EPS) produced by the bacterium Lactococcus lactis subsp. cremoris B40 was studied in aqueous solution at an ionic strength of 0.10M. First, the zero‐shear viscosity was determined as a function of the concentration. From the data in the low concentration range, the intrinsic viscosity was determined. In addition, the shear‐thinning behavior was measured at several concentrations. By combining existing theories, a new equation is proposed that describes and predicts the intrinsic viscosity and the concentration dependence of the (zero‐shear) viscosity of B40 EPS solutions from the molar mass and the hydrodynamic radius of the polysaccharide. Based on the Rouse theory, the shear‐rate dependence of the viscosity also could be described and predicted from the molecular characteristics, i.e., molar mass and radius of gyration. It is shown that these equations can be applied to all random coil polysaccharides. © 1999 John Wiley & Sons, Inc. Biopoly 50: 641–646, 1999  相似文献   

3.
Nine samples of gellan gum in the sodium form, ranging in weight-average molar mass from 3.47 x 10(4) to 1.15 x 10(5) at 40 degrees C, were investigated by static and dynamic light scattering and viscometry in 25 mM aqueous NaCl both at 40 and at 25 degrees C. The ratios of the molar mass at 25 degrees C (in the ordered state) to that at 40 degrees C (in the disordered state) were in the range of 1.99 to 2.07, supporting the scheme of the conformational transition of gellan gum between a disassociated single chain and an associated chain composed of two molecules. Focusing on the effects of polydispersity, the intrinsic viscosities, radii of gyration, and hydrodynamic radii were analyzed on the basis of unperturbed wormlike chain models. The persistence lengths were evaluated as 9.4 nm at 40 degrees C and 98 nm at 25 degrees C.  相似文献   

4.
Nine hyaluronan (HA) samples were fractionated by size-exclusion chromatography, and molar mass (M), radius of gyration (Rg), and intrinsic viscosity ([eta]) were measured in 0.15 M NaCl at 37 degrees C by on-line multiangle light scattering and viscometer detectors. Using such method, we investigated the Rg and [eta] molar mass dependence for HA over a very wide range of molar masses: M ranging from 4 x 10(4) to 5.5 x 10(6) g/mol. The Rg and the [eta] molar mass dependence found for HA showed a meaningful difference. The Rg = f(M) power law was substantially linear in the whole range of molar masses explored with a constant slope of 0.6. In contrast, the [eta] = f(M) power law (Mark-Houwink-Sakurada plot) showed a marked curve shape, and a linear regression over the whole range of molar masses does not make sense. Also the persistence length (stiffness) for HA was estimated. The persistence length derived by using both the Odijk's model (7.5 nm from Rg vs M data) and the Bohdanecky's plot (6.8 nm from [eta] vs M data) were quite similar. These persistence length values are congruent with a semistiff conformation of HA macromolecules.  相似文献   

5.
Comb-like branched (1-->3)-beta-D-glucans dissolve in water as stiff triple-helical structures. Dissociation followed by re-association leads to the formation of a blend of various macromolecular topologies, where the cyclic species make up a significant fraction. In this study, the molecular properties of these nanosized cyclic structures of (1-->3)-beta-D-glucans were probed using a combination of AFM and SEC-MALLS. The cyclic structures were obtained by subjecting linear triple-helical molecules of (1-->3)-beta-D-glucans to a denaturation-renaturation cycle, and the fraction of cyclic structures in the renatured sample was determined by AFM. Samples containing different known fractions of linear and circular molecules were studied by SEC with online multi-angle laser-light scattering and viscometric detectors. The molecular weight and the radius of gyration of the molecules eluting from the SEC column, as well as the concentration and the intrinsic viscosity, were determined simultaneously. By extrapolating the results to a situation of only circular species, the results allowed to determine the linear mass per unit length (M(L)) of not only the linear but also the circular morphologies of the (1-->3)-beta-D-glucans. The values obtained were M(L)=2140+/-180 g mol(-1)nm(-1) for the circular species and 2045+/-80 g mol(-1)nm(-1) for the linear species. This is the first direct determination of the M(L) parameter of the circular topology, and the results indicate that the reassociation of the individual chains yield a triplex structure also for the circular morphology, similar to the initial triple helix.  相似文献   

6.
The physical properties of three novel acidic exopolysaccharides obtained from P. marginalis types A, B and C, one from P. ‘gingen’, one from P. andropogenis and one from P. fluorescens have been partially characterized. These EPSs were chromatographed on three serially placed SE Shodex OH pak columns covering a molar mass range for pullulans from about 4 × 107 to 1 × 103. The mobile phase was 0.05 M NaNO3. Physical measurements were performed on about 30 mg of sample for each EPS. The weight average molar mass of these EPSs ranged from about 0.71 to 2.85 × 106, the weight average intrinsic viscosity from 7.15 to 35.3 dl/ g and the radius of gyration from 62 to 123nm. The polydispersities of these EPSs ranged from 1.01 to 1.37. The large molar mass, size and viscosities of these EPSs may indicate that they have potential for use as thickeners, stabilizers, emulsifiers, and gelling agents in the food and non-food industries.  相似文献   

7.
Digitized images of molecules of 16 S rRNA from Escherichia coli, obtained by scanning transmission electron microscopy (STEM), provide quantitative structural information that is lacking in conventional electron micrographs. We have determined the morphology, total molecular mass, mass distribution within individual rRNA molecules and apparent radii of gyration. From the linear density (M/L) we have assessed the number of strands in the structural backbone of rRNA and studied the pattern of branching and folding related to the secondary and tertiary structure of rRNAs under various buffer conditions. Even in reconstitution buffer 16 S RNA did not show any resemblance to the native 30 S subunit.  相似文献   

8.
The determination of apparent persistence length and radius of gyration of maltodextrins in water is achievable through high-resolution ultrasonic spectroscopy measurements. Classical hydration number for those carbohydrates is characteristic of an apparent persistence degree of polymerisation of the polymer. A force-field based molecular modeling of a 10DP malto-oligomer allows measurement of the corresponding length for the lowest energetic conformation in solution. A good agreement between the apparent radii of gyration determined by this technique and the freely rotating polymer chain model is found with radii of gyration calculated from the intrinsic viscosity.  相似文献   

9.
Small angle neutron scattering (SANS) results revealed that contrary to most reports C9 is not a globular protein. Its radius of gyration (Rg) at pH 8 and an ionic strength of 0.5 is 32.2 +/- 1.4 A increasing to 35 A at physiologic ionic strength. In contrast, C8, which has a 2.2-fold larger mass, has a similar Rg value [34.6 +/- 1.6 A]. Calibration plots of Rg vs. M(r) indicate that native C8 is a spherical protein whereas native C9 is elongated. From previous reports it was known that native C8 and C9 associate in solutions of low ionic strength. SANS results confirmed this observation but also demonstrated that C8-C9 heterodimers are already formed at physiologic ionic strength. The dimeric complex is globular [Rg = 40 +/- 0.8 A] indicating that the proteins associate side-by-side rather than end-to-end. In contrast, in presence of the drug Suramin, a potent inhibitor of the assembly of the C5b-9 complex, C9 forms a complex with twice the molecular mass that is still elongated (Rg = 48.8 +/- 0.8 A), suggesting that in this case the protein dimerizes end-to-end via a bridging Suramin molecule.  相似文献   

10.
Pectin was acid extracted from orange albedo by microwave heating under pressure. Extraction times ranged from 2.5 to 8 min. Solubilized pectin was characterized for molar mass (M), rms radius of gyration (Rg) and intrinsic viscosity [eta] by HPSEC with online light scattering and viscosity detection. M, Rg and [eta] all decreased with increasing extraction time. Nevertheless, at heating times of 2.5 and 3.0 min, M, Rg and [eta] were significantly higher than a commercial citrus pectin when the albedo:solvent ratio was 1:25 (w/v). At the heating time of 2.5 min Mw was 3.6 x 10(5), Rgz was 38 nm and [eta]w was 10.8 dL/g. Chromatography revealed that solubilized pectin distributions were bimodal in nature and that the low-molar-mass fraction increased at the expense of the high-molar-mass fraction with increasing extraction time. Scaling law exponents revealed that the high-molar-mass fraction was extremely compact in shape, whereas the low-molar-mass fraction was more asymmetric in shape. Possibly these results indicated that at short extraction times, pectin was solubilized as compact aggregated network structures that were broken down to their more asymmetric components with increased heating times.  相似文献   

11.
Chemical mutagenesis has been used to produce mutants of Acetobacter xylinum NRRL B42 that are cellulose-negative and that produce variants of the acetan structure deficient in the side-chain sugar residues. The product of A. xylinum strain CR1/4 has been shown to possess a tetrasaccharide repeat unit with the side chain terminating in glucuronic acid. X-ray diffraction studies of oriented fibres suggest that the polysaccharide CR1/4 forms a fivefold helix with a pitch of 4.8 nm. Light-scattering studies on CR1/4 solutions suggest a molecular weight of 1.2 × 106 with radii of gyration values of 86 nm (aqueous solution) and 67 nm (0.1 NaCl solution). The magnitude of the measured radii of gyration and the shape of the Holtzer plots suggest that CR1/4 can be described as a stiff coil. Preliminary differential scanning calorimetry data show melting behaviour consistent with order-disorder transitions of a charged helical structure. Rheological studies have revealed new synergistic interactions of CR1/4 with locus bean gum. Comparative studies of acetan and CR1/4 show that decreasing the length of the side chain enhances the solution viscosity.  相似文献   

12.
Goh KK  Hemar Y  Singh H 《Biopolymers》2005,77(2):98-106
The rheological properties and molecular parameters of a purified exopolysaccharide (EPS) produced by a ropy strain of Lactobacillus delbrueckii subsp. bulgaricus NCFB 2483 were investigated. Using capillary viscometry, an intrinsic viscosity of 2,013 mL/g was obtained. The flow curves were fitted by both the Carreau and the Cross equations for shear-thinning fluids, with the Carreau equation giving a better fit. The Cross equation fitted fairly well the plot of reduced viscosity as a function of reduced shear rate with an exponent value (1 - n) of approximately 0.76, typical of random coil polymers. Furthermore, the concentration dependence of the viscosity plot showed a gradient of approximately 1.1 in the dilute regime and 3.3 in the semidilute regime. Molecular parameters were obtained using a multiangle laser light scattering technique. The 2483 EPS molecules had a weight-average molar mass of approximately 2 x 10(6) Da and a z-average root mean square radius (RMS) of approximately 151 nm. From the light scattering data, the bacterial EPS was also found to have a low polydispersity index (approximately 1.15) and adopt a random coil conformation.  相似文献   

13.
The physical properties of a polysaccharide produced by the lactic acid bacterium Lactococcus lactis subsp. cremoris strain NIZO B40 were investigated. Separation of the polysaccharide from most low molar mass compounds in the culture broth was performed by filtration processes. Residual proteins and peptides were removed by washing with a mixture of formic acid, ethanol, and water. Gel permeation chromatography (GPC) was used to size fractionate the polysaccharide. Fractions were analyzed by multiangle static light scattering in aqueous 0.10 M NaNO3 solutions from which a number- (Mn) and weight-averaged (Mw) molar mass of (1.47 +/- 0.06).10(3) and (1.62 +/- 0.07).10(3) kg/mol, respectively, were calculated so that Mw/Mn approximately 1.13. The number-averaged radius of gyration was found to be 86 +/- 2 nm. From dynamic light scattering an apparent z-averaged diffusion coefficient was obtained. Upon correcting for the contributions from intramolecular modes by extrapolating to zero wave vector a hydrodynamic radius of 86 +/- 4 nm was calculated. Theoretical models for random coil polymers show that this z-averaged hydrodynamic radius is consistent with the z-averaged radius of gyration, 97 +/- 3 nm, as found with GPC.  相似文献   

14.
Small-angle X-ray scattering experiments were carried out on rat thymus chromatin in "native" and "H1-depleted" states at various NaCl concentrations using synchrotron radiation. From the analysis of cross-sectional Guinier plots, the radius of gyration of the cross section (Rc) and the mass per unit length (Mc) of native chromatin were evaluated. In the absence of NaCl, the cross section of chromatin filament has a radius of gyration of 3.44 nm, suggesting the structure corresponding to the "10 nm" filament. With increasing NaCl concentration, the Rc value increases steeply to 6.74 nm at 5 mM NaCl and then gradually to 8.82 nm at 50 mM NaCl, whereas the Mc value, which is determined relative to that of tobacco mosaic virus (TMV), increases steadily from 1.58 nucleosomes per 10 nm in the absence of NaCl to 7.66 nucleosomes per 10 nm at 50 mM NaCl. However, since calibration with TMV tends to overestimate the Mc value, the actual Mc values may be less than those values. Above about 40 mM NaCl, aggregation of chromatin is suggested. Similar analysis of H1-depleted chromatin confirmed that H1-depleted chromatin takes a more disordered structure than native chromatin at low ionic strength and does not undergo a definite structure change upon further addition of NaCl.  相似文献   

15.
Solution properties of tragacanthin (the water-soluble part of gum tragacanth) were studied by gel permeation chromatography (GPC) combined with multi-angle light scattering and viscometry at 25 degrees C. Photon correlation spectroscopy was used to determine the hydrodynamic radius. Ultrasonic degradation was applied to obtain biopolymer fractions of different molecular weights. The dependence of intrinsic viscosity [eta] and radius of gyration (s2)z(1/2) on weight average molecular mass M(w) for this biopolymer were found to be [eta] = 9.077 x 10(-5) M(w)(0.87) (dL g(-1)) and (s2)z(1/2) in the range of M(w) from 1.8 x 10(5) to 1.6 x 10(6). The conformational parameters of tragacanthin were calculated to be 1111 nm for molar mass per unit contour length (M(L)), 26 nm for persistence length (q) and 1.87 ratio of R(g)/R(h). It was found that the Smidsr?d parameter B, the empirical stiffness parameter was 0.013, which is lower than that of several polysaccharides indicating the stiff backbone for tragacanthin. The rheological behavior of aqueous solutions of gum tragacanth and its insoluble and soluble fractions (bassorin and tragacanthin, respectively) were studied. For concentrations equal to 1%, at 25 degrees C and in the absence of salt, bassorin solution showed the highest viscosity and shear thinning behaviour. Power law and Williamson models were used to describe the rheological behaviour of bassorin and tragacanthin, respectively. Oscillatory shear experiments showed a gel like structure for the bassorin but for tragacanthin the oscillatory data were as would be expected for semi-dilute to concentrated solution of entangled, random coil polymers. NaCl changed the steady and oscillatory rheological properties of both fractions and in this way the final viscosity of bassorin was even less than tragacanthin. The calculated activation energy for bassorin and tragacanthin indicated a more rapid decrease in viscosity with temperature for tragacanthin. The plot of eta(sp,0) versus C[eta] revealed that the transition from dilute to semi-dilute regime occurs at C*[eta] = 2.82 for tragacanthin.  相似文献   

16.
In this paper, we study the mechanical degradation and changes in conformation of a branched ultrahigh molar mass biomacromolecule, hydrophobically modified starch, as caused by high-pressure homogenization. The characterization was performed with asymmetrical flow field-flow fractionation (AsFlFFF) with multiangle light scattering (MALS) and refractive index detection. The starch which had been chemically modified with octenyl succinate anhydride (OSA) proved to be very large and polydisperse. Upon high-pressure homogenization, the molar mass and rms radius (r(rms)) decreased, and the extent of these changes was related to the turbulent flow conditions during homogenization. The treatment also induced an increase and scaling with size in the apparent density of the macromolecules. To further study the changes in conformation, it was necessary to calculate the hydrodynamic radii (r(h)). This can be determined numerically from the elution times in the analysis and the flow conditions in the AsFlFFF channel. The results showed that the treatment can cause a dramatic decrease in the quotient between r(rms) and r(h), suggesting major conformational changes. These results together could be interpreted as degradation and "crumpling" of the macromolecule, which would give a decrease in r(rms) and an increase in apparent density, together with a "fraying" of more outer parts of the macromolecule, which could give rise to the increase in r(h).  相似文献   

17.
It is now well established that physicochemical properties of exopolysaccharides (EPS) can vary between strains of a given species and according to growth conditions. The EPS production of four strains of Lactobacillus bulgaricus was monitored during growth in milk and in a chemically defined media. All strains, including the non-ropy one, produced EPS. The monosaccharide composition, molar mass (M(w)), and intrinsic viscosity of these EPS were determined and compared. Further characterization using high-performance size-exclusion chromatography revealed the presence of two fractions in all EPS: one fraction exhibited a high M(w) and a high intrinsic viscosity while the other had a low M(w) and a low intrinsic viscosity. Strikingly, the EPS synthesized by the non-ropy strain was mainly composed of the low-M(w) fraction while for the ropy strains, the fraction of high M(w) varied between 43 and 90%. According to our results, we propose that the ratio between the high-M(w) and low-M(w) fractions is critical for the texturing properties of L. bulgaricus EPS.  相似文献   

18.
A neutron scattering study of the ternary complex EF-Tu.GTP-valyl-tRNAVal1A   总被引:1,自引:0,他引:1  
The complex formation between elongation factor Tu (EF-Tu), GTP, and valyl-tRNAVal1A has been investigated in a hepes buffer of "pH" 7.4 and 0.2 M ionic strength using the small-angle neutron scattering method at concentrations of D2O where EF-Tu (42% D2O) and tRNA (71% D2O) are successively matched by the solvents. The results indicate that EF-Tu undergoes a conformational change and contracts as a result of the complex formation, since the radius of gyration decreases by 15% from 2.82 to 2.39 nm. tRNAVal1A, on the other hand, seems to mainly retain its conformation within the complex, since the radii of gyration for the free (after correction for interparticular scattering) and complexed form are essentially the same, 2.38 and 2.47 nm, respectively.  相似文献   

19.
Zhang M  Zhang L  Cheung PC 《Biopolymers》2003,68(2):150-159
Seven water-insoluble (1 --> 3)-beta-D-glucan fractions TM8-1 to TM8-7 with weight-average molecular mass M(w) ranged from 2.22 to 77.4 x 10(4) obtained from the sclerotia of Pleurotus tuber-regium were carboxymethylated to produce the water-soluble fractions CTM8-1 to CTM8-7 with M(w) ranged from 3.87 to 87.8 x 10(4). The degree of substitution (DS) of CTM8 fractions was analyzed by ir and elemental analysis (EA) to be 0.3-0.68. The M(w) and the intrinsic viscosity [eta] of the CTM8 fractions were measured by size-exclusion chromatography combined with multiangle laser light scattering (SEC-MALLS), MALLS, and viscometry in phosphate buffer solution (PBS) at 37 degrees C. The dependencies of [eta] and radius of gyration (z) (1/2) on M(w) for the CTM8 samples were found to be [eta] = (8.82 +/- 0.03) x 10(-3) M(w)(0.78 +/- 0.04) (cm(3) g(-1)) and (z) (1/2) = (3.09 +/- 0.05) x 10(-3) M(w)(0.75 +/- 0.06) (nm) in the M(w) range from 3.87 x 10(4) to 53.2 x 10(4). Based on current theories for wormlike chain model, the conformational parameters of the CTM8 were obtained to be 790 (nm(-1)) for M(L), 9.6 (nm) for q, which were higher than those of the native TM8 fractions, suggesting a more extended flexible chain of CTM8 in PBS. On the whole, the CTM8 fractions showed higher antitumor activity than their corresponding TM8 fractions. In view of data from molecular parameters and bioactivity, the antitumor activity of the CTM8 fractions may be correlated to its water solubility and relatively extended chain.  相似文献   

20.
Fiber diameter, radial distribution of density, and radius of gyration were determined from scanning transmission electron microscopy (STEM) of unstained, frozen-dried chromatin fibers. Chromatin fibers isolated under physiological conditions (ionic strength, 124 mM) from Thyone briareus sperm (DNA linker length, n = 87 bp) and Necturus maculosus erythrocytes (n = 48 bp) were analyzed by objective image-processing techniques. The mean outer diameters were determined to be 38.0 nm (SD = 3.7 nm; SEM = 0.36 nm) and 31.2 nm (SD = 3.6 nm; SEM = 0.32 nm) for Thyone and Necturus, respectively. These data are inconsistent with the twisted-ribbon and solenoid models, which predict constant diameters of approximately 30 nm, independent of DNA linker length. Calculated radial density distributions of chromatin exhibited relatively uniform density with no central hole, although the 4-nm hole in tobacco mosaic virus (TMV) from the same micrographs was visualized clearly. The existence of density at the center of chromatin fibers is in strong disagreement with the hollow-solenoid and hollow-twisted-ribbon models, which predict central holes of 16 and 9 nm for chromatin of 38 and 31 nm diameter, respectively. The cross-sectional radii of gyration were calculated from the radial density distributions and found to be 13.6 nm for Thyone and 11.1 nm for Necturus, in good agreement with x-ray and neutron scattering. The STEM data do not support the solenoid or twisted-ribbon models for chromatin fiber structure. They do, however, support the double-helical crossed-linker models, which exhibit a strong dependence of fiber diameter upon DNA linker length and have linker DNA at the center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号