首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new thermosensitive mutant of Escherichia coli deficient in cell division was isolated by means of membrane filtration after nitrosoguanidine mutagenesis. The mutant cells grow normally at 30 C but stop dividing immediately after shift to 42 C, resulting in multinucleated filaments lacking septa. The number of colony-forming units does not decrease for at least 6 hr at 42 C. The maximum length of the filaments is 10 to 16 times that of normal cells. Addition of a high concentration of NaCl fails to stimulate cell division at 42 C. The filaments formed at 42 C divide abruptly 30 min after shift to 30 C, and synchronous increase of cell number is shown for 3 hr. The macromolecular synthesis of protein and nucleic acids at 42 C is normal on the whole. The cell division shown after the shift from 42 to 30 C is observed in the absence of thymine, but not in the presence of chloramphenicol or in a medium deficient in amino acids. However, the filament can divide to some extent in the presence of chloramphenicol if some protein synthesis is allowed to proceed at 30 C before the addition of the antibiotic. The elongated cells divide at 42 C provided that they are exposed to 30 C before being shifted to high temperature.  相似文献   

2.
Cell division and prophage repression in the Escherichia coli mutant, T-44, are very sensitive to the levels of certain purine and pyrimidine derivatives in the media. The hypothesis that a change in the level of an adenine derivative in the small molecule pool of this strain was responsible for prophage induction and filament formation was tested. The nucleoside triphosphate pools in T-44 and C-600 nonlysogenic and lysogenic strains were labeled in experiments with (32)P and (33)P. Cultures were mixed, and the nucleotides were isolated. When adenine was present, the level of adenosine triphosphate (ATP) in T-44 compared to C-600 (as indicated by the isotope ratio) was increased up to twofold. Most of the other nucleotides increased but not to the same degree. In the lysogenic strain guanosine triphosphate and deoxycytidine triphosphate showed increases comparable to ATP, whereas increases noted in the deoxynucleotides in T-44 +/- lambda with adenine present were less. In experiments where T-44 and C-600 were incubated with (3)H- and (14)C-adenine, the levels of several compounds, including ATP, were slightly elevated in T-44. The combined data suggest that cultures of T-44 +/- lambda, grown in the presence of adenine, show a preferential increase in the level of ATP when compared to C-600 +/- lambda, but the increase in relation to the other nucleotides is less than twofold. In the experiment with (3)H- and (14)C-adenine, the level of inosine was found to be increased in T-44 relative to C-600. Cyclic AMP, when added to cultures of T-44 under various conditions, had no effect on prophage induction. Intracellular and extracellular levels of cyclic AMP in T-44 compared to C-600, incubated with had-acidin, guanosine, and cytidine (HGC) or with HGC plus adenine, were not significantly different. No compelling evidence for altered nucleotide metabolism in T-44 +/- lambda as a cause of prophage induction or filament formation was obtained.  相似文献   

3.
Covalent photolabeling of the melibiose permease (MelB) of Escherichia coli has been undertaken with the sugar analogue [(3)H]-p-azidophenyl alpha-D-galactopyranoside ([(3)H]-alpha-PAPG) with the purpose of identifying the domains forming the MelB sugar-binding site. We show that alpha-PAPG is a high-affinity substrate of MelB (K(d) = 1 x 10(-)(6) M). Its binding to or transport by MelB is Na-dependent and is competitively prevented by melibiose or by the high-affinity ligand p-nitrophenyl alpha-D-galactopyranoside (alpha-NPG). Membrane vesicles containing overexpressed histidine-tagged recombinant MelB were photolabeled in the presence of [(3)H]-alpha-PAPG by irradiation with UV light (lambda = 250 nm). Eighty-five percent of the radioactivity covalently associated with the vesicles was incorporated in a polypeptide corresponding to MelB monomer. MelB labeling was completely prevented by an excess of melibiose or alpha-NPG during the assay. Radioactivity analysis of CNBr cleavage or limited proteolysis products of the purified [(3)H]-alpha-PAPG-labeled transporter suggests that several domains of MelB are targets for labeling. One of the labeled CNBr cleavage products is a peptide with an apparent molecular mass of 5.5 kDa. It is shown that (i) its amino acid sequence is that of the Asp124-Met181 domain of MelB (7.5 kDa), which includes the cytoplasmic loop 4-5 connecting helices IV and V, the hydrophobic helix V, and the outer loop connecting helices V-VI, and (ii) that Arg141 in loop 4-5 is the only labeled amino acid of this peptide. Labeling of loop 4-5 provides independent evidence that this specific domain plays a significant role in MelB transport. Comparison with the well-characterized equivalent domain of LacY suggests that sugar transporters with similar structure and substrate specificity may have conserved domains involved in sugar recognition.  相似文献   

4.
Gluconate Metabolism in Escherichia coli   总被引:26,自引:20,他引:6       下载免费PDF全文
On the basis of information available in the literature, gluconate dissimilation in Escherichia coli is thought to occur via the hexose monophosphate pathway. Evidence is presented in this study that gluconate is catabolized in this organism via an inducible Entner-Doudoroff pathway. This evidence is based on chromatographic examination of end products produced from (14)C-labeled gluconate or glucose, distribution of (14)C in the carbon atoms of pyruvate formed from specifically labeled (14)C-glucose and (14)C-gluconate, and the ability of cell-free extracts to produce pyruvate from 6-phosphogluconate. Degradation of gluconate by an Entner-Doudoroff pathway occurred simultaneously with a glycolytic cleavage of glucose. A relationship between gluconate-induced, Entner-Doudoroff pathway activity and catabolism of glucose in Escherichia coli and other bacterial species is discussed.  相似文献   

5.
Fluorescent techniques were used to study binding of peptide elongation factor Tu (EF-Tu) to Escherichia coli ribosomes and to determine the distances of the bound factor to points on the ribosome. Thermus thermophilus EF-Tu was labeled with 3-(4-maleimidylphenyl)-4-methyl-7-(diethyl-amino)coumarin (CPM) without loss of activity. In the presence of Phe-tRNA and a nonhydrolyzable analogue of GTP, 70S ribosomes bind the CPM-EF-Tu [Kb = (3 +/- 1.2) X 10(6) M-1] causing a decrease of CPM fluorescence. Binding of CPM-EF-Tu to 50S subunits was at least 1 order of magnitude lower than with 70S ribosomes, and binding to 30S subunits could not be detected. Reconstituted 70S ribosomes containing either S1 labeled with fluoresceinmaleimide or ribosomal RNAs labeled at their 3' ends with fluorescein thiosemicarbazide were used for energy transfer from CPM-EF-Tu. The distances between CPM-EF-Tu bound to the ribosomes and the 3' ends of 16S RNA, 5S RNA, 23S RNA, and the closest sulfhydryl group of S1 were calculated to be 82, 70, 73, and 62-68 A, respectively.  相似文献   

6.
The origin of replication of Escherichia coli, oriC, has been labeled by fluorescent in situ hybridization (FISH). The E. coli K12 strain was grown under steady state conditions with a doubling time of 79 min at 28 degrees C. Under these growth conditions DNA replication starts in the previous cell cycle at -33 min. At birth cells possess two origins which are visible as two separated foci in fully labeled cells. The number of foci increased with cell length. The distance of foci from the nearest cell pole has been measured in various length classes. The data suggest: i) that the two most outwardly located foci keep a constant distance to the cell pole and they therefore move apart gradually in line with cell elongation; and ii) that at the initiation of DNA replication the labeled origins occur near the center of prospective daughter cells.  相似文献   

7.
Breakdown of DNA in X-Irradiated Escherichia coli   总被引:2,自引:1,他引:1       下载免费PDF全文
A comparison of differences in incorporation and loss of radio-activity between two strains of Escherichia coli shows that: (a) three times as much irradiation is necessary to produce the same reduction in incorporation of H3-thymidine in B/r, the resistant strain, as in Bs - 1, the sensitive one; (b) radioactivity is lost from the DNA of previously labeled bacteria during the first few cell generations after X-ray exposure, and even though the initial rate of loss is similar for all strains, the sensitive one loses much more label; (c) loss of DNA is a complicated function of dose. Losses increase with dose up to 25 or 50 kr in both strains; with higher doses, losses decrease in Bs - 1 but are unchanged in B/r. Since in both strains labeled RNA is retained in irradiated cells, lysis has not occurred but the DNA is broken down into small pieces which leak from each cell. Losses from either strain do not occur at ice-bath temperature, indicating that breakdown is a function of metabolic processes. A proposed mechanism for X-ray damage and repair is advanced.  相似文献   

8.
Regulation of Cell Division in Escherichia coli   总被引:4,自引:0,他引:4       下载免费PDF全文
The rate of cell division was measured in cultures of Escherichia coli B/r strain after periods of partial or complete inhibition of deoxyribonucleic acid (DNA) synthesis. The rate of DNA synthesis was temporarily decreased by removing thymidine from the growth medium or replacing it with 5-bromouracil. After restoration of DNA synthesis, a temporary period of accelerated cell division was observed. The results were consistent with the idea that chromosome replication begins when an initiator complement of fixed size accumulated in the cell. The increase in the potential for the initiation of new replication points during inhibition of DNA synthesis results in an increase in the rate of cell division after an interval which encompasses the time for the arrival of these replication points to the termini of the chromosomes and the time from this event to division.  相似文献   

9.
10.
A membrane preparation obtained from osmotic lysate of spheroplasts of Escherichia coli cells showed an activity of synthesizing beta-galactosidase which was dependent upon oxidative phosphorylation. The synthesis was inhibited by the addition of actinomycin D or of chloramphenicol. The beta-galactosidase synthesized in the membrane preparation was completely released into the medium, while that synthesized in the spheroplasts and intact cells remained within the cells. The minimum concentration of the inducer, methyl-beta-d-thiogalactoside, required for the induction of beta-galactosidase was 5 x 10(-5)m for intact cells, 3 x 10(-4)m for spheroplasts and 1 x 10(-3)m for membrane preparation. Incorporation of labeled glucose into insoluble components in membrane preparation was extremely low compared with that in intact cells or in spheroplasts. Based on these and other observations, the nature of this membrane preparation is discussed in relation to the structure of E. coli cells.  相似文献   

11.
Topography of the E site on the Escherichia coli ribosome.   总被引:6,自引:2,他引:4       下载免费PDF全文
Three photoreactive tRNA probes have been utilized in order to identify ribosomal components that are in contact with the aminoacyl acceptor end and the anticodon loop of tRNA bound to the E site of Escherichia coli ribosomes. Two of the probes were derivatives of E. coli tRNA(Phe) in which adenosines at positions 73 and 76 were replaced by 2-azidoadenosine. The third probe was derived from yeast tRNA(Phe) by substituting wyosine at position 37 with 2-azidoadenosine. Despite the modifications, all of the photoreactive tRNA species were able to bind to the E site of E. coli ribosomes programmed with poly(A) and, upon irradiation, formed covalent adducts with the ribosomal subunits. The tRNA(Phe) probes modified at or near the 3' terminus exclusively labeled protein L33 in the 50S subunit. The tRNA(Phe) derivative containing 2-azidoadenosine within the anticodon loop became cross-linked to protein S11 as well as to a segment of the 16S rRNA encompassing the 3'-terminal 30 nucleotides. We have located the two extremities of the E site-bound tRNA on the ribosomal subunits according to the positions of L33, S11 and the 3' end of 16S rRNA defined by immune electron microscopy. Our results demonstrate conclusively that the E site is topographically distinct from either the P site or the A site, and that it is located alongside the P site as expected for the tRNA exit site.  相似文献   

12.
Purified ATP synthase (F1F0) from Escherichia coli K12 was labeled with the hydrophobic photoreactive label 1-palmitoyl 2-(2-azido-4-nitro)benzoyl sn-glycero-3-[3H]phosphocholine in reconstituted proteoliposomes. The F0-subunit b was predominantly labeled. A very low amount of label was detected on the other F0-subunits a and c. The label in subunit b could be traced back by proteolytic digestion to the NH2-terminal fragment 1 to 53 which contains the stretch of hydrophobic amino acid residues 1 to 32. By sequencing the intact protein, the distribution of label among the amino acids in this segment was determined. Cysteine 21 was predominantly labeled. Other labeled amino acids occurred at the NH2-terminal (Asn-2) and at position 26 (tryptophan). Due to the restricted mobility of the label in the lipid bilayer, these residues are suggested to be located in or close to the polar head of the lipid bilayer. These results will be compared with predictions for the arrangement of the polypeptide b derived from the hydrophobicity profile.  相似文献   

13.
The specificity of hydrolysis of polynucleotide termini by Escherichia coli exonuclease III was studied with the use of oligothymidylate annealed to polydeoxyadenylate. The size of the products after 3' leads to 5'-hydrolysis of 5'-labeled substrate is temperature-dependent. At 25 degrees the enzyme can hydrolyze a polynucleotide chain up to the last 5'-terminal dinucleotide. A gradation of higher 5'-terminal oligonucleotides of defined chain lengths is produced after limit digestion by the enzyme when the temperature is raised between 25 degrees to 60 degrees. When the oligothymidylate was labeled at the 3'-ends with ribonucleotides, it was observed that exonuclease III can cleave a single or two consecutive ribonucleotides regardless of whether the ribonucleotides are base-paired or mismatched.  相似文献   

14.
Topography of lactose permease from Escherichia coli   总被引:16,自引:0,他引:16  
The topography of lactose permease, in native membrane vesicles and after reconstitution of the purified protein into proteoliposomes, has been investigated by labeling the membrane-embedded portions of the protein using photoactivatable, hydrophobic reagents and by labeling the exposed portions of the protein with water-soluble, electrophilic reagents. Some sites of modification have been localized in fragments of the protein produced by chemical and enzymatic cleavage. These define a number of hydrophilic loops and membrane-spanning regions and give some substance to topographic models of the permease. The N-terminal third of the molecule was labeled by three photoactivatable reagents (3-(trifluoromethyl)-3-m-iodophenyldiazirine and the phospholipid analogues 2-(aceto-(4-benzoylphenylether]-1-palmitoylphosphatidylcholine) and 2-(4-azido-2-nitrophenylaminoacetyl)-1-palmitoylphosphatidylcholin e) as well as the water soluble, electrophilic reagents. The C-terminal part of the molecule is labeled by the diazirine and, to a lesser extent, by the phospholipid analogues. It apparently has more nucleophilic groups accessible to water-soluble reagents than the N-terminal domain, in which the density of apparently unreactive ionizable residues proved to be unexpectedly high. The apparent lack of reactivity of some of these residues may be explained either by their being buried in the protein moiety within the membrane domain, or by their close association with other ionizable residues on the surface of the protein.  相似文献   

15.
Escherichia coli fil ts forms multinucleate filaments when suspensions of about 10(7) organisms per ml are shifted from 37 to 43 C in rich medium. Occasional septation continues, chiefly at the poles, and immediately becomes more frequent when the filaments are returned to 37 C. The addition of chloramphenicol (200 mug/ml) at either temperature initially stimulates the formation of polar septa. When very dilute suspensions of the strain (<10(6) organisms per ml) are shifted to the restrictive temperature, the inhibition of septation is more complete and only seldom reversible. Conversely, cell division is little affected when suspensions of >10(8) organisms per ml, or microcolonies of several hundred organisms on agar, are incubated at 43 C; evidence is presented that this is a consequence of a slight reduction in the mutant's growth rate. In certain media, septation is blocked irreversibly by even brief exposure to 43 C, after which cell elongation without division proceeds at 37 C for some hours. Several findings, when considered together, suggest that the cytoplasmic membrane is normal at the restrictive temperature, and that the block in septation is caused by a defect in the cell wall: it is largely overcome by NaCl, but not by sucrose; in some circumstances the filaments become swollen and develop localized bulges in the wall, yet the membrane remains intact and retains its selective permeability; lastly, the strain is insensitive to deoxycholate at both temperatures. The mutation has been mapped between arg B and thr, at a locus which appears to be distinct from others known primarily to influence cell division.  相似文献   

16.
When either 3H-labeled L-glyceraldehyde or 3H-labeled L-glyceraldehyde 3-phosphate (GAP) was added to cultures of Escherichia coli, the phosphoglycerides were labeled. More than 81% of the label appeared in the backbone of the phosphoglycerides. Chromatographic analyses of the labeled phosphoglycerides revealed that the label was normally distributed into phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. These results suggest that L-glyceraldehyde is phosphorylated and the resultant L-GAP is converted into sn-glycerol 3-phosphate (G3P) before being incorporated into the bacterial phosphoglycerides. Cell-free bacterial extracts catalyzed an NADPH-dependent reduction of L-GAP to sn-G3P. The partially purified enzyme was specific for L-GAP and recognized neither D-GAP nor dihydroxyacetone phosphate as a substrate. NADH could not replace NADPH as a coenzyme. The L-GAP:NADPH oxidoreductase had an apparent Km of 28 and 35 microM for L-GAP and NADPH, respectively. The enzyme was insensitive to sulfhydryl reagents and had a pH optimum of approximately 6.6. The phosphonic acid analog of GAP, 3-hydroxy-4-oxobutyl-1-phosphonate, was a substrate for the reductase, with an apparent Km of 280 microM.  相似文献   

17.
Succinyl-CoA synthetase (SCS) catalyzes the reversible interchange of purine nucleoside diphosphate, succinyl-CoA, and Pi with purine nucleoside triphosphate, succinate, and CoA via a phosphorylated histidine (H246alpha) intermediate. Two potential nucleotide-binding sites were predicted in the beta-subunit, and have been differentiated by photoaffinity labeling with 8-N3-ATP and by site-directed mutagenesis. It was demonstrated that 8-N3-ATP is a suitable analogue for probing the nucleotide-binding site of SCS. Two tryptic peptides from the N-terminal domain of the beta-subunit were labeled with 8-N3-ATP. These corresponded to residues 107-119beta and 121-146beta, two regions lying along one side of an ATP-grasp fold. A mutant protein with changes on the opposite side of the fold (G53betaV/R54betaE) was unable to be phosphorylated using ATP or GTP, but could be phosphorylated by succinyl-CoA and Pi. A mutant protein designed to probe nucleotide specificity (P20betaQ) had a Km(app) for GTP that was more than 5 times lower than that of wild-type SCS, whereas parameters for the other substrates remained unchanged. Mutations of residues in the C-terminal domain of the beta-subunit designed to distrupt one loop of the Rossmann fold (I322betaA, and R324betaN/D326betaA) had the greatest effect on the binding of succinate and CoA. They did not disrupt the phosphorylation of SCS with nucleotides. It was concluded that the nucleotide-binding site is located in the N-terminal domain of the beta-subunit. This implies that there are two active sites approximately 35 A apart, and that the H246alpha loop moves between them during catalysis.  相似文献   

18.
Growth and Division of Filamentous Forms of Escherichia coli.   总被引:2,自引:0,他引:2  
Adler, Howard I. (Oak Ridge National Laboratory, Oak Ridge, Tenn.), and Alice A. Hardigree. Growth and division of filamentous forms of Escherichia coli. J. Bacteriol. 90:223-226. 1965.-Cells of certain mutant strains of Escherichia coli grow into long multinucleate filaments after exposure to radiation. Deoxyribonucleic acid, ribonucleic acid, and protein synthesis proceed, but cytokinesis does not occur. Cytokinesis (cross-septation) can be initiated by exposure of the filaments to pantoyl lactone or a temperature of 42 C. If growing filaments are treated with mitomycin C, nuclear division does not occur, and nuclear material is confined to the central region of the filament. Cytokinesis cannot be induced in mitomycin C-treated filaments by pantoyl lactone or treatment at 42 C.  相似文献   

19.
Cycloheximide addition at various times from 24 to 36 hr after virus infection markedly inhibits the rate of simian virus 40 (SV40) deoxyribonucleic acid (DNA) synthesis in monkey kidney (CV-1) cultures. To determine whether superhelical (form I) SV40 DNA was synthesized in the cycloheximide-inhibited cultures, extracts were prepared by the method of Hirt from cultures labeled with (3)H-thymidine ((3)H-dT) and were analyzed by cesium chloride-ethidium bromide (CsCl-EtBr) equilibrium centrifugation and by velocity sedimentation in neutral sucrose gradients. When control or cycloheximide-treated cultures were labeled for 2 or 4 hr with (3)H-dT at 36 or 37 hr after infection, 71 to 83% of the radioactivity soluble in 1 m NaCl was detected in closed-circular SV40 DNA (form I). Cycloheximide treatment did not generate an increase of higher multiple circular forms of SV40 DNA. In pulse-chase experiments with or without cycloheximide treatment, radioactivity first appeared in nicked molecular forms sedimenting faster than open-circular SV40 DNA (form II), and then was chased into superhelical form I SV40 DNA. These results suggest that in cycloheximide-treated SV40-infected cultures: (i) polynucleotide ligase concentrations are adequate, and (ii) duplication errors causing formation of circular oligomers of SV40 DNA are not enhanced.  相似文献   

20.
Using localized mutagenesis of whole cells, we have isolated a temperature-sensitive UDP-N-acetylglucosamine acyltransferase mutant of Escherichia coli that loses all detectable acyltransferase activity and quickly dies after a shift from 30 to 42 degrees C. Acyltransferase activity and temperature resistance are restored by transforming the mutant with a hybrid plasmid containing the E. coli gene for UDP-GlcNAc acyltransferase (lpxA). In addition, a new assay has been developed for quantitating the amount of lipid A (the active component of endotoxin) in E. coli and related Gram-negative strains. Cells are labeled with 32Pi and extracted with chloroform/methanol/water (1:2:0.8, v/v) to remove glycerophospholipids. The residue is then hydrolyzed with 0.2 M HCl to liberate the "monophosphoryl" lipid A degradation products (Qureshi, N., Cotter, R. J. and Takayama, K. (1986) J. Microbiol. Methods 5, 65-77), each of which bears a single phosphate residue at position 4'. The amount of lipid A is normalized to the total amount of labeled glycerophospholipid present in the cells. The steady state ratio of lipid A to glycerophospholipid in wild-type cells is approximately 0.12. The lipid A content of the acyltransferase mutant is reduced 2-3-fold, and the rate of lipid A synthesis is reduced 10-fold when compared to wild-type after 60 min at 42 degrees C. These results provide physiological evidence that UDP-N-acetylglucosamine acyltransferase is the major committed step for lipid A biosynthesis in E. coli and that lipid A is an essential molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号