首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The charge separation P700*A(0) --> P700(+)A(0)(-) and the subsequent electron transfer from the primary to secondary electron acceptor have been studied by subtracting absorption difference profiles for cyanobacterial photosystem I (PS I) complexes with open and closed reaction centers. Samples were excited at 660 nm, which lies toward the blue edge of the core antenna absorption spectrum. The resulting PS I kinetics were analyzed in terms of the relevant P700, P700(+), A(0), and A(0)(-) absorption spectra. In our kinetic model, the radical pair P700(+)A(0)(-) forms with 1.3 ps rise kinetics after creation of electronically excited P700*. The formation of A(1)(-) via electron transfer from A(0)(-) requires approximately 13 ps. The kinetics of the latter step are appreciably faster than previously estimated by other groups (20--50 ps).  相似文献   

2.
The energy transfer from the light-harvesting antenna chlorophylls to the reaction center molecules and subsequent charge separation were investigated using a difference picosecond spectrophotometer with selective excitation. The objects were the pigment-protein complexes of photosystem 1 (Chl/P700 = 60) isolated from bean leaves. The difference absorption spectra of the excited states of light-harvesting antenna chlorophylls and the P700 photooxidation were measured. It was shown that the excited states of antenna chlorophylls were generated within 10 ps and deactivated with three-component kinetics: tau 1 = 20--45 ps, tau 2 = 100--300 ps, tau 3 greater than 500 ps. The process of the P700 photooxidation induced by the 650 nm exciting pulse was approximately monoexponential with tau equal to 15--30 ps. It is established that the P700 photooxidation is due to the efficient transfer of excitation energy from antenna chlorophylls to reaction centers.  相似文献   

3.
Energy equilibration in the photosystem I core antenna from the cyanobacterium Synechocystis sp. PCC 6803 was studied using femtosecond transient absorption spectroscopy at 298 K. The photosystem I core particles were excited at 660, 693, and 710 nm with 150 fs spectrally narrow laser pulses (fwhm = 5 nm). Global analysis revealed three kinetic processes in the core antenna with lifetimes of 250-500 fs, 1.5-2.5 ps, and 20-30 ps. The first two components represent strongly excitation wavelength-dependent energy equilibration processes while the 20-30 ps phase reflects the trapping of energy by the reaction center. Excitation into the blue and red edge of the absorption band induces downhill and uphill energy flows, respectively, between different chlorophyll a spectral forms of the core. Excitation at 660 nm induces a 500 fs downhill equilibration process within the bulk of antenna while the selective excitation of long-wavelength-absorbing chlorophylls at 710 nm results in a 380 fs uphill energy transfer to the chlorophylls absorbing around 695-700 nm, presumably reaction center pigments. The 1.5-2.5 ps phases of downhill and uphill energy transfer are largely equivalent but opposite in direction, indicating energy equilibration between bulk antenna chlorophylls at 685 nm and spectral forms absorbing below 700 nm. Transient absorption spectra with excitation at 693 nm exhibit spectral evolution within approximately 2 ps of uphill energy transfer to major spectral forms at 680 nm and downhill energy transfer to red pigments at 705 nm. The 20-30 ps trapping component and P(700) photooxidation spectra derived from data on the 100 ps scale are largely excitation wavelength independent. An additional decay component of red pigments at 710 nm can be induced either by selective excitation of red pigments or by decreasing the temperature to 264 K. This component may represent one of the phases of energy transfer from inhomogeneously broadened red pigments to P(700). The data are discussed based on the available structural model of the photosystem I reaction center and its core antenna.  相似文献   

4.
Ultrafast primary processes in the trimeric photosystem I core antenna-reaction center complex of the cyanobacterium Synechocystis sp. PCC 6803 have been examined in pump-probe experiments with approximately 100 fs resolution. A global analysis of two-color profiles, excited at 660 nm and probed at 5 nm intervals from 650 to 730 nm, reveals 430 fs kinetics for spectral equilibration among bulk antenna chlorophylls. At least two lifetime components (2.0 and 6.5 ps in our analysis) are required to describe equilibration of bulk chlorophylls with far red-absorbing chlorophylls (>700 nm). Trapping at P700 occurs with 24-ps kinetics. The multiphasic bulk left arrow over right arrow red equilibration kinetics are intriguing, because prior steady-state spectral studies have suggested that the core antenna in Synechocystis sp. contains only one red-absorbing chlorophyll species (C708). The disperse kinetics may arise from inhomogeneous broadening in C708. The one-color optical anisotropy at 680 nm (near the red edge of the bulk antenna) decays with 590 fs kinetics; the corresponding anisotropy at 710 nm shows approximately 3.1 ps kinetics. The latter may signal equilibration among symmetry-equivalent red chlorophylls, bound to different monomers within trimeric photosystem I.  相似文献   

5.
Transfer and trapping of excitation energy in photosystem I (PS I) trimers isolated from Synechococcus elongatus have been studied by an approach combining fluorescence induction experiments with picosecond time-resolved fluorescence measurements, both at room temperature (RT) and at low temperature (5 K). Special attention was paid to the influence of the oxidation state of the primary electron donor P700. A fluorescence induction effect has been observed, showing a approximately 12% increase in fluorescence quantum yield upon P700 oxidation at RT, whereas at temperatures below 160 K oxidation of P700 leads to a decrease in fluorescence quantum yield ( approximately 50% at 5 K). The fluorescence quantum yield for open PS I (with P700 reduced) at 5 K is increased by approximately 20-fold and that for closed PS I (with P700 oxidized) is increased by approximately 10-fold, as compared to RT. Picosecond fluorescence decay kinetics at RT reveal a difference in lifetime of the main decay component: 34 +/- 1 ps for open PS I and 37 +/- 1 ps for closed PS I. At 5 K the fluorescence yield is mainly associated with long-lived components (lifetimes of 401 ps and 1.5 ns in closed PS I and of 377 ps, 1.3 ns, and 4.1 ns in samples containing approximately 50% open and 50% closed PS I). The spectra associated with energy transfer and the steady-state emission spectra suggest that the excitation energy is not completely thermally equilibrated over the core-antenna-RC complex before being trapped. Structure-based modeling indicates that the so-called red antenna pigments (A708 and A720, i.e., those with absorption maxima at 708 nm and 720 nm, respectively) play a decisive role in the observed fluorescence kinetics. The A720 are preferentially located at the periphery of the PS I core-antenna-RC complex; the A708 must essentially connect the A720 to the reaction center. The excited-state decay kinetics turn out to be neither purely trap limited nor purely transfer (to the trap) limited, but seem to be rather balanced.  相似文献   

6.
Using a difference picosecond spectrophotometer with a time resolution of 10 ps, we investigated excitation energy transfer and charge separation in pigment-protein complexes of Photosystem I from bean leaves (chlorophyll/P-700 = 60). Under 20 ps excitation at 650 or 667 nm, the difference absorption spectra in the spectral region 600–720 nm were measured. They are associated with transition of antenna chlorophylls into singlet excited states and P-700 photooxidation. It was shown that the excited states in the whole inhomogeneous antenna were generated within 10 ps and deactivated with three-component kinetics, the t1/e values being 20–45, 100–300 and over 500 ps. Formation of P-700+ has a rise time of 15–30 ps. The fast component of the depletion of the antenna excited states is suggested to be due to transfer of excitation energy from antenna pigments to reaction centers and its trapping. The kinetics of the fast component is independent of excitation energy and a redox state of P-700.  相似文献   

7.
The energy transfer and charge separation kinetics in core Photosystem I (PSI) particles of Chlamydomonas reinhardtii has been studied using ultrafast transient absorption in the femtosecond-to-nanosecond time range. Although the energy transfer processes in the antenna are found to be generally in good agreement with previous interpretations, we present evidence that the interpretation of the energy trapping and electron transfer processes in terms of both kinetics and mechanisms has to be revised substantially as compared to current interpretations in the literature. We resolved for the first time i), the transient difference spectrum for the excited reaction center state, and ii), the formation and decay of the primary radical pair and its intermediate spectrum directly from measurements on open PSI reaction centers. It is shown that the dominant energy trapping lifetime due to charge separation is only 6-9 ps, i.e., by a factor of 3 shorter than assumed so far. The spectrum of the first radical pair shows the expected strong bleaching band at 680 nm which decays again in the next electron transfer step. We show furthermore that the early electron transfer processes up to approximately 100 ps are more complex than assumed so far. Several possibilities are discussed for the intermediate redox states and their sequence which involve oxidation of P700 in the first electron transfer step, as assumed so far, or only in the second electron transfer step, which would represent a fundamental change from the presently assumed mechanism. To explain the data we favor the inclusion of an additional redox state in the electron transfer scheme. Thus we distinguish three different redox intermediates on the timescale up to 100 ps. At this level no final conclusion as to the exact mechanism and the nature of the intermediates can be drawn, however. From comparison of our data with fluorescence kinetics in the literature we also propose a reversible first charge separation step which has been excluded so far for open PSI reaction centers. For the first time an ultrafast 150-fs equilibration process, occurring among exciton states in the reaction center proper, upon direct excitation of the reaction center at 700 nm, has been resolved. Taken together the data call for a fundamental revision of the present understanding of the energy trapping and early electron transfer kinetics in the PSI reaction center. Due to the fact that it shows the fastest trapping time observed so far of any intact PSI particle, the PSI core of C. reinhardtii seems to be best suited to further characterize the electron transfer steps and mechanisms in the reaction center of PSI.  相似文献   

8.
Isolated photosystem I (PSI) reaction center/core antenna complexes (PSI-40) were platinized by reduction of [PtCl6]2- at 20 degrees C and neutral pH. PSI particles were visualized directly on a gold surface by scanning tunneling microscopy (STM) before and after platinization. STM results showed that PSI particles were monomeric and roughly ellipsoidal with major and minor axes of 6 and 5 nm, respectively. Platinization deposited approximately 1000 platinum atoms on each PSI particle and made the average size significantly larger (9 x 7 nm). In addition to direct STM visualization, the presence of metallic platinum on the PSI complexes was detected by its effect of actinic shading and electrostatic shielding on P700 photooxidation and P700+ reduction. The reaction centers (P700) in both platinized and nonplatinized PSI-40 were photooxidized by light and reduced by ascorbate repeatedly, although at somewhat slower rates in platinized PSI because of the presence of platinum. The effect of platinization on excitation transfer and trapping dynamics was examined by measuring picosecond fluorescence decay kinetics in PSI-40. The fluorescence decay kinetics in both platinized and control samples can be described as a sum of three exponential components. The dominant (amplitude 0.98) and photochemically limited excitation lifetime remained the same (16 ps) before and after platinization. The excitation transfer and trapping in platinized PSI-40 was essentially as efficient as that in the control (without platinization) PSI. The platinization also did not affect the intermediate-lifetime (400-600 ps) and long-lifetime (> 2500 ps) components, which likely are related to intrinsic electron transport and to functionally uncoupled chlorophylls, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
Mi D  Lin S  Blankenship RE 《Biochemistry》1999,38(46):15231-15237
Picosecond transient absorption difference spectroscopy in the blue wavelength region (380-500 nm) was used to study the early electron acceptors in photosystem I. Samples were photosystem I core particles with about 100 chlorophylls per reaction center isolated from the cyanobacterium Synechocystis sp. PCC 6803. After excitation at 590 nm at room temperature, decay-associated spectra (DAS) were determined from global analysis in the blue region, yielding two transient components and one nondecaying component. A 3 ps decay phase is interpreted as primarily due to antenna excited-state redistribution. A 28 ps decay phase is interpreted as due to overall excited-state decay by electron transfer. The nondecaying component is ascribed to the difference spectrum of P(700) and the quinone or A(1) electron acceptor (P(700)(+)A(1)(-) - P(700)A(1)). Decay curves on the millisecond time scale at different wavelengths were measured with an autoxidizable artificial electron acceptor, benzyl viologen, and the (P(700)(+) - P(700)) difference spectrum was constructed. The (A(1)(-) - A(1)) difference spectrum was obtained by taking the difference between the above two difference spectra. A parallel picosecond experiment under strongly reducing conditions was also done as a control experiment. These conditions stabilize the electron on an earlier acceptor, A(0). The nondecaying component of the DAS at low potential was assigned to (P(700)(+)A(0)(-) - P(700)A(0)) since the electron-transfer pathway from A(0) to A(1) was blocked. The [(P(700)(+)A(0)(-) - P(700)A(0)) - (P(700)(+) - P(700))] subtraction gives a spectrum, interpreted as the (A(0)(-) - A(0)) difference spectrum of a chlorophyll a molecule, consistent with previous studies. The (A(1)(-) - A(1)) spectrum resolved on the picosecond time scale shows significant differences with similar spectra measured on longer time scales. These differences may be due to electrochromic effects and spectral evolution.  相似文献   

11.
In Part I of the article, a review of recent data on electron-transfer reactions in photosystem II (PSII) and bacterial reaction center (RC) has been presented. In Part II, transient absorption difference spectroscopy with 20-fs resolution was applied to study the primary charge separation in PSII RC (DI/DII/Cyt b 559 complex) excited at 700 nm at 278 K. It was shown that the initial electron-transfer reaction occurs within 0.9 ps with the formation of the charge-separated state P680(+)Chl(D1)(-), which relaxed within 14 ps as indicated by reversible bleaching of 670-nm band that was tentatively assigned to the Chl(D1) absorption. The subsequent electron transfer from Chl(D1)(-) within 14 ps was accompanied by a development of the radical anion band of Pheo(D1) at 445 nm, attributable to the formation of the secondary radical pair P680(+)Pheo(D1)(-). The key point of this model is that the most blue Q(y) transition of Chl(D1) in RC is allowing an effective stabilization of separated charges. Although an alternative mechanism of charge separation with Chl(D1)* as a primary electron donor and Pheo(D1) as a primary acceptor can not be ruled out, it is less consistent with the kinetics and spectra of absorbance changes induced in the PSII RC preparation by femtosecond excitation at 700 nm.  相似文献   

12.
The fluorescence decay of chlorophyll in spinach thylakoids was measured as a function of the degree of closure of Photosystem II reaction centers, which was set for the flowed sample by varying either the preillumination by actinic light or the exposure of the sample to the exciting pulsed laser light. Three exponential kinetic components originating in Photosystem II were fitted to the decays; a fourth component arising from Photosystem I was determined to be negligible at the emission wavelength of 685 nm at which the fluorescence decays were measured. Both the lifetimes and the amplitudes of the components vary with reaction center closure. A fast (170–330 ps) component reflects the trapping kinetics of open Photosystem II reaction centers capable of reducing the plastoquinone pool; its amplitude decreases gradually with trap closure, which is incompatible with the concept of photosynthetic unit connectivity where excitation energy which encounters a closed trap can find a different, possibly open one. For a connected system, the amplitude of the fast fluorescence component is expected to remain constant. The slow component (1.7–3.0 ns) is virtually absent when the reaction centers are open, and its growth is attributable to the appearance of closed centers. The middle component (0.4–1.7 ns) with approximately constant amplitude may originate from centers that are not functionally linked to the plastoquinone pool. To explain the continuous increase in the lifetimes of all three components upon reaction center closure, we propose that the transmembrane electric field generated by photosynthetic turnover modulates the trapping kinetics in Photosystem II and thereby affects the excited state lifetime in the antenna in the trap-limited case.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - HEPES 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid - PQ plastoquinone - PSI and PSII Photosystem I and II - QA and QB primary and secondary quinone acceptor of PSII  相似文献   

13.
The kinetics of dark reduction of chlorophyll P700 oxidized by continuous light in preparations of photosystem I reaction centers from cyanobacterium Synechosystis spharoides cooled in the dark to 160 K is essentially nonexponential. The characteristic times of the components range from fractions of a second to minutes or more. During the cooling of reaction center preparations under illumination with actinic light, most of the chlorophyll P700 molecules are fixed in the oxidized state at 160 K. The kinetics of dark reduction of P700+ in the fraction of reaction centers that retain photochemical activity under these conditions is somewhat faster compared to the samples cooled in the dark. A theoretical analysis of substantial deceleration of P700+ dark recovery kinetics was done for preparations of photosystem I reaction centers oxidized by continuous light at 160 K in comparison to the experiments where reaction centers were oxidized by short single light flashes. This slowing down of the kinetics in samples excited by continuous illumination can be explained by microconformational relaxation processes related to proton shifts in the reaction center.  相似文献   

14.
在83K和160K两个温度下,通过激发波长对荧光发射谱的影响研究了光系统Ⅱ中核心复合物的荧光光谱特性。用不同波长的光激发,核心复合物的发射谱的最大发射峰值不变,用480、489、495和507nm的光分别激发核心复合物,其光谱最大峰值处的荧光强度随不同激发波长下β-胡萝卜素分子的吸收强度的增大而降低,在长波长区域光谱的变化依赖于首先被激发的色素分子。所以,激发波长的不同影响着核心复合物中能量传递的途径。通过高斯解析,分析出核心复合物中至少存在有7组叶绿素a组分,它们是Ch1 a660,Ch1 a670,Ch1 a680,Ch1 a682,Ch1 a684,Ch1 a687和Ch1 a690。  相似文献   

15.
Time-correlated single photon counting was used to study energy trapping and detrapping kinetics at 295 K in Rhodobacter sphaeroides chromatophore membranes containing mutant reaction centers. The mutant reaction centers were expressed in a background strain of Rb. sphaeroides which contained only B880 antenna complexes and no B800-850 antenna complexes. The excited state decay times in the isolated reaction centers from these strains were previously shown to vary by roughly 15-fold, from 3.4 to 52 ps, due to differences in the charge separation rates in the different mutants (Allen and Williams (1995) J Bioenerg Biomembr 27: 275–283). In this study, measurements were also performed on wild type Rhodospirillum rubrum and Rb. sphaeroides B880 antenna-only mutant chromatophores for comparison. The emission kinetics in membranes containing mutant reaction centers was complex. The experimental data were analyzed in terms of a kinetic model that involved fast excitation migration between antenna complexes followed by reversible energy transfer to the reaction center and charge separation. Three emission time constants were identified by fitting the data to a sum of exponential decay components. They were assigned to trapping/quenching of antenna excitations by the reaction center, recombination of the P+H charge-separated state of the reaction center reforming an emitting state, and emission from uncoupled antenna pigment-protein complexes. The first varied from 60 to 160 ps, depending on the reaction center mutation; the second was 200–300 ps, and the third was about 700 ps. The observed weak linear dependence of the trapping time on the primary charge separation time, together with the known sub-picosecond exciton migration time within the antenna, supports the concept that it is energy transfer from the antenna to the reaction center, rather than charge separation, that limits the overall energy trapping time in wild type chromatophores. The component due to charge recombination reforming the excited state is minor in wild type membranes, but increases substantially in mutants due to the decreasing free energy gap between the states P* and P+H.Abbreviations PSU photosynthetic unit - Bchl bacteriochlorophyll - Bphe bacteriopheophytin - P reaction center primary electron donor - RC reaction center - Rb. Rhodobacter - Rs. Rhodospirillum - EDTA (ethylenediamine)tetraacetic acid - Tris tris(hydroxymethyl)aminomethane Author for correspondence  相似文献   

16.
Femtosecond excitation of the red edge of the chlorophyll a Q(Y) transition band in photosystem I (PSI), with light of wavelength > or = 700 nm, leads to wide transient (subpicosecond) absorbance changes: positive DeltaA between 635 and 665 nm, and four negative DeltaA bands at 667, 675, 683, and 695 nm. Here we compare the transient absorbance changes after excitation at 700, 705, and 710 nm at 20 K in several PSI preparations of Chlamydomonas reinhardtii where amino acid ligands of the primary donor, primary acceptor, or connecting chlorophylls have been mutated. Most of these mutations influence the spectrum of the absorbance changes. This supports the view that the chlorophylls of the electron transfer chain as well as the connecting chlorophylls are engaged in the observed absorbance changes. The wide absorption spectrum of the electron transfer chain revealed by the transient measurements may contribute to the high efficiency of energy trapping in photosystem 1. Exciton calculations, based on the recent PSI structure, allow an assignment of the DeltaA bands to particular chlorophylls: the bands at 675 and 695 nm to the dimers of primary acceptor and accessory chlorophyll and the band at 683 nm to the connecting chlorophylls. The subpicosecond transient absorption bands decay may reflect rapid charge separation in the PSI reaction center.  相似文献   

17.
Photosystem I particles containing 30–40 chlorophyll a molecules per primary electron donor P700 were subjected to 1.5 ps low density laser flashes at 610 nm resulting in excitation of the antenna chlorophyll a molecules followed by energy transfer to P700 and subsequent oxidation of P700. Absorbance changes were monitored as a function of time with 1.5 ps time resolution. P700 bleaching (decrease in absorbance) occurred within the time resolution of the experiment. This is attributed to the formation of 1P700.* This observation was confirmed by monitoring the rise of a broad absorption band near 810 nm due to chlorophyll a excited singlet state formation. The appearance of the initial bleach at 700 nm was followed by a strong bleaching at 690 nm. The time constant for the appearance of the 690 nm bleach is 13.7±0.8 ps. In the near-infrared region of the spectrum, the 810 nm band (which formed upon the excitation of the photosystem I particles) diminished to about 60% of its original intensity with the same 13.7 ps time constant as the formation of the 690 nm band. The spectral changes are interpreted as due to the formation of the charge separated state P700+—A0 -, where A0 is the primary electron acceptor chlorophyll a molecule.  相似文献   

18.
Femtosecond transient absorption spectroscopy has been used to investigate the energy transfer and trapping processes in both intact membranes and purified detergent-isolated particles from a photosystem II deletion mutant of the cyanobacterium Synechocystis sp. PCC 6803, which contains only the photosystem I reaction center. Processes with similar lifetimes and spectra are observed in both the membrane fragments and the detergent-isolated particles, suggesting little disruption of the core antenna resulting from the detergent treatment. For the detergent-isolated particles, three different excitation wavelengths were used to excite different distributions of pigments in the spectrally heterogeneous core antenna. Only two lifetimes of 2.7-4.3 ps and 24-28 ps, and a nondecaying component are required to describe all the data. The 24-28 ps component is associated with trapping. The trapping process gives rise to a nondecaying spectrum that is due to oxidation of the primary electron donor. The lifetimes and spectra associated with trapping and radical pair formation are independent of excitation wavelength, suggesting that trapping proceeds from an equilibrated excited state. The 2.7-4.3 ps component characterizes the evolution from the initially excited distribution of pigments to the equilibrated excited state distribution. The spectrum associated with the 2.7-4.3 ps component is therefore strongly excitation wavelength dependent. Comparison of the difference spectra associated with the spectrally equilibrated state and the radical pair state suggests that the pigments in the photosystem I core antenna display some degree of excitonic coupling.  相似文献   

19.
Photosystem I (PS-I) contains a small fraction of chlorophylls (Chls) that absorb at wavelengths longer than the primary electron donor P700. The total number of these long wavelength Chls and their spectral distribution are strongly species dependent. In this contribution we present room temperature time-resolved fluorescence data of five PS-I core complexes that contain different amounts of these long wavelength Chls, i.e., monomeric and trimeric photosystem I particles of the cyanobacteria Synechocystis sp. PCC 6803, Synechococcus elongatus, and Spirulina platensis, which were obtained using a synchroscan streak camera. Global analysis of the data reveals considerable differences between the equilibration components (3.4-15 ps) and trapping components (23-50 ps) of the various PS-I complexes. We show that a relatively simple compartmental model can be used to reproduce all of the observed kinetics and demonstrate that the large kinetic differences are purely the result of differences in the long wavelength Chl content. This procedure not only offers rate constants of energy transfer between and of trapping from the compartments, but also well-defined room temperature emission spectra of the individual Chl pools. A pool of red shifted Chls absorbing around 702 nm and emitting around 712 nm was found to be a common feature of all studied PS-I particles. These red shifted Chls were found to be located neither very close to P700 nor very remote from P700. In Synechococcus trimeric and Spirulina monomeric PS-I cores, a second pool of red Chls was present which absorbs around 708 nm, and emits around 721 nm. In Spirulina trimeric PS-I cores an even more red shifted second pool of red Chls was found, absorbing around 715 nm and emitting at 730 nm.  相似文献   

20.
The photosystem I complex organized in cyanobacterial membranes preferentially in trimeric form participates in electron transport and is also involved in dissipation of excess energy thus protecting the complex against photodamage. A small number of longwave chlorophylls in the core antenna of photosystem I are not located in the close vicinity of P700, but at the periphery, and increase the absorption cross-section substantially. The picosecond fluorescence kinetics of trimers resolved the fastest energy transfer components reflecting the equilibration processes in the core antenna at different redox states of P700. Excitation kinetics in the photosystem I bulk antenna is nearly trap-limited, whereas excitation trapping from longwave chlorophyll pools is diffusion-limited and occurs via the bulk antenna. Charge separation in the photosystem I reaction center is the fastest of all known reaction centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号