首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenine nucleotides and respiration were assayed with rat kidney mitochondria depleted of adenine nucleotides by pyrophosphate treatment and by normothermic ischemia, respectively, with the aim of identifying net uptake of ATP as well as elucidating the contribution of adenine nucleotide loss to the ischemic impairment of oxidative phosphorylation. Treatment of rat kidney mitochondria with pyrophosphate caused a loss of adenine nucleotides as well as a decrease of state 3 respiration. After incubation of pyrophosphate-treated mitochondria with ATP, Mg2+ and phosphate, the content of adenine nucleotides increased. We propose that kidney mitochondria possess a mechanism for net uptake of ATP. Restoration of a normal content of matrix adenine nucleotides was related to full recovery of the rate of state 3 respiration. A hyperbolic relationship between the matrix content of adenine nucleotides and the rate of state 3 respiration was observed. Mitochondria isolated from kidneys exposed to normothermic ischemia were characterized by a decrease in the content of adenine nucleotides as well as in state 3 respiration. Incubation of ischemic mitochondria with ATP, Mg2+ and phosphate restored the content of adenine nucleotides to values measured in freshly-isolated mitochondria. State 3 respiration of ischemic mitochondria reloaded with ATP recovered only partially. The rate of state 3 respiration increased by ATP-reloading approached that of uncoupler-stimulated respiration measured with ischemic mitochondria. These findings suggest that the decrease of matrix adenine nucleotides contributes to the impairment of ischemic mitochondria as well as underlining the occurrence of additional molecular changes of respiratory chain limiting the oxidative phosphorylation.  相似文献   

2.
Chronic ethanol feeding to rats produces changes in hepatic mitochondria which persist in the absence of ethanol metabolism. The integrity of isolated mitochondria is well preserved, as evidenced by unchanged activities of latent, Mg2+- and dinitrophenol-stimulated ATPase activity, and unaltered permeability to NADH. With succinate or ascorbate as substrates, oxygen uptake by mitochondria from ethanol-fed rats was decreased compared to pair-fed controls. The decrease was comparable under state 4 or state 3 conditions, or in the presence of an uncoupler. However, with the NAD+-dependent substrates, ADP-stimulated oxygen consumption (state 3) was decreased to a greater extent than state 4 or uncoupler-stimulated oxygen consumption in mitochondria from ethanol-fed rats. This suggests that the decrease in energy-dependent oxygen consumption at site I may be superimposed upon damage to the respiratory chain. Using NAD+-dependent substrates (glutamate, α-ketoglutarate or β-hydroxybutyrate) the respiratory control ratio and the PO ratio of oxidative phosphorylation were significantly decreased in mitochondria isolated from the livers of rats fed ethanol. By contrast, when succinate or ascorbate served as the electron donor these functions were unchanged. The rate of phosphorylation is decreased 70% with the NAD+-dependent substrates because of a decreased flux of electrons, as well as a lower efficiency of oxidative phosphorylation. With succinate and ascorbate as substrates, the rate of phosphorylation is decreased 20–30%, owing to a decreased flux of electrons. These data suggest the possibility that, in addition to effects on the respiratory chain, energy-coupling site I may be damaged by ethanol feeding. Energy-dependent Ca2+ uptake, supported by either substrate oxidation or ATP hydrolysis, was inhibited by chronic ethanol feeding.Concentrations of acetaldehyde (1–3 mm) which inhibited phosphorylation associated with the oxidation of NAD+-dependent substrates had no effect on that of succinate or ascorbate. Many of the effects of chronic ethanol feeding on mitochondrial functions are similar to those produced by acetaldehyde in vitro.  相似文献   

3.
4.
Control over oxidative phosphorylation by purified potato mitochondria was determined using the top-down approach of metabolic control analysis. The control over the respiration rate, phosphorylation rate, proton-leak rate and proton motive force exerted by the respiratory chain, phosphorylation reactions and the proton leak were measured over a range of phosphorylation rates from resting (state 4) to maximal (state 3). These rates were obtained by adding different amounts of hexokinase in the presence of glucose, or different amounts of oligomycin in the presence of ADP. The respiratory substrate was NADH or succinate, both of which feed electrons directly to ubiquinone. The rate of oxygen consumption by the alternative oxidase pathway was negligible with NADH as substrate but was measurable with succinate and was subtracted. Control over the respiration rate in potato mitochondria was predominantly exerted by the respiratory chain at all rates except close to state 4, where control by the proton leak was equally or more important. For oxidation of NADH, the flux control coefficient over the respiration rate exerted by the respiratory chain in state 3 was between 0.8 and 1.0, while in state 4, control over the respiration rate was shared about equally between the chain and the proton leak. The control over the phosphorylation rate was predominantly exerted by the respiratory chain, although at low rates control by the phosphorylation system was also important. For oxidation of NADH, the flux control coefficient over the phosphorylation rate exerted by the respiratory chain in state 3 was 0.8-1.0, while near state 4 the flux control coefficients over the phosphorylation rate were about 0.8 for the phosphorylation system and 0.25 for the chain. Control over the proton leak rate was shared between the respiratory chain and the proton leak; the phosphorylation system had negative control. For oxidation of NADH, the flux control coefficients over the leak rate in state 3 were 1.0 for the leak, 0.4 for the chain and -0.4 for the phosphorylation system, while in state 4 the flux control coefficients over leak rate were about 0.5 for the leak and 0.5 for the chain. Control over the magnitude of the protonmotive force was small, between -0.2 and +0.2, reflecting the way the system operates to keep the protonmotive force fairly constant; the respiratory chain and the phosphorylation system had equal and opposite control and there was very little control by the proton leak except near state 4.  相似文献   

5.
向日葵CMS育性恢复的研究   总被引:4,自引:1,他引:3  
季静  王萍 《遗传学报》1998,25(3):265-270
向日葵细胞质雄性不育(Cytoplasmicmalesterility,CMS)育性恢复的机理是非常复杂的。运用遗传学和分子生物学方法,分析了具代表性的4种不同细胞质类型的CMS育性被恢复的频率和20种向日葵自交系对19种CMS的恢复能力及个别CMS植株自发恢复的原因。实验结果表明,4种CMS品系育性被恢复的频率分别为58.8%.56.3%.11.8%和0%.20种自交系的恢复力为5.9-75.0%。部分CMS品系和大多数自交系含有恢复基因,恢复基因的数量及类型决定了CMS品系被恢复的程度及自交系的恢复能力。同时,提出并证实了线粒体不育基因变异是导致ARG1CMS植株自发恢复育性的主要原因。  相似文献   

6.
U. Küster  R. Bohnensack  W. Kunz 《BBA》1976,440(2):391-402
The control of mitochondrial ATP synthesis by the extramitochondrial adenine nucleotide pattern was investigated with rat liver mitochondria. It is demonstrated that any stationary state between the two limit states of maximum activity (state 3) and of resting activity (state 4) can be obtained by a hexokinase-glucose trap as an ADP-regenerating system. These intermediate states are characterized by stationary respiratory rates, stationary redox levels of the cytochromes b and c and stationary levels of extramitochondrial ATP and ADP between the rates and levels of the limit states. At a constant concentration of inorganic phosphate the activity of mitochondria between the limit states is controlled by the extramitochondrial ATP/ADP ratio independent of the total concentration of adenine nucleotides present. The control range was found to be between ratios of about 5 and 100 at 10 mM phosphate. At lower ratios the mitochondria are in their maximum phosphorylating state. With succinate + rotenone and glutamate + malate the same control range was observed, indicating that it is independent of the nature of substrate oxidized.The results suggest that in the control range the mitochondrial activity is limited by the competition of ADP and ATP for the adenine nucleotide translocator.  相似文献   

7.
As evidenced by respiration, oxidative phosphorylation, ATPase and NADH-oxidase activities, mitochondria composing heart tissue slices are more damaged by freezing-thawing than isolated mitochondria. A change in the functional activity of mitochondria is manifested in an increased respiratory rate in the second metabolic state and decreased respiratory rate in the third metabolic state upon oxidation of succinate and alpha-ketoglutarate; the ability of mitochondria to synthetize ATP (inhibition of the respiratory control) varied and the ATPase and NADH-oxidase activities increased. These changes in the functional state of mitochondria appeared to be due to a rise of the proton conductivity of the inner mitochondrial membrane by freezing-thawing.  相似文献   

8.
It has proposed that hexokinase bound to mitochondria occupies a preferred site to wich ATP from oxidative phosphorylation is channeled directly (Bessman, S. (1966) Am. J. Medicine 40, 740–749). We have investigated this problem in isolated Zajdela hepatoma mitochondria. Addition of ADP to well-coupled mitochondria in the presence of an oxidizable substrate initiates the synthesis of glucose 6-phosphate via bound hexokinase. This reaction is only partially inhibited by oligomycin, carboxyatractyloside, carbonyl cyanide m-chlorophenylhydrazone (CCCP) ot any combination of these, suggesting a source of ATP in addition to oxidative phosphorylation. This source appears to be adenylate kinase, since Ado2P5, an inhibitor of the enzyme, suppresses hexokinase activity by about 50% when added alone or suppresses activity completely when added together with any of the inhibitors of oxidative phosphorylation. Ado2P5 does not uncouple oxidative phosphorylation nor does it inhibit ADP transport (state 3 respiration) or hexokinase. The relative amount of ATP contributed by adenylate kinase is dependent upon the ADP concentration. At low ADP concentraions, glucose phosphorylation is supported by oxidative phosphorylation, but as the adenine nucleotide translocator becomes saturated the ATP contributed by adenylate kinase increases due to the higher apparent Km of the enzyme. Under conditions of our standard experiment ([ADP] = 0.5 mM), adenylate kinase provides about 50% of the ATP used by hexokinase in well-coupled mitochondria. In spite of this, externally added ATP supported higher rates of hexokinase activity than ADP. Our findings demonstrate that oxidative phosphorylation is not a specific or preferential source of ATP for hexokinase bound to hepatoma mitochondria. The apparent lack of a channeling mechanism for ATP to hexokinase in these mitochondria is discussed.  相似文献   

9.
The yield of oxidative phosphorylation in isolated tomato fruit mitochondria depleted of free fatty acids remains constant when respiratory rates are decreased by a factor of 3 by the addition of n-butyl malonate. This constancy makes the determination of the contribution of the linoleic acid-induced energy-dissipating pathway by the ADP/O method possible. No decrease in membrane potential is observed in state 3 respiration with increasing concentration of n-butyl malonate, indicating that the rate of ATP synthesis is steeply dependent on membrane potential. Linoleic acid decreases the yield of oxidative phosphorylation in a concentration-dependent manner by a pure protonophoric process like that in the presence of FCCP. ADP/O measurements allow calculation of the part of respiration leading to ATP synthesis and the part of respiration sustained by the dissipative H(+) re-uptake induced by linoleic acid. Respiration sustained by this energy-dissipating process remains constant at a given LA concentration until more than 50% inhibition of state 3 respiration by n-butyl malonate is achieved. The energy dissipative contribution to oxygen consumption is proposed to be equal to the protonophoric activity of plant uncoupling protein divided by the intrinsic H(+)/O of the cytochrome pathway. It increases with linoleic acid concentration, taking place at the expense of ADP phosphorylation without an increase in the respiration.  相似文献   

10.
Oxidative phosphorylation can be treated as two groups of reactions; those that generate protonmotive force (dicarboxylate carrier, succinate dehydrogenase and the respiratory chain) and those that consume protonmotive force (adenine nucleotide and phosphate carriers. ATP synthase and proton leak). Mitochondria from hypothyroid rats have lower rates of respiration in the presence of ADP (state 3) than euthyroid controls. We show that the kinetics of the protonmotive-force generators are unchanged in mitochondria from hypothyroid animals, but the kinetics of the protonmotive-force consumers are altered, supporting proposals that the important effects of thyroid hormone on state 3 are on the ATP synthase or the adenine nucleotide translocator.  相似文献   

11.
(1) The reason for substrate specificity of Sr2+-induced oscillating cation fluxes in isolated rat liver mitochondria was investigated. (2) With succinate as substrate, rotenone prevented oscillation. In this case the mitochondria were only partially able to take up added Sr2+ and did not take up any of the released K+. Addition of substances decreasing the mitochondrial NADHNAD+ ratio (oxaloacetate or acetoacetate) restored the ability for reuptake of K+ and for complete uptake of Sr2+ and, therefore, oscillation. (3) Inhibition of substrate-level phosphorylation by arsenite or uncoupling of substrate-level phosphorylation by arsenate in the presence of oligomycin also suppressed the reuptake of cations. This effect of inhibition of substrate-level phosphorylation on oscillation could be circumvented by addition of ATP in the presence of oligomycin. (4) Prevention of the intramitochondrial regeneration of 2-oxoglutarate from acetyl-CoA and oxaloacetate by fluorocitrate or from endogenous glutamate by aminoxyacetate shortened the time during which oscillation with succinate as substrate could be observed. (5) From the key role of substrate level phosphorylation it is concluded that for the reuptake of K+ and Sr2+ during oscillation, sufficient GTP generation by the succinyl thiokinase (EC 6.2.1.4) reaction is essential. Therefore substrate level phosphorylation seems to be a necessary energy source additional to the respiratory chain. Since the latter process drives the active cation movements, the former may be required for the restoration of a sufficiently low proton conductance of the mitochondrial inner membrane. Oscillation in the absence of exogenous ATP therefore demands 2-oxoglutarate as substrate or the intramitochondrial generation of 2-oxoglutarate for the maintenance of a sufficient GTP production for a longer time.  相似文献   

12.
Using the method of quick separation by centrifugation through a layer of sillicone the contents of ATP in mitochondria during active phosphorylation of external ADP have been determined. The rate of phosphorylation is linearly related to the ATP content (in state 3) and this relation is independent of the substrate. The rate of phosphorylation and the associated internal ATP content were both diminished as incubations were carried out using the mitochondrial protein at increasing concentrations.  相似文献   

13.
To determine how oxidative ATP synthesis is regulated in the heart, the responses of cardiac mitochondria oxidizing pyruvate to alterations in [ATP], [ADP], and inorganic phosphate ([Pi]) were characterized over a range of steady-state levels of extramitochondrial [ATP], [ADP], and [Pi]. Evolution of the steady states of the measured variables with the flux of respiration shows that: (1) a higher phosphorylation potential is achieved by mitochondria at higher [Pi] for a given flux of respiration; (2) the time hierarchy of oxidative phosphorylation is given by phosphorylation subsystem, electron transport chain, and substrate dehydrogenation subsystems listed in increasing order of their response times; (3) the matrix ATP hydrolysis mass action ratio [ADP] × [Pi]/[ATP] provides feedback to the substrate dehydrogenation flux over the entire range of respiratory flux examined in this study; and finally, (4) contrary to previous models of regulation of oxidative phosphorylation, [Pi] does not modulate the activity of complex III.  相似文献   

14.
A study on the effect of anandamide (AEA) in energy coupling of rat liver mitochondria is presented. Micromolar concentrations of AEA, while almost ineffective on substrate supported oxygen consumption rate and on uncoupler stimulated respiration, strongly inhibited the respiratory state III. AEA did not change the rate and the extent of substrate generated membrane potential, but markedly delayed rebuilding by respiration of the potential collapsed by ADP addition. Overall, these data suggest that anandamide inhibits the oxidative phosphorylation process. Direct measurement of the FoF1 ATP synthase activity showed that the oligomycin sensitive ATP synthesis was inhibited by AEA, (IC50, 2.5 μM), while the ATP hydrolase activity was unaffected. Consistently, AEA did not change the membrane potential generated by ATP hydrolysis.  相似文献   

15.
The UCP1 [first UCP (uncoupling protein)] that is found in the mitochondria of brown adipocytes [BAT (brown adipose tissue)] regulates the heat production, a process linked to non-shivering thermogenesis. The activity of UCP1 is modulated by GDP and fatty acids. In this report, we demonstrate that respiration and heat released by BAT mitochondria vary depending on the respiratory substrate utilized and the coupling state of the mitochondria. It has already been established that, in the presence of pyruvate/malate, BAT mitochondria are coupled by faf-BSA (fatty-acid-free BSA) and GDP, leading to an increase in ATP synthesis and mitochondrial membrane potential along with simultaneous decreases in both the rates of respiration and heat production. Oleate restores the uncoupled state, inhibiting ATP synthesis and increasing the rates of both respiration and heat production. We now show that in the presence of succinate: (i) the rates of uncoupled mitochondria respiration and heat production are five times slower than in the presence of pyruvate/malate; (ii) faf-BSA and GDP accelerate heat and respiration as a result and, in coupled mitochondria, these two rates are accelerated compared with pyruvate/malate; (iii) in spite of the differences in respiration and heat production noted with the two substrates, the membrane potential and the ATP synthesized were the same; and (iv) oleate promoted a decrease in heat production and respiration in coupled mitochondria, an effect different from that observed using pyruvate/malate. These effects are not related to the production of ROS (reactive oxygen species). We suggest that succinate could stimulate a new route to heat production in BAT mitochondria.  相似文献   

16.
1. Uncoupled oxidative phosphorylation in isolated guinea pig brown-adipose-tissue mitochondria is reflected by a low phosphorylation state of adenosine phosphates in the mitochondrial matrix and in the extramitochondrial space during oxidation of succinate or glycerol 1-phosphate in the presence of serum albumin and 100 muM ADP. Recoupling of respiration and phosphorylation in the mitochondria is indicatdd by a dramatic increase in the phosphorylation state of adenine nucleotides in both compartments, when substrates inducing substrate level phosphorylation are respired. In this case ATP/ADP ratios in the extramitochondrial compartment are 10-15 times higher than in the mitochondrial matrix. 2. Recoupling mediated by substrate level phosphorylation depends on the presence of extramitochondrial adenosine phosphate and on intact adenine nucleotide translocation. In the presence of substrate level phosphorylation the amount of extramitochondrial ADP required to restore energy coupling can be extremely low (20 muM ADP or 10 nmol ADP/mg mitochondrial protein respectively). If substrate level phosphorylation is prevented by rotenone or in the presence of atractyloside, 20-50 times higher amounts of extramitochondrial adenine nucleotides are necessary to cause coupled oxidative phosphorylation. The recoupling effect of ATP is significantly stronger than that of ADP. 3. GDP (100 muM) causes a rapid increase of the ATP/ADP ratio in both compartments which is independent of substrate level phosphorylation as well as of the extramitochondrial adenosine phosphate concentration and the adenine nucleotide carrier. 4. The amount of extramitochondrial adenosine phosphate in guinea pig brown-adipose-tissue (18 nmol/mg mitochondrial protein or 2.5 mM respectively) would suffice for recoupling of oxidative phosphorylation mediated by substrate level phosphorylation under conditions in vitro; this suggests that substrate level phosphorylation is of essential importance in brown fat in vivo with respect to energy conditions in the tissue during different states of thermogenesis.  相似文献   

17.
It has been proposed that hexokinase bound to mitochondria occupies a preferred site to which ATP from oxidative phosphorylation is channeled directly (Bessman, S. (1966) Am. J. Medicine 40, 740-749). We have investigated this problem in isolated Zajdela hepatoma mitochondria. Addition of ADP to well-coupled mitochondria in the presence of an oxidizable substrate initiates the synthesis of glucose 6-phosphate via bound hexokinase. This reaction is only partially inhibited by oligomycin, carboxyatractyloside, carbonyl cyanide m-chlorophenylhydrazone (CCCP) or any combination of these, suggesting a source of ATP in addition to oxidative phosPhorylation. This source appears to be adenylate kinase, since Ado2P5, an inhibitor of the enzyme, suppresses hexokinase activity by about 50% when added alone or suppresses activity completely when added together with any of the inhibitors of oxidative phosphorylation. Ado2P5 does not uncouple oxidative phosphorylation nor does it inhibit ADP transport (state 3 respiration) or hexokinase. The relative amount of ATP contributed by adenylate kinase is dependent upon the ADP concentration. At low ADP concentrations, glucose phosphorylation is supported by oxidative phosphorylation, but as the adenine nucleotide translocator becomes saturated the ATP contributed by adenylate kinase increases due to the higher apparent Km of the enzyme. Under conditions of our standard experiment ([ADP] = 0.5 mM), adenylate kinase provides about 50% of the ATP used by hexokinase in well-coupled mitochondria. In spite of this, externally added ATP supported higher initial rates of hexokinase activity than ADP. Our findings demonstrate that oxidative phosphorylation is not a specific or preferential source of ATP for hexokinase bound to hepatoma mitochondria. The apparent lack of a channeling mechanism for ATP to hexokinase in these mitochondria is discussed.  相似文献   

18.
The possible relevance of D-glucose phosphorylation by mitochondria-bound hexokinase to the control of respiration was examined in mitochondria prepared from either tumoral pancreatic islet cells (RINm5F line) or normal rat liver. In both systems, ATP generated by mitochondria exposed to ADP and succinate could serve as a substrate for the phosphorylation of D-glucose. However, after exposure to exogenous ADP in the presence of succinate, only mitochondria isolated from RINm5F cells displayed a sizeable increase in O2 consumption in response to a subsequent administration of D-glucose. In this respect, the discrepancy between mitochondria from islet cells and liver, respectively, was found to be attributable to the much lower hexokinase activity, relative to respiratory rate, in liver than in RINm5F cell mitochondria. It is speculated that the coupling between hexose phosphorylation and respiration in islet cells may prime the mitochondria to generate ATP during the early metabolic and secretory response to a rise in extracellular D-glucose concentration.  相似文献   

19.
Although dietary copper deficiency causes physiological, morphological, and biochemical abnormalities in cardiac mitochondria, the relationship observed between abnormalities of mitochondrial structure and function have been inconsistent in previous studies. The purpose of the present study was to re-evaluate the respiration rates of cardiac mitochondria from copper-deficient rats and to use several drugs that uncouple and inhibit mitochondrial respiration in order to clarify the mechanisms of mitochondrial dysfunction found in several laboratories. Copper deficiency reduced state 4 and state 3 cardiac mitochondrial respiration rates with all substrates tested. However, neither the ratio of ADP/oxygen consumed nor the acceptor control index was affected by copper deficiency. Cardiac mitochondria of copper-deficient rats showed a resistance to respiratory blockade by oligomycin and an increased ability to hydrolyze ATP in the presence of oligomycin compared with mitochondria of copper-adequate rats. This suggests that copper deficiency affects the function of the cardiac mitochondrial ATP synthase.  相似文献   

20.
We studied the effects and mode of action of epinephrine on the oxidative phosphorylation of rat liver mitochondria. With either succinate or beta-hydroxybutyrate as substrate, i.v. injection of 1.5 microgram/100 g epinephrine increased the respiratory rates by 30-40% in state 3 (with ADP), and by 20-30% in state 4 (after ADP phosphorylation), so that the respiratory control ratio (state 3/state 4) changed little. The respiratory stimulation by epinephrine was maximal 20 minutes after its injection. The action of epinephrine on mitochondria was blocked by pretreatment of the animals with the alpha 1-antagonist prazosin but not by treatment with the beta-antagonist propranolol. I. v. injection of 10 micrograms/100 g phenylephrine evoked the same mitochondrial response as epinephrine. I. v. administration of 50 micrograms/100 g dibutyryl cyclic AMP enhanced glycaemia but did not affect mitochondrial respiration. Epinephrine therefore has an alpha 1-type of action on mitochondrial oxidative phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号