首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysophospholipids are bioactive molecules that are implicated in the control of fundamental biological processes such as proliferation, differentiation, survival and motility in different cell types. Here we review the role of sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) in the regulation of skeletal muscle biology. Indeed, a wealth of experimental data indicate that these molecules are crucial players in the skeletal muscle regeneration process, acting by controllers of activation, proliferation and differentiation not only of muscle-resident satellite cells but also of mesenchymal progenitors that originate outside the skeletal muscle. Moreover, S1P and LPA are clearly involved in the regulation of skeletal muscle metabolism, muscle adaptation to different physiological needs and resistance to muscle fatigue. Notably, studies accomplished so far, have highlighted the complexity of S1P and LPA signaling in skeletal muscle cells that appears to be further complicated by their close dependence on functional cross-talks with growth factors, hormones and cytokines. Our increasing understanding of bioactive lipid signaling can individuate novel molecular targets aimed at enhancing skeletal muscle regeneration and reducing the fibrotic process that impairs full functional recovery of the tissue during aging, after a trauma or skeletal muscle diseases. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

2.
Atherosclerosis is a complex inflammatory disease process involving an array of cell types and interactions. Although macrophage foam cells and vascular smooth muscle cells constitute the bulk of the atherosclerotic lesion, other cell types have been implicated in this disease process as well. These cellular components of both innate and adaptive immunity are involved in modulating the response of macrophage foam cells and vascular smooth muscle cells to the retained and modified lipids in the vessel wall as well as in driving the chronic vascular inflammation that characterizes this disease. In this review, the involvement of a number of less prominent leukocyte populations in the pathogenesis of atherosclerosis is discussed. More specifically, the roles of natural killer cells, mast cells, neutrophils, dendritic cells, gammadelta T-cells, natural killer T-cells, regulatory T-cells, and B-cells are addressed.  相似文献   

3.
The use of stem cells to repair and replace damaged skeletal muscle cells in chronic, debilitating muscle diseases such as the muscular dystrophies holds great promise. Different stem cell populations, both of embryonic and adult origin display the potential to generate skeletal muscle cells and have been studied in animal models of muscular dystrophy. These include muscle derived satellite cells; bone marrow derived mesenchymal stem cells, muscle or bone marrow side population cells, circulating CD133+ cells and cells derived from blood vessel walls such as mesoangioblasts or pericytes. The design of effective stem cell based therapies requires a detailed understanding of the molecules and signaling pathways which determine myogenic lineage commitment and differentiation. We discuss the great strides that have been made in delineating these pathways and how a better understanding of muscle stem cell biology has the potential to lead to more effective stem cell based therapies for skeletal muscle regeneration for devastating muscle diseases.  相似文献   

4.
BACKGROUND INFORMATION: Functional adaptation of skeletal muscle is a requirement for different muscle groups (e.g. craniofacial, ocular and limb) to undergo site-specific changes. Such tissue remodelling depends on dynamic interactions between muscle cells and their extracellular matrix, via participation of multifunctional molecules such as integrins. In view of data suggesting a role in fundamental muscle biology and muscle development in other systems, the present study has focused on expression and function of alpha v integrins, in cultured adult human craniofacial muscle (masseter) precursor cells and myotubes, and the predominantly fibroblastic IC (interstitial cells) population. RESULTS AND CONCLUSIONS: Flow-cytometric phenotyping and immunofluorescence phenotyping show that alpha v, alpha v beta 3 and alpha v beta 5 are expressed in all mononuclear cells (muscle precursors and IC) seeded on muscle extracellular molecules such as gelatin, VN (vitronectin) and FN (fibronectin). In this system, blockade of alpha v activity using a function-perturbing antibody abrogates cell migration on VN and FN. alpha v integrins act predominantly as VN receptors as cell-substrate attachment is diminished when alpha v neutralizing agents are introduced into cultures seeded on VN, and this inhibition is reversible; these integrins also appear to be minor FN receptors. These results demonstrate that the alpha v subset of integrins present on both myogenic precursors and IC is an essential cohort of VN and, to a lesser extent, FN receptors mediating cell adhesion and, either directly or indirectly, arbiters of cell motility.  相似文献   

5.
Signaling networks that regulate muscle development: lessons from zebrafish   总被引:1,自引:0,他引:1  
Locomotion mediated by skeletal muscle provides a basis for the behavioral repertoire of most animals. Embryological and genetic studies of mouse, bird, fish and frog embryos are providing insights into the functions of the myogenic regulatory factors (MRFs) and the signaling molecules that regulate activity of MRFs. Nevertheless, our understanding of muscle development remains somewhat limited. Fundamental goals are to elucidate how mesodermal cells are induced during gastrulation to form muscle precursor cells and how muscle precursor cells acquire specific cell fates, such as slow and fast muscle cells. In this review, we focus on studies of zebrafish muscle development that have advanced our understanding of the molecular genetics of muscle cell induction and specification.  相似文献   

6.
Control of smooth muscle cell proliferation in vascular disease   总被引:4,自引:0,他引:4  
PURPOSE OF REVIEW: Smooth muscle cell proliferation has previously been regarded as a central feature in vascular disease. The role of this process has recently been substantially re-evaluated, and we have reconsidered the functional importance of smooth muscle cell proliferation, the origin of proliferating smooth muscle cells in lesions, and the mechanisms whereby smooth muscle cell proliferation is controlled. In this review, we summarize recent progress in the understanding of smooth muscle cell proliferation, with a particular focus on how interactions between the extracellular matrix, smooth muscle cells, and mitogens control critical steps in this process. RECENT FINDINGS: Irrespective of the origin of smooth muscle cells in vascular lesions, fundamental interactions between the extracellular matrix and cell surface integrins are necessary in order to initiate a proliferative response in a quiescent smooth muscle cell, in a similar manner to any non-malignant cell. These interactions trigger intracellular signaling and cell cycle entry, which facilitate cell cycle progression and proliferation by mitogens. In addition, extracellular matrix interactions may also control the availability and activity of growth factors such as heparin-binding mitogens, which can be sequestered by heparan sulfate containing extracellular matrix components and regulate smooth muscle cell proliferation. SUMMARY: New insights into mechanisms whereby the extracellular matrix takes part in the control of smooth muscle cell proliferation suggest a number of putative targets for future therapies that can be applied to increase plaque stability, prevent the clinical consequences of atherosclerosis and improve outcomes after interventional procedures and organ transplantation.  相似文献   

7.
8.
A role for chemistry in stem cell biology   总被引:9,自引:0,他引:9  
Although stem cells hold considerable promise for the treatment of numerous diseases including cardiovascular disease, neurodegenerative disease, musculoskeletal disease, diabetes and cancer, obstacles such as the control of stem cell fate, allogenic rejection and limited cell availability must be overcome before their therapeutic potential can be realized. This requires an improved understanding of the signaling pathways that affect stem cell fate. Cell-based phenotypic and pathway-specific screens of natural products and synthetic compounds have recently provided a number of small molecules that can be used to selectively control stem cell proliferation and differentiation. Examples include the selective induction of neurogenesis and cardiomyogenesis in murine embryonic stem cells, osteogenesis in mesenchymal stem cells and dedifferentiation in skeletal muscle cells. Such molecules will likely provide new insights into stem cell biology, and may ultimately contribute to effective medicines for tissue repair and regeneration.  相似文献   

9.
Mesenchymal stem cells (MSCs) have been isolated from a variety of tissues, such as bone marrow, skeletal muscle, dental pulp, bone, umbilical cord and adipose tissue. MSCs are used in regenerative medicine mainly based on their capacity to differentiate into specific cell types and also as bioreactors of soluble factors that will promote tissue regeneration from the damaged tissue cellular progenitors. In addition to these regenerative properties, MSCs hold an immunoregulatory capacity, and elicit immunosuppressive effects in a number of situations. Not only are they immunoprivileged cells, due to the low expression of class II Major Histocompatibilty Complex (MHC-II) and costimulatory molecules in their cell surface, but they also interfere with different pathways of the immune response by means of direct cell-to-cell interactions and soluble factor secretion. In vitro, MSCs inhibit cell proliferation of T cells, B-cells, natural killer cells (NK) and dendritic cells (DC), producing what is known as division arrest anergy. Moreover, MSCs can stop a variety of immune cell functions: cytokine secretion and cytotoxicity of T and NK cells; B cell maturation and antibody secretion; DC maturation and activation; as well as antigen presentation. It is thought that MSCs need to be activated to exert their immunomodulation skills. In this scenario, an inflammatory environment seems to be necessary to promote their effect and some inflammation-related molecules such as tumor necrosis factor-α and interferon-γ might be implicated. It has been observed that MSCs recruit T-regulatory lymphocytes (Tregs) to both lymphoid organs and graft. There is great controversy concerning the mechanisms and molecules involved in the immunosuppressive effect of MSCs. Prostaglandin E2, transforming growth factor-β, interleukins- 6 and 10, human leukocyte antigen-G5, matrix metalloproteinases, indoleamine-2,3-dioxygenase and nitric oxide are all candidates under investigation. In vivo studies have shown many discrepancies regarding the immunomodulatory properties of MSCs. These studies have been designed to test the efficacy of MSC therapy in two different immune settings: the prevention or treatment of allograft rejection episodes, and the ability to suppress abnormal immune response in autoimmune and inflammatory diseases. Preclinical studies have been conducted in rodents, rabbits and baboon monkeys among others for bone marrow, skin, heart, and corneal transplantation, graft versus host disease, hepatic and renal failure, lung injury, multiple sclerosis, rheumatoid arthritis, diabetes and lupus diseases. Preliminary results from some of these studies have led to human clinical trials that are currently being carried out. These include treatment of autoimmune diseases such as Crohn's disease, ulcerative colitis, multiple sclerosis and type 1 diabetes mellitus; prevention of allograft rejection and enhancement of the survival of bone marrow and kidney grafts; and treatment of resistant graft versus host disease. We will try to shed light on all these studies, and analyze why the results are so contradictory.  相似文献   

10.
Myoblast fusion is a highly regulated process that is key for forming skeletal muscle during development and regeneration in mammals. Much remains to be understood about the molecular regulation of myoblast fusion. Some molecules that influence mammalian muscle fusion display specific cellular localization during myogenesis. Such molecules can be localized to the contact region between two fusing cells either in both cells or only in one of the cells. How distinct localization of molecules contributes to fusion is not clear. Further complexity exists as other molecules are functionally restricted to myoblasts at later stages of myogenesis to regulate their fusion with multinucleated myotubes. This review examines these three categories of molecules and discusses how spatial and functional restriction may contribute to the formation of a multinucleated cell. Understanding how and why molecules become restricted in location or function is likely to provide further insights into the mechanisms regulating mammalian muscle fusion.  相似文献   

11.
Phagocytosis of dying cells is a complex and dynamic process coordinated by the interaction of many surface molecules, adaptors, and chemotactic molecules, and it is controlled at multiple levels. This well regulated clearance process is of utmost importance for the development and homeostasis of organisms because defective or inefficient phagocytosis may contribute to human pathologies. In this review we discuss recent advances in the knowledge of the molecular interactions involved in recognition and clearance of apoptotic cells and how derangement of these processes can contribute to the pathogenesis of chronic airway diseases such as chronic obstructive pulmonary disease, cystic fibrosis and asthma. We will briefly consider how different types of macrophages are implicated in chronic airway diseases. Finally, we will address possible therapeutic strategies, such as the use of macrolide antibiotics and statins, for modulating apoptotic cell clearance.  相似文献   

12.
Skeletal muscle has received much attention with regard to developmental origin, control of cell differentiation and regeneration. In this article, early landmarks in skeletal muscle research are reviewed and recent findings on myogenesis are addressed with particular focus on novel regulatory molecules including miRNAs, as well as on the topographical heterogeneity of skeletal muscle origin. The latter has developed into a central theme of keen interest in the past years, particularly since overlaps in genetic and embryological background between head muscle subsets and heart muscle have been described. As embryonic myogenesis and regenerating myofibers employ common molecules, the heterogeneity in embryonic sources from which skeletal muscle groups in the vertebrate body take origin is closely reflected by differences in the susceptibility to particular muscle dystrophies as well as their regeneration potential. In the regeneration chapter of this review the progress that has been made in the field of muscle stem cell biology, with special focus on the satellite cells, is outlined. Satellite cells are considered the most promising source of muscle stem cells possessing a high regenerative potential. We shall discuss recent insights into the heterogeneous nature of these satellite cells not just in terms of their expression profile but also their regeneration potential. Latest findings about the motility of the satellite cell shall also be discussed. Furthermore, we shall outline the impact of an improved understanding of muscle stem cells within their environment, and of satellite cells in particular, on efficient stem cell replacement therapies for muscular dystrophies, putting embryological findings and stem cell approaches into context.  相似文献   

13.
Transplantation of stem cells is a promising, emerging treatment for cardiovascular diseases in the modern era. Mesenchymal stem cells (MSCs) derived from the umbilical cord are one of the most promising cell sources because of their capacity for differentiation into cardiomyocytes, endothelial cells and vascular smooth muscle cells in vitro/in vivo. In addition, umbilical cord-derived MSCs (UC-MSCs) secrete many effective molecules regulating apoptosis, fibrosis and neovascularization. Another important and specific characteristic of UC-MSCs is their low immunogenicity and immunomodulatory properties. However, the application of UC-MSCs still faces some challenges, such as low survivability and tissue retention in a harmful disease environment. Gene engineering and pharmacological studies have been implemented to overcome these difficulties. In this review, we summarize the differentiation ability, secretion function, immunoregulatory properties and preclinical/clinical studies of UC-MSCs, highlighting the advantages of UC-MSCs for the treatment of cardiovascular diseases.  相似文献   

14.
Type 1 diabetes is an autoimmune disease characterized by T cell responses to β cell Ags, including insulin. Investigations employing the NOD mouse model of the disease have revealed an essential role for β cell-specific CD8(+) T cells in the pathogenic process. As CD8(+) T cells specific for β cell Ags are also present in patients, these reactivities have the potential to serve as therapeutic targets or markers for autoimmune activity. NOD mice transgenic for human class I MHC molecules have previously been employed to identify T cell epitopes having important relevance to the human disease. However, most studies have focused exclusively on HLA-A*0201. To broaden the reach of epitope-based monitoring and therapeutic strategies, we have looked beyond this allele and developed NOD mice expressing human β(2)-microglobulin and HLA-A*1101 or HLA-B*0702, which are representative members of the A3 and B7 HLA supertypes, respectively. We have used islet-infiltrating T cells spontaneously arising in these strains to identify β cell peptides recognized in the context of the transgenic HLA molecules. This work has identified the insulin C-peptide as an abundant source of CD8(+) T cell epitopes. Responses to these epitopes should be of considerable utility for immune monitoring, as they cannot reflect an immune reaction to exogenously administered insulin, which lacks the C-peptide. Because the peptides bound by one supertype member were found to bind certain other members also, the epitopes identified in this study have the potential to result in therapeutic and monitoring tools applicable to large numbers of patients and at-risk individuals.  相似文献   

15.
Atherosclerosis is an inflammatory disease that is one of the leading causes of death in developed countries. This disease is defined by the formation of an atherosclerotic plaque, which is responsible for artery obstruction and affects the heart by causing myocardial infarction. The vascular wall is composed of three cell types and includes a monolayer of endothelial cells and is irrigated by a vasa vasorum. The formation of the vascular network from the vasa vasorum is a process involved in the destabilization of this plaque. Cellular and molecular approaches are studied by in vitro assay of activated endothelial cells and in in vivo models of neovascularization. Chemokines are a large family of small secreted proteins that have been shown to play a critical role in the regulation of angiogenesis during several pathophysiological processes such as ischaemia. Chemokines may exert their regulatory activity on angiogenesis directly by activating the vasa vasorum, or as a consequence of leucocyte infiltration through the endothelium, and/or by the induction of growth factor expression such as that of VEGF (vascular endothelial growth factor). The present review focuses on the angiogenic activity of the chemokines RANTES (regulated upon activation, normal T-cell expressed and secreted)/CCL5 (CC chemokine ligand 5). RANTES/CCL5 is released by many cell types such as platelets or smooth muscle cells. This chemokine interacts with GPCRs (G-protein-coupled receptors) and GAG (glycosaminoglycan) chains bound to HSPGs (heparan sulfate proteoglycans). Many studies have demonstrated, using RANTES/CCL5 mutated on their GAG or GPCR-binding sites, the involvement of these chemokines in angiogenic process. In the present review, we discuss two controversial roles of RANTES/CCL5 in the angiogenic process.  相似文献   

16.
Increased recent research activity in exercise physiology has dramatically improved our understanding of skeletal muscle development and physiology in both health and disease. Advances in bioengineering have enabled the development of biomimetic 3D in vitro models of skeletal muscle which have the potential to further advance our understanding of the fundamental processes that underpin muscle physiology. As the principle structural protein of the extracellular matrix, collagen-based matrices are popular tools for the creation of such 3D models but the custom nature of many reported systems has precluded their more widespread adoption. Here we present a simple, reproducible iteration of an established 3D in vitro model of skeletal muscle, demonstrating both the high levels of reproducibility possible in this system and the improved cellular architecture of such constructs over standard 2D cell culture techniques. We have used primary rat muscle cells to validate this simple model and generate comparable data to conventional established cell culture techniques. We have optimized culture parameters for these cells which should provide a template in this 3D system for using muscle cells derived from other donor species and cell lines.  相似文献   

17.
Guanidinobenzoatase is a trypsin-like protease on the surface of cells capable of migration, for example leukaemia cells. We have used a number of fluorescent probes that are competitive inhibitors of guanidinobenzoatase to locate leukaemia cells in resin sections of kidney tissue obtained from leukaemic rats. We have demonstrated how this competitive inhibition system can be used to direct desired molecules (such as cytotoxic drugs) to these cells and to monitor the arrival of such compounds at the active site of guanidinobenzoatase. The principles developed in this study could equally well be applied to other enzymes on other cells provided suitable competitive inhibitors were designed. The presence of an enzyme on the surface of a cell can be used to direct molecules to that cell provided that these molecules contain a functional group that acts as an inhibitor for the chosen enzyme.  相似文献   

18.
The function of a complex system such as a smooth muscle cell is the result of the active interaction among molecules and molecular aggregates. Emergent macroscopic manifestations of these molecular interactions, such as the length-force relationship and its associated length adaptation, are well documented, but the molecular constituents and organization that give rise to these emergent muscle behaviors remain largely unknown. In this minireview, we describe emergent properties of airway smooth muscle that seem to have originated from inherent fragility of the cellular structures, which has been increasingly recognized as a unique and important smooth muscle attribute. We also describe molecular interactions (based on direct and indirect evidence) that may confer malleability on fragile structural elements that in turn may allow the muscle to adapt to large and frequent changes in cell dimensions. Understanding how smooth muscle works may hinge on how well we can relate molecular events to its emergent macroscopic functions.  相似文献   

19.
In this review, we consider apoptosis as a process intimately linked to the cell cycle. There are several reasons for thinking of apoptosis as a cell cycle phenomenon. First, within the organism, apoptosis is almost exclusively found in proliferating tissues. Second, artificial manipulation of the cell cycle can either prevent or potentiate apoptosis, depending on the point of arrest. Data from such studies have suggested that molecules acting late in G1 are required for apoptosis. Since passage through late G1 into S phase in mammalian cells is known to be regulated by p53 and by activation of cyclin-dependent kinases, we also examine recent studies linking these molecules to the apoptotic pathway.  相似文献   

20.
In earlier work, we established a mathematical model to characterize the binding properties of cytotoxic cells to target cells. These properties can be described by the values of the maximum effector and target conjugate frequencies, alpha(max) and beta(max), respectively, and the dissociation constant of the conjugates formed, K(D) (Garcia-Pe?arrubia, P., Cabrera, L., Alvarez, R., and Galvez, J., J. Immunol. Methods 155 (1992) 133). Here, we address the problem of exploring the physical meaning of these parameters and their relationships with cytotoxicity. With this purpose, conjugation between a human leukemic NK cell line (NKL) and K562 tumor cells has been studied from binding isotherms obtained from data of effector (alpha) and target (beta) conjugate frequencies measured by flow cytometry analysis at different effector-to-target ratios (R). The results have been compared to those obtained after target cells treatment with monoclonal antibodies recognizing adhesion molecules ICAM-1 (CD54) and LFA-3 (CD58) (which are able to block some of the receptors implicated in conjugation), as well as with cholera toxin (CTX) that can modify the state of affinity of some adhesion molecules such as LFA-1 (CD11a/CD18). The results show that: (1) blocking adhesion receptors CD54 and CD58 on the surface of target cells leads to a significant decrease of alpha(max) and beta(max), indicating that these parameters are related to the density of expression of receptors implicated in effector-target adhesion; (2) treatment of effector cells with CTX induced an increase of K(D), demonstrating that this parameter is associated with the effector-target affinity of the system; and (3) parallel experiments of conjugation and cytotoxicity showed that effector-target affinity and saturability influence the cytotoxic activity of the effector population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号