首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have carried out a detailed ultrastructural study of the interstitial cells near the myenteric plexus of the canine colon and defined the structural characteristics which distinguish them from other resident non-neural cells. We have also examined the interconnections of these interstitial cells with nerves, the longitudinal muscle, and the circular muscle. In addition, we sought connections between interstitial cells of the myenteric plexus and those described earlier at the inner border of the circular muscle in proximal and distal colon. The interstitial cells of the myenteric plexus were structurally distinctive, and made gap junctions with one another and occasionally with smooth muscle. There seemed to be two subsets of these interstitial cells, one associated with the longitudinal muscle and the other with the circular muscle. Cells of both subsets were often close (less than or equal to 20 nm) to nerve profiles. The interstitial cells near the longitudinal muscle layer penetrated slightly into the muscle layer, but those near the circular muscle did not and neither set contacted the other. Moreover, interstitial cells of Cajal located near the myenteric plexus were never observed to contact those at the inner border of circular muscle. The interstitial cells of Cajal at the canine colon myenteric plexus are structurally organized to provide independent pacemaking activities for the longitudinal and adjacent circular muscle. Their dense innervation suggests that they mediate neural modulation of intestinal pacemaker activities. Moreover, they lack direct contacts with the interstitial cell network at the inner border of circular muscle, which is essential for the primary pacemaking activity of circular muscle. The structural organization of interstitial cells in canine colon is consistent with their proposed role in pacemaking activity of the two muscle layers.  相似文献   

2.
Summary The distribution of gap junctions (nexuses) in various parts of the small and large intestines of the guinea-pig was studied using the freeze-fracture technique and in thin sections. The percentage area of smooth muscle cell surface occupied by gap junctions varies from 0.50% in the circular muscle of the duodenum to zero in the longitudinal muscle of the ileum. In the circular muscle of the jejunum and ileum the area occupied by nexuses is 0.22% (or about 11 m2 per cell). The sizes of junctions range from less than 0.01 m2 to 0.20 m2, with two-thirds of them being smaller than 0.05 m2. In the colon, gap junctions are rare, very small and confined to the circular muscle layer. Even the smallest aggregates of intramembrane particles correspond to areas of close apposition between the membranes of adjacent cells; it is therefore justified to interpret them as being gap junctions. Some gap junctions are formed between a smooth muscle cell and an interstitial cell. Gap junctions are not found in the longitudinal muscle of the small intestine; this is in sharp contrast to the abundance of gap junctions in the adjacent circular layer.In the small intestine of cats and rabbits, gap junctions are abundant in the circular muscle layer, whereas they are very small in size and very few in number in the longitudinal muscle layer.The authors wish to thank Mr Peter Trigg and Miss Eva Franke for help and support. This work was supported by grants from the Medical Research Council and the Central Research Fund of the University of London  相似文献   

3.
The plane between longitudinal and circular muscle of human colon, as revealed on examination with light and electron microscopes, has no clear-cut border. Some groups of smooth muscle cells, obliquely oriented and with features similar to both circular and longitudinal ones--the connecting muscle bundles--run from one muscle layer to another. Other groups of smooth muscle cells, possessing their own specific ultrastructural features--the myenteric muscle sheaths--, make up envelopes of variable thickness around some myenteric ganglia and nerve strands, partially or completely embedding them in one or other muscle layer. Non-neuronal, non-muscular cells (interstitial cells of Cajal, covering cells, fibroblast-like and macrophage-like cells) complicate the texture of the myenteric muscle sheaths, creating an intricate, interconnected cellular network inside them, widespread among nerve bundles and smooth muscle cells; however, only interstitial cells have cell-to-cell junctions also with the smooth muscle cells and nerve endings. These data document the existence in this colonic area of two different types of muscle cell arrangements, one of which, the myenteric muscle sheath, only contains putative pacemaker cells.  相似文献   

4.
The network of interstitial cells of Cajal associated with Auerbach’s (myenteric) plexus in the canine colon was investigated to determine its role in facilitating communication between circular and longitudinal muscle layers. Electrical coupling between the muscle layers was demonstrated by propagating extracellularly evoked electrotonic pulses from circular muscle cells to nearby longitudinal muscle cells. The likelihood of cytoplasmic continuity across Auerbach’s plexus was further demonstrated by the ability of neurobiotin to spread between the interstitial cells and the circular and longitudinal muscle cells. Importantly, direct neurobiotin spread between circular and longitudinal muscle cells was not observed even when they were in close proximity as determined by confocal microscopy. When neurobiotin did spread across the two muscle layers, the intervening interstitial cells were always neurobiotin-positive. In regions where circular and longitudinal muscle cells approach each other closely, electron microscopy revealed the presence of close appositions between interstitial cells and smooth muscle cells. Gap junctions between interstitial cells and smooth muscle cells of both layers, as judged by electron microscopy, were extremely rare. Neither gap junctions nor close appositions were observed between longitudinal and circular muscle cells. The special arrangement for electrotonic coupling across Auerbach’s plexus through interstitial cells of Cajal suggests controlled coupling between the two muscle layers, explaining the preservation of their distinct electrical activities. Received: 21 July 1995 / Accepted: 22 April 1998  相似文献   

5.
Morphological studies have shown synaptic-like structures between enteric nerve terminals and interstitial cells of Cajal (ICC) in mouse and guinea pig gastrointestinal tracts. Functional studies of mice lacking certain classes of ICC have also suggested that ICC mediate enteric motor neurotransmission. We have performed morphological experiments to determine the relationship between enteric nerves and ICC in the canine gastric antrum with the hypothesis that conservation of morphological features may indicate similar functional roles for ICC in mice and thicker-walled gastrointestinal organs of larger mammals. Four classes of ICC were identified based on anatomical location within the tunica muscularis. ICC in the myenteric plexus region (IC-MY) formed a network of cells that were interconnected to each other and to smooth muscle cells by gap junctions. Intramuscular interstitial cells (IC-IM) were found in muscle bundles of the circular and longitudinal layers. ICC were located along septa (IC-SEP) that separated the circular muscle into bundles and were also located along the submucosal surface of the circular muscle layer (IC-SM). Immunohistochemistry revealed close physical associations between excitatory and inhibitory nerve fibers and ICC. These contacts were synaptic-like with pre- and postjunctional electron-dense regions. Synaptic-like contacts between enteric neurons and smooth muscle cells were never observed. Innervated ICC formed gap junctions with neighboring smooth muscle cells. These data show that ICC in the canine stomach are innervated by enteric neurons and express similar structural features to innervated ICC in the murine GI tract. This morphology implies similar functional roles for ICC in this species.  相似文献   

6.
Gap junctional intercellular communication (GJIC) is a mechanism for direct cell-to-cell signalling and is mediated by gap junctions (GJs), which consist of proteins called connexins (Cxs). GJIC plays a critical role in tissue development and differentiation and is important in maintenance of tissue homeostasis. The purpose of the study was to evaluate the expression of Cx26, Cx32 and Cx43 in the human colon. Surgical specimens were obtained from patients who underwent surgical resection of colorectal tumours. Tissue samples (50 cases) were collected from normal colon, at the maximum distance from the tumor. Using antibodies for Cx26, Cx32 and Cx43, immunohistochemical detection was made. In epithelial cells, strong Cx26 immunoreactivity was found, whereas Cx32 and Cx43 were sparsely distributed. Strong Cx43 immunostaining in muscularis mucosae was observed. In the circular layer of muscularis externa, expression of Cx43 and Cx26 was seen, but only in the portion closest to the submucosa. No immunoreactivity was found in the longitudinal muscle layer. Small vessels stained positively only for Cx43. Furthermore, there was no difference in staining between samples derived from various sections of the colon. This study showed immunohistochemically for the first time the expression of Cx26 in human colon mucosa.  相似文献   

7.
The circular muscle layer of the human caecum and ascending colon is clearly subdivided into two portions: an outer one which includes the bulk of the circular muscle layer, and an inner one made up of only six to eight rows of cells. In the right transverse colon no demarcation can be observed, but a difference exists between the innermost and the outermost cells, since those of the two innermost rows possess some peculiarities with regard to the sarcoplasmic reticulum, glycogen particles, caveolae, and intercellular junctions. In the left part of the colon, the circular muscle layer is also divided into two portions. In fact, the innermost smooth muscle cells still possess peculiar morphologies, progressively increase in number, and become separate from each other making up a superficial muscle network. A fibrous lamella, along and inside which a ganglionated nerve plexus runs, is strictly apposed to the submucosal border of the circular muscle layer of the entire colonic length. A second nerve plexus runs between the two portions of the circular muscle layer. Both these plexuses are accompanied by interstitial cells of Cajal in the right colon only. The peculiar organization of the entire submucosal border of the human colonic circular muscle layer distinguishes it from other parts of the gut and probably represents a structural basis for control of human colonic motility. The presence of putative pacemaker cells (interstitial cells and peculiar smooth muscle cells) indicates that the inner border of human colonic circular muscle layer possesses pacemaking activities. Moreover, the interstitial cell--smooth muscle cell ratio differs depending on the colonic level; two main regions can be identified: the right and the left colon. Consequently, we might expect regional variation in pacemaking.  相似文献   

8.
Telocytes (TC), a cell population located in the connective tissue of many organs of humans and laboratory mammals, are characterized by a small cell body and extremely long and thin processes. Different TC subpopulations share unique ultrastructural features, but express different markers. In the gastrointestinal (GI) tract, cells with features of TC were seen to be CD34‐positive/c‐kit‐negative and several roles have been proposed for them. Other interstitial cell types with regulatory roles described in the gut are the c‐kit‐positive/CD34‐negative/platelet‐derived growth factor receptor α (PDGFRα)‐negative interstitial cells of Cajal (ICC) and the PDGFRα‐positive/c‐kit‐negative fibroblast‐like cells (FLC). As TC display the same features and locations of the PDGFRα‐positive cells, we investigated whether TC and PDGFRα‐positive cells could be the same cell type. PDGFRα/CD34, PDGFRα/c‐kit and CD34/c‐kit double immunolabelling was performed in full‐thickness specimens from human oesophagus, stomach and small and large intestines. All TC in the mucosa, submucosa and muscle coat were PDGFRα/CD34‐positive. TC formed a three‐dimensional network in the submucosa and in the interstitium between muscle layers, and an almost continuous layer at the submucosal borders of muscularis mucosae and circular muscle layer. Moreover, TC encircled muscle bundles, nerve structures, blood vessels, funds of gastric glands and intestinal crypts. Some TC were located within the muscle bundles, displaying the same location of ICC and running intermingled with them. ICC were c‐kit‐positive and CD34/PDGFRα‐negative. In conclusion, in the human GI tract the TC are PDGFRα‐positive and, therefore, might correspond to the FLC. We also hypothesize that in human gut, there are different TC subpopulations probably playing region‐specific roles.  相似文献   

9.
Interstitial cells of Cajal in the circular (ICC-CM) and longitudinal (ICC-LM) muscle layer of the rat gastric antrum and their innervation were studied ultrastructurally. Both ICC-CM and ICC-LM are characterized by many mitochondria, rough and smooth endoplasmic reticulum, caveolae, and formation of gap junctions with each other and with muscle cells, though ICC-LM tend to show more variable cytoplasmic features depending on section profiles. Close contacts between nerve terminals and both ICC-CM and ICC-LM are observed. These possible synaptic structures are characterized by: (1) accumulation of synaptic vesicles in nerve varicosities, (2) a narrow gap (about 20 nm) between pre- and postjunctional membranes, (3) lack of a basal lamina between pre- and postjunctional membranes, and (4) the presence of an electron-dense lining on the inner aspect of prejunctional membranes. Almost the same characteristics are observed between the nerve terminals and the muscle cells of both circular and longitudinal muscle layers of the same specimens. Therefore, we conclude that the smooth muscle cells of both circular and longitudinal layers of the rat antrum are directly and indirectly innervated via ICC. Their functional significance is discussed.  相似文献   

10.
Summary The smooth muscle of rabbit portal vein was studied by electron microscopy with particular emphasis on the mechanical linkage between the muscle cells and on the distribution of connective tissue.The media of this vein is composed of inner circular and outer longitudinal muscle layers which are orientated almost perpendicularly to each other. The muscle of the inner circular layer shows very irregular contours with much branching and anastomosing of the cytoplasmic processes, which often make membrane contacts with neighbouring cells to form an extensive network of cytoplasmic processes. The muscle cells of the outer longitudinal layer are arranged in densely packed bundles and are spindle-shaped, with no branching processes. Opposing dense areas from neighbouring cells, with variable gap distances (30–100 nm) and close membrane contacts (intermediate junctions) with a gap of 11 nm were observed in both circular and longitudinal muscle layers.In the terminal regions of muscle cells in both circular and longitudinal layers a specialized anchoring structure was present which was closely related to extracellular elastic tissue. Muscle cells in the longitudinal layer showed the most elaborate structure, the tapering end of the muscle cell showing a honeycomb-like structure penetrated by columns of connective tissue compounds. The functional implications of these structures are discussed.  相似文献   

11.
Interstitial cells of Cajal in the subserosa (ICC-SS) of the guinea-pig proximal colon were studied by immunohistochemistry for c-Kit receptors and by transmission electron microscopy. These cells were distributed within a thin layer of connective tissue space immediately beneath the mesothelium and were multipolar with about five primary cytoplasmic processes that divided further into secondary and tertiary processes to form a two-dimensional network. Ultrastructural observations revealed that ICC-SS were connected to each other via gap junctions. They also formed close contacts and peg-and-socket junctions with smooth muscle cells. Three-dimensional analysis of confocal micrographs revealed that the cytoplasmic processes of ICC-SS had contacts with interstitial cells in the longitudinal muscle layer. Taking account of the location and peculiar arrangement of the ICC-SS and the main functions of the proximal colon, i.e. the absorption and transport of fluids, we suggest that the superficial network of ICC-SS acts as a stretch receptor to detect circumferential expansion and swelling of the colon wall and triggers the contraction of the longitudinal muscle to accelerate the drainage of fluids from the colon.  相似文献   

12.
江豚(Neophocaena asiaeorientalis)的消化器官Ⅱ. 肠、肝、胰   总被引:2,自引:2,他引:0  
本篇为江豚(Neophocaena asiaeorientalis)消化器官研究的第二部分。 标本来源见李悦民(1984)。肠的长度和肝的重量都由新鲜标本测得。组织学材料用10%甲醛溶液固定,石蜡包埋,切片用苏木精曙红,PAS和Van Gieson法染色。  相似文献   

13.
Blanco RE 《Tissue & cell》1988,20(5):771-782
The ultrastructural organization and the junctional complexes of peripheral nerves have been investigated in the cockroach Periplaneta americana. Nerve 5 is surrounded by a layer of connective tissue, the neural lamella, beneath which is a layer of perineurial glial cells wrapping the axons. Adjacent perineurial cells are joined to one another by septate, gap and tight junctions. Septate and gap junctions were observed in freeze-fracture replicas of main trunk nerve 5. Septate junctions were found as rows of PF particles mainly in perineurial cell membranes. Gap junctions exhibited EF macular aggregates in perineurial and subperineurial glial cells. During incubations in vivo with extracellularly applied ionic lanthanum, the lanthanum did not penetrate beyond the perineurium. Where nerve 5 branches and contacts the muscle, lanthanum penetrated freely between the muscle fibres and the nerve branches. In small peripheral branches where the axons are surrounded by single a glial layer, lanthanum is unable to penetrate to the axolemma.  相似文献   

14.
Pituitary adenylyl cyclase activating peptide (PACAP) is a novel hypothalamic peptide that is widely distributed in neurons, including those of the gastrointestinal tract. In this study, a polyclonal antiserum directed against PACAP-27 was used to investigate the localisation of PACAP throughout the gut and to determine the projections of PACAP-immunoreactive (IR) neurons in the guinea-pig small and large intestines. PACAP-IR fibres were seen in the myenteric and submucous plexuses, in the longitudinal and circular muscle layers and around blood vessels of the submucosa throughout the gut. In both the small and large intestine, PACAP-IR cell bodies, most with Dogiel type-I morphology, were seen in the myenteric ganglia following colchicine treatment. Lesion studies (myotomy and myectomy operations) revealed that PACAP-IR interneurons projected anally in the ileum and colon. Myectomy operations resulted in a loss of PACAP-IR fibres in the circular muscle under the operation, whereas PACAP-IR fibres remained in the submucosa and around blood vessels. Following extrinsic denervation of the ileum, the number of PACAP-IR fibres in the submucosal ganglia and around blood vessels decreased. This suggests that a portion of PACAP-IR fibres supplying the submucosal ganglia and blood vessels have an extrinsic source. To investigate this, immunohistochemical studies were performed on sympathetic and dorsal root ganglia. Numerous reactive cells were seen in the dorsal root ganglia, but none was seen in sympathetic pre- or paravertebral ganglia.  相似文献   

15.
Morphological changes of interstitial cells of Cajal (ICC) have been proposed to characterize motility disorders. However, a global view of the network orientations of ICC subgroups has not been established to illustrate their three-dimensional (3-D) architectures in the human colon. In this research, we integrate c-kit immunostaining, 3-D microscopy with optical clearing, and image rendering to present the location-dependent network orientations with high definition. Full-depth colonic tissues were obtained from colectomies performed for nonobstructing carcinoma. Specimens of colon wall were prepared away from the tumor site. C-kit and nuclear fluorescent staining were used to identify the ICC processes and cell body. Optical clearing was used to generate transparent colon specimens, which led to panoramic visualization of the fluorescence-labeled ICC networks at the myenteric plexus (ICC-MY), longitudinal (ICC-LM) and circular (ICC-CM) muscles, and submucosal boundary (ICC-SM) up to 300 μm in depth via confocal microscopy with subcellular level resolution. We observed four distinct network patterns: 1) periganglionic ICC-MY that connect with ICC-LM and ICC-CM, 2) plexuses of ICC-LM within the longitudinal muscle and extending toward the serosa, 3) repetitive and organized ICC-CM layers running parallel to the circular muscle axis and extending toward the submucosa, and 4) a condensed ICC-SM layer lining the submucosal border. Among the four patterns, the orderly aligned ICC-CM layers provide an appropriate target for quantitation. Our results demonstrate the location-dependent network orientations of ICC subgroups and suggest a practical approach for in-depth imaging and quantitative analysis of ICC in the human colon specimen.  相似文献   

16.
Summary We have studied the layers of the muscular coat of the guinea-pig small intestine after enzymatic and chemical removal of extracellular connective tissue. The cells of the longitudinal muscle layer are wider, have rougher surfaces, more finger-like processes and more complex terminations, but fewer intercellular junctions than cells in the circular muscle layer. A special layer of wide, flat cells with a dense innervation exists at the inner margin of the circular muscle layer, facing the submucosa. The ganglia of the myenteric and submucosal plexuses are covered by a smooth basal lamina, a delicate feltwork of collagen fibrils, and innumerable connective tissue cells. The neuronal and glial cell processes at the surface of ganglia form an interlocking mosaic, which is loosely packed in newborn and young animals, but becomes tightly packed in adults. The arrangement of glial cells becomes progressively looser along finer nerve bundles. Single varicose nerve fibres are rarely exposed, but multiaxonal bundles are common. Fibroblast-like cells of characteristic shape and orientation are found in the serosa; around nerve ganglia; in the intermuscular connective tissue layer and in the circular muscle, where they bridge nerve bundles and muscle cells; at the submucosal face of the special, flattened inner circular muscle layer; and in the submucosa. Some of these fibroblast like cells correspond to interstitial cells of Cajal. Other structures readily visualized by scanning electron microscopy are blood and lymphatic vessels and their periendothelial cells. The relationship of cellular elements to connective tissue was studied with three different preparative procedures: (1) freeze-cracked specimens of intact, undigested intestine; (2) stretch preparations of longitudinal muscle with adhering myenteric plexus; (3) sheets of submucosal collagen bundles from which all cellular elements had been removed by prolonged detergent extraction.  相似文献   

17.
Cellular networks of pacemaker activity in intestinal movements are still a matter of debate. Because gap-junctional intercellular communication in the intestinal wall may provide important clues for understanding regulatory mechanisms of intestinal movements, we have attempted to clarify the distribution patterns of three types of gap junction proteins. Using antibodies for connexin40, connexin43, connexin45, smooth muscle actin, and vimentin, immunocytochemical observations were made with the confocal laser scanning microscope on cryosections of fresh-frozen small intestine and colon of the dog and rat. Connexin 45 was localized along the deep muscular plexus of the small intestine in both dog and rat. Double labeling studies revealed that connexin45 overlapped with vimentin –, but not actin-positive areas, indicating the fibroblast-like nature of the cells, rather than their being smooth muscle-like. Connexin43 immunoreactivity appeared along the smooth muscle cell surface in the outer circular layer of the small intestine of both animals. Connexin 40 immunoreactivity was not observed in the muscle layer other than in the wall of large blood vessels. It is suggested that connexin45-expressing cells along the deep muscular plexus of dog and rat small intestine are likely to act as a constituent of a pacemaker system, which may include a conductive system, by forming a cellular network operating via specific types of gap junctions.  相似文献   

18.
The ultrastructure of the colon of normal human embryos and fetuses was examined continuously from the 8th to 23rd week of pregnancy. The development of the colonic mucosa could therefore be presented at the moment, where the cellular differentiation nearly resembles those of adults. During the 8th week of pregnancy in the embryonic epithelium endocrine cells begin to differentiate. In the tunica submucosa unmyelinated axon bundles can already be found. The first goblet cells occur on 9 week old fetuses. The superficial epithelium carries a brush border covered by glycocalix. Osmiophile granules and enterochromaffin cells type 4 after Cristina are situated near the basal membrane. Underneath the tunica submucosa a thin layer of circular musculature has developed. From the 13th week onwards a stripe of longitudinal musculature joins the circular muscle layer in direction of the serosa. Between the muscle layers lie nerve bundles of the myenteric plexus. 14 or 15 week old fetuses show crypts. The endocrine cells can be classified into type 1, 2 and 4 after Cristina. In the 22nd week additionally to the lipid granules at the basal membrane, osmiophile bodies appear in the apical cytoplasm. At this stage a certain variety of intermediate forms between goblet- and endocrine cells occurs. Enterochromaffin cells type 3 after Cristina can be defined as well. A lamina muscularis mucosae has not yet arisen.  相似文献   

19.
20.
Although it has been reported that, in the uterine wall of rats at term, gap junctions between fibers of the same muscle layer are responsible for synchronized strong contractions, much less attention has been paid to the interaction between muscle layers. To learn about the relationship between the two uterine muscles of rats in late pregnancy, we developed a technique to do simultaneous monitoring of activities in two muscle layers. Using rectangular muscle strips, the electrical activity in one layer was measured with an intracellular microelectrode while the mechanical activity of the other layer was recorded through a force transducer. In some of the uterine wall strips prepared from animals on gestation day 15 and 16, interaction between longitudinal and circular muscle layers was observed. However, well coordinated activities of these two muscles did not occur until the morning of gestation day 21 and continued toward delivery. Usually, coordination presented as paired contractions, one in the circular muscle and the other in the longitudinal muscle. While these pairs of contractions appeared regularly, they also kept similar intervals. Sometimes, coordination presented as a continuous appearance of groups of three contractions, one in one layer and two in the other. Coordinating contractions of uterine muscles is considered to be beneficiary to the propelling of fetuses toward the cervix during parturition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号