首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
3.
4.
5.
6.
Mutations in the Saccharomyces cerevisiae SPT8 gene were previously isolated as suppressors of retrotransposon insertion mutations in the 5' regions of the HIS4 and LYS2 genes. Mutations in SPT8 confer phenotypes similar to those caused by particular mutations in SPT15, which encodes the TATA-binding protein (TBP). These phenotypes are also similar to those caused by mutations in the SPT3 gene, which encodes a protein that directly interacts with TBP. We have now cloned and sequenced the SPT8 gene and have shown that it encodes a predicted protein of 602 amino acids with an extremely acidic amino terminus. In addition, the predicted SPT8 amino acid sequence contains one copy of a sequence motif found in multiple copies in a number of other eukaryotic proteins, including the β subunit of heterotrimeric G proteins. To investigate further the relationship between SPT8, SPT3 and TBP, we have analyzed the effect of an spt8 null mutation in combination with different spt3 and spt15 mutations. This genetic analysis has shown that an spt8 deletion mutation is suppressed by particular spt3 alleles. Taken together with previous results, these data suggest that the SPT8 protein is required, directly or indirectly, for TBP function at particular promoters and that the role of SPT8 may be to promote a functional interaction between SPT3 and TBP.  相似文献   

7.
The rice KNOX protein OSH15 consists of four conserved domains: the MEINOX domain, which can be divided into two subdomains (KNOX1 and KNOX2); the GSE domain; the ELK domain; and the homeodomain (HD). To investigate the function of each domain, we generated 10 truncated proteins with deletions in the conserved domains and four proteins with mutations in the conserved amino acids in the HD. Transgenic analysis suggested that KNOX2 and HD are essential for inducing the abnormal phenotype and that the KNOX1 and ELK domains affect phenotype severity. We also found that both KNOX2 and HD are necessary for homodimerization and that only HD is needed for binding of OSH15 to its target sequence. Transactivation studies suggested that both the KNOX1 and ELK domains play a role in suppressing target gene expression. On the basis of these findings, we propose that overproduced OSH15 probably acts as a dimer and may ectopically suppress the expression of target genes that induce abnormal morphology in transgenic plants.  相似文献   

8.
9.
10.
The twin-arginine translocase (Tat) pathway transports folded proteins across bacterial and thylakoid membranes. In Escherichia coli, a membrane-bound TatA complex, which oligomerizes to form complexes of less than 100 to more than 500 kDa, is considered essential for translocation. We have studied the contributions of various TatA domains to the assembly and function of this heterogeneous TatA complex. The TOXCAT assay was used to analyze the potential contribution of the TatA transmembrane (TM) domain. We observed relatively weak interactions between TatA TM domains, suggesting that the TM domain is not the sole driving force behind oligomerization. A potential hydrogen-bonding role for a TM domain glutamine was also investigated, and it was found that mutation blocks transport at low expression levels, while assembly is unaffected at higher expression levels. Analysis of truncated TatA proteins instead highlighted an acidic motif directly following the TatA amphipathic helix. Mutating these negatively charged residues to apolar uncharged residues completely blocks activity, even at high levels of TatA, and appears to disrupt ordered complex formation.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
The Arabidopsis gynoecium is a complex organ that facilitates fertilization, later developing into a dehiscent silique that protects seeds until their dispersal. Identifying genes important for development is often hampered by functional redundancy. We report unequal redundancy between two closely related genes, SPATULA (SPT) and ALCATRAZ (ALC), revealing previously unknown developmental roles for each. SPT is known to support septum, style and stigma development in the flower, whereas ALC is involved in dehiscence zone development in the fruit. ALC diverged from a SPT-like ancestor following gene duplication coinciding with the At-β polyploidy event. Here we show that ALC is also involved in early gynoecium development, and SPT in later valve margin generation in the silique. Evidence includes the increased severity of early gynoecium disruption, and of later valve margin defects, in spt-alc double mutants. In addition, a repressive version of SPT (35S:SPT-SRDX) disrupts both structures. Consistent with redundancy, ALC and SPT expression patterns overlap in these tissues, and the ALC promoter carries two atypical E-box elements identical to one in SPT required for valve margin expression. Further, SPT can heterodimerize with ALC, and 35S:SPT can fully complement dehiscence defects in alc mutants, although 35S:ALC can only partly complement spt gynoecium disruptions, perhaps associated with its sequence simplification. Interactions with FRUITFULL and SHATTERPROOF genes differ somewhat between SPT and ALC, reflecting their different specializations. These two genes are apparently undergoing subfunctionalization, with SPT essential for earlier carpel margin tissues, and ALC specializing in later dehiscence zone development.  相似文献   

19.
NeuroD-related factor (NDRF) is a basic helix–loop–helix (bHLH) protein whose expression is restricted to the central nervous system, and is considered to be responsible for maintenance of differentiated neurons as well as neurogenesis. NDRF structurally resembles NeuroD in the bHLH region and can induce neurogenesis ectopically in ectodermal cells of the Xenopus embryo. In this study, we delineated the functional domains of NDRF. Using GAL4/NDRF fusion proteins, we identified the C-terminal activation domain (C-AD) in NDRF between amino acid positions 294 and 383. This region was highly homologous to one part of the activation domain of NeuroD. We further investigated the transactivational function of C-AD in the mouse type 1 inositol 1,4,5-trisphosphate receptor promoter, which has an NDRF site. Truncation of C-AD resulted in reduction of the activation function, whereas the DNA-binding specificity was not affected. These results suggest that C-AD has a stimulatory function in the mammalian nervous system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号