首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intracellular progesterone receptor (PR) in the mammalian ovary is a part of the physiological pathway that facilitates ovulation. Two PR isoforms (A and B) exist, with different molecular and biological functions. Previous studies have revealed that the cellular ratio of the PR isoforms is important for progesterone-responsive tissues and is under developmental control in different species. However, the relative expression of PR isoforms in the ovary is unknown. In this study we have demonstrated first that the expression of both PR isoforms in mouse granulosa cells was rapidly up-regulated by hCG treatment and dramatically down-regulated when the granulosa cells were undergoing luteinization. The relative level of protein expression of the A and B forms was 2:1 and the highest total PR protein expression was found after hCG stimulation. Second, we demonstrated that the expression of PR protein was specific to granulosa cells of periovulatory follicles and was absent in undifferentiated granulosa cells of growing follicles. It was not detected in other cell types (i.e., corpora lutea or any stage of follicles with features of apoptosis). Third, we demonstrated that treatment with the PR antagonist RU 486 in vivo resulted in down-regulation of both isoforms in parallel with increased activation of caspase-3, a decreased level of proliferating cell nuclear antigen, and a reduced rate of ovulation. Fourth, we demonstrated, in vitro, that the PR antagonists RU 486 and Org 31710 increased internucleosomal DNA fragmentation parallel with a decrease in DNA synthesis in granulosa cells, which express PR. These results indicate that PR and its isoforms participate in regulation of ovulation, along with suppression of granulosa cell apoptosis and promotion of cell survival in the mouse ovary.  相似文献   

2.
3.
This study was designed to measure ovarian hormones prior to and during the first estrous cycle in guinea pigs. Blood was obtained from 12 animals throughout the first estrous cycle. Ovaries and peripheral serum were obtained from 25 additional animals at various stages of development prior to and after first ovulation. Estradiol, progesterone, androstenedione, and testosterone were measured in all sera and half of the ovaries. The remaining ovaries were fixed for histology. Serum estradiol was nondetectable until a few days before first ovulation, but was present in the ovary throughout development. Serum progesterone was nondetectable until the day of ovulation, but the luteal phase pattern was similar to that observed in adults. Serum androgens were detectable throughout development, with androstenedione higher than testosterone. The immature ovary contained more testosterone than androstenedione, but this pattern was reversed after ovulation. These results indicate that the immature ovary in the guinea pig contains minimal amounts of estradiol and progesterone, the first estrous cycle is similar to that in adults, and that the pattern of ovarian androgen content changes during the peripubertal period.  相似文献   

4.
Laparoscopic observations of morphological changes of the ovary during the ovarian cycle in conjunction with radioimmunoassay of serum progesterone and estradiol-17β was investigated as a method of monitoring the ovarian cycle in the common marmoset. In the common marmoset, plural follicles first appeared in each ovary five days prior to ovulation. At three to four days prior to ovulation one or two follicles developed into translucent blisters on the surface of the ovary. As the follicles filled with follicular fluid, they became larger and clearer until one to two days prior to ovulation, at which time they formed well defined, transparent bubbles protruding from the surface of the ovary. After ovulation, the ovulation point could be detected at the center of the follicle, sometimes surrounded by a corpus of engorged blood vessels. Ovulations of the plural follicles were not simultaneous, and due to the time lag ovulations took at least 12 to 20 hrs in four out of seven animals examined. After two to five days of ovulation the corpus hemorragicum, a bright red protrusion made of tissue and blood disrupted by ovulation, was found. Subsequently, the color of the formatted corpus luteum changed from dark-red to yellow then to yellow white. While the corpus luteum remained reddish in color serum progesterone was maintained at as high levels as in the luteal phase. There was no mature follicle or corpus luteum in subordinate female ovaries.  相似文献   

5.
Two experiments were conducted to: 1) determine the time during the procine estrous cycle when compensation in ovulation rate after unilateral ovariectomy (ULO) ceases to be complete, 2) compare the follicle selection process in gilts selected for high ovulation rate with unselected control gilts and 3) determine the number of follicles on the right ovary at various stages of the estrous cycle. Experiment I included 25 crossbred gilts, while Experiment II included 17 gilts selected for high ovulation rate and 16 unselected control gilts. The right ovary was removed via a mid-ventral laparotomy on either day 13, 15, 17 or 19 of the cycle. In Experiment I, compensation in ovulation rate ceased between days 13 and 15; whereas, in Experiment II, cessation occurred between days 15 and 17. Selected and control gilts responded alike to ULO, indicating similarity in the follicle selection process. Follicle numbers in the right ovary showed a general decline, especially between days 17 and 19, indicating that atresia was occurring during the follicular phase. The results indicate that the selection of ovarian follicles for ovulation at the ensuing estrus occurs before day 17 of the porcine estrous cyle.  相似文献   

6.
Ewes were unilaterally ovariectomized and/or hypophysectomized and treated with PMSG and hCG. For a given gonadotrophin treatment the ovulation rate per ewe was maintained, i.e. the ovulation rate of the remaining ovary was significantly increased (P less than 0.05), after the removal of one ovary in hypophysectomized and in pituitary-intact ewes. It is concluded that compensation of ovulation rate in the remaining ovary after unilateral ovariectomy in the sheep may be independent of feedback from the ovary and the release of gonadotrophins from the pituitary gland.  相似文献   

7.
本文是对已达性成熟年龄的池养和江河雌性草鱼产卵前后卵巢组织学结构的研究。实验结果证明草鱼是一次产卵类型。经人工催产后的雌性草鱼,由于亲鱼的成熟程度存在个体间的差异,有的全产,有的部分产。在湘江天然产卵场捕得的雌性草鱼,也有全产和部分产的。人工催产全产后的卵巢组织学结构是Ⅰ、Ⅱ时相,部分产后的卵巢组织学结构是Ⅰ、Ⅱ和Ⅳ(Ⅳ+、Ⅳ++)时相,已达满熟阶段但未经人工催产的卵巢组织学结构是Ⅰ、Ⅱ和Ⅳ(Ⅳ+++)时相,以上都未发现有处于Ⅲ时相的卵母细胞。从江河天然产卵场捕得的全产、部分产和尚未产卵的雌性草鱼的卵巢组织学结构,与上述结果一致。证实由Ⅲ时相到Ⅳ时相是同步性的。5月全产后的雌性草鱼,其卵巢组织学结构在6-9月内处于第Ⅱ期,没有新的Ⅳ时相卵母细胞。因此,夏季全产后的雌性草鱼,不可能在当年夏季或秋季完成由Ⅱ-Ⅲ-Ⅳ时相的发育程序。草鱼的卵巢成熟系数在繁殖季节只出现一次高峰。    相似文献   

8.
During the reproductive cycle, ovarian follicles undergo major tissue-remodeling involving vascular changes and proteolysis. Anticoagulant heparan sulfate proteoglycans (aHSPGs) are expressed by granulosa cells during the development of the ovarian follicle. The function of aHSPGs in the ovary is unknown, but they might be involved in proteolysis control through binding and activation of serine protease inhibitors. To identify functional interactions between aHSPGs and heparin-binding protease inhibitors in the follicle, we have coordinately localized aHSPGs, antithrombin III, protease nexin-1, and plasminogen activator inhibitor-1 in the rat ovary during natural and gonadotropin-stimulated cycles. Anticoagulant HSPGs were visualized by autoradiography of cryosections incubated with 125I-antithrombin III, and protease inhibitors were assessed by immunohistochemistry and Northern blot hybridization. Anticoagulant HSPGs were expressed in follicles before ovulation, were transiently decreased in postovulatory follicles, and were abundant in the corpus luteum, mainly on capillaries. Anticoagulant HSPGs were colocalized with protease nexin-1 in follicles from the early antral stage until ovulation, with antithrombin III in the preovulatory stage and after ovulation, and with plasminogen activator inhibitor-1 in the corpus luteum. These data demonstrate that aHSPGs are critically expressed in the ovary to interact sequentially with protease nexin-1, antithrombin III, and plasminogen activator inhibitor-1 during the cycle. The specificity of these inhibitors is shifted toward thrombin inhibition in the presence of heparin, suggesting that aHSPGs direct their action to control fibrin deposition in the follicle. The occupation of aHSPGs antithrombin-binding sites by mutant R393C antithrombin III, injected in the ovarian bursa, decreased ovulation efficiency, further supporting the involvement of aHSPGs in the ovulation process.  相似文献   

9.
This report describes the dynamics of oocyte growth during vitellogenesis in a population of virgin female rainbow trout. Indices of ovarian development increased dramatically during the period of study: the gonadosomatic index (GSI) increased over 50-fold, reaching a peak of 20 just before ovulation; the mean oocyte diameter increased from less than 1 mm to 5.4 mm; and plasma levels of vitellogenin increased from less than 1.5 mg/ml to 25 mg/ml. There were no changes in the numbers of developing oocytes (measuring 0.5 mm or greater in diameter) from the time when the majority of oocytes undergoing secondary development had entered vitellogenesis in August to ovulation in February (averaging 4000 oocytes per fish). The increase in ovary weight during vitellogenesis was, therefore, due to an increase in the size of oocytes rather than to recruitment of more maturing oocytes. The numbers of vitellogenic oocytes in the ovary during the entire study also suggested that atresia of vitellogenic oocytes does not play a prominent role in determining fecundity. During early vitellogenesis, the volume of maturing oocytes within an ovary varied by as much as 250-fold. From September onwards, when all oocytes to be ovulated that season had entered vitellogenesis, a gradual uniformity in size began to develop, such that at ovulation, in February, all the eggs were very similar in size (there was less than a 2-fold variation in volume). The pattern of growth of oocytes in an ovary during vitellogenesis suggests that growth between oocytes is closely coordinated.  相似文献   

10.
Immunocytochemical localization of steroidogenic enzymes, cytochrome P450 side chain cleavage, 17-alpha-hydroxylase and aromatase, was performed in the ovaries of Scotophilus heathi during reproductive cycle, with reference to the period of delayed ovulation. Moderate immunoreactivity of side chain cleavage enzyme and 17-alpha-hydroxylase was observed mainly in thecal cells and interstitial cells of the ovarian stroma during quiescence. Thecal cells positive for 17-alpha-hydroxylase were found even around the primary follicles. The peak immunoreactivity for all the three enzymes was observed during recrudescence. It coincided with high circulating steroid levels during this period. In the stroma, immunoreactivity for side chain cleavage and 17-alpha-hydroxylase was so extensive that it almost occupied the entire interfollicular area of the ovary. Aromatase immunoreactivity declined, but side chain cleavage enzyme and 17-alpha-hydroxylase remained extensive during the period of delayed ovulation. This suggests a high androgen and low estrogen synthesis during the period of delayed ovulation. There was a marked decline in 17-alpha-hydroxylase and an increase in aromatase immunoreactivity during the preovulatory period, suggesting a decrease in androgen and increase in estrogen synthesis. The results suggest thecal cells and interstitial cells of the stroma as the major site of steroidogenesis in the ovary of S. heathi. Over production of androgen is attributed to the extensive development of 17-alpha-hydroxylase positive interstitial cells in the ovarian stroma, and this may be responsible for delayed ovulation in Scotophilus heathi.  相似文献   

11.
12.
13.
To investigate the factors contributing to the different ovulation rates observed in two strains of sheep (Booroola 5.2, Merino 1.2), in-vivo monitoring of follicular kinetics followed by histological examination of both ovaries was performed during the late luteal and follicular phases. Ewes of both strains were either ovariectomized at Day 13, or had the 3 largest follicles of each ovary ink-labelled at Day 13 and were ovariectomized at Day 15, or had the 3 largest follicles of each ovary ink-labelled at Days 13 and 15 and were ovariectomized 16 h after the beginning of oestrus (N = 6 per time per strain). In another experiment, the age effects on the follicular populations of these two strains were also studied. There were 2-4 times more primordial follicles and 1.5-2 times more preantral follicles in the ovaries of Booroola than in control Merino ewes, although the number of antral follicles was the same. The percentage of normal follicles in this population was higher in Merino than Booroola ovaries. In Booroola ewes, there was no correlation between the number of antral follicles per ovary and the ovulation rate at the previous cycle (r = 0.22). This suggests that follicle numbers do not play a key role in the high ovulation rate of the Booroola strain. The number of follicles initiating growth from the primordial pool, the number of growing follicles disappearing at the preantral stage, the pattern of antrum development, granulosa cell multiplication and appearance of atresia differed between strains. The reasons for the high ovulation rate of the Booroola strain became clear when preovulatory enlargement was followed by ink labelling. An extended period of time during which recruitment of ovulatory follicles takes place, together with a low incidence of selection and the ability of the follicles to wait for ovulation are the features involved in this high ovulation rate.  相似文献   

14.
Profound hormonally controlled tissue remodelling occurs in the equine ovary for follicle growth and development, and also for the alteration in follicle shape directed towards the ovulation fossa, the site where ovulation occurs. The aim of this study was to examine the spatial and temporal regulation of matrix metalloproteinases (MMP)-2 and MMP-9, important enzymes in tissue remodelling, during follicle growth, and ovulation. Using gelatin substrate zymography, we measured these MMPs in follicular fluid of large anovulatory follicles collected during spring transition, early dominant follicles (> 23 mm), and at oestrus in follicles approximately 3 days prior to ovulation, and post-hCG treatment when ovulation was predicted in approximately 4 h. The most abundant activity detected in follicular fluid was MMP-2, although there were no changes in secretion or activation in association with ovulation. The activity of MMP-9 was detected in lower amounts, with no changes prior to ovulation, although it decreased significantly (P < 0.05) post-hCG treatment. At oestrus, when different regions of the ovary were maintained in explant culture for 24 h, there were no significant changes in either MMP-2 or MMP-9 secretion by stromal tissues collected at the ovarian fossa, adjacent to the preovulatory follicle but away from the fossa, and a further site remote from the preovulatory follicle. Over this same time period, follicular progesterone (P < 0.01) and oestradiol (P < 0.05) increased significantly, although oestradiol tended to decrease after hCG administration. These findings indicate that MMP-2 and MMP-9 are not key acute regulators for the changes in follicle shape immediately prior to ovulation.  相似文献   

15.
The ovulation induction property of clomiphene citrate (CC) and human chorionic gonadotropin (hCG) was studied in Scotophilius heathi, an Indian tropical vespertilionid bat, during the period of delayed ovulation between December to early January. The results of the study showed that 10 microg of CC alone was ineffective to induce ovulation, whereas 100 microg CC and 10 IU hCG alone induced ovulation. A significant (P < 0.01) increase in the ovulation rate was observed when 10 microg CC followed by 10 IU hCG, compared to 10 IU hCG and 100 microg CC alone groups. Finally, CC at a 100 microg dose, followed by 10 IU hCG, produced superovulation (14.00 +/- 0. 70), which is significantly different in comparison to all other groups. This is the first report of ovulation induced by CC in the Indian tropical bat as well as in any animal model that exhibits temporary anovulation similar to polycystic ovary syndrome (PCOD) during the normal physiology of reproduction.  相似文献   

16.
促性腺激素诱导猕猴排卵周期中卵巢纤溶酶...   总被引:3,自引:1,他引:2  
刘以训  邹如金 《生理学报》1991,43(5):472-479
Changes of plasminogen activator (PA) and its inhibitor (PAI-1) activity and antigen have been investigated during PMSG/hCG induced ovulation in rhesus monkeys. It has been demonstrated that the ovarian tissue type PA (tPA) activity, which reaches maximum prior to ovulation and declines thereafter, is closely related to follicular rupture; significant increases in urokinase type PA (uPA) only occurs in granulosa cells after ovulation. Since the secretory activity of ovarian PAI-1 reaches its peak level 12-24 h earlier than tPA the rapid decrease in PAI-1 activity in the approach of ovulation is correlated with the elevation of tPA activity. It is, therefore, suggested that a counterbalance of tPA and PAI-1 activity within the ovary may play an important role in the ovulation mechanism, whereas uPA may be involved in the regulation of corpus luteum formation.  相似文献   

17.
The aim of this study was to evaluate the effects of luteinizing hormone (LH), follicle-stimulating hormone (FSH), insulin, and insulin-like growth factor-1 (IGF-1) on ovarian androstenedione synthesis to understand the mechanism responsible for delayed ovulation in Scotophilus heathi. We found that LH stimulated a dose-dependent increase in androstenedione synthesis by the ovary in vitro. This study also showed a clear seasonal variation in the ability of the ovary to produce androstenedione in vitro in response to LH and FSH stimulation. In response to LH and FSH, maximum quantities of androstenedione were produced during recrudescence in November. The same doses of gonadotropins during the preovulatory period in February stimulated comparatively low androstenedione secretion by the ovary. On the basis of these data, we suggest that in S. heathi, ovarian responsiveness to LH and FSH peaks during recrudescence. This study also showed a seasonal variation in the effects of insulin and IGF-1 on ovarian androstenedione production in vitro. Peak ovarian responsiveness to insulin and IGF-1 was observed during quiescence in September. It is hypothesized that increased insulin/IGF-1 sensitivity during September may be responsible for increased responsiveness to LH. Increased LH release, if coincident with the period of enhanced ovarian responsiveness to LH, may result in the excessive androstenedione production responsible for delayed ovulation in S. heathi.  相似文献   

18.
Total follicular populations in ewes of high and low ovulation rates.   总被引:1,自引:0,他引:1  
The total ovarian follicular populations were studied in two breeds of ewes which differed greatly in their ovulation rates. Thus 8 Romanov (mean ovulation rate 3.1) and 12 Ile-de-France ewes (mean ovulation rate 1.4) were ovariectomized at oestrus during the breeding season. Each right ovary and 3 left ovaries were sectioned at 7 micron and examined microscopically. The number of small follicles, i.e. with 2 or less layers of granulosa cells, was estimated by a tested sampling procedure whilst all larger follicles were measured and arranged into classes. There were half as many small follicles but 1.5--2 times more large follicles in the ovaries of the Romanov ewes compared to those of the Ile-de-France ewes. The number of atretic follicles was approximately the same in both breeds and does not explain the difference observed in ovulation rate. It is concluded that the higher ovulation rate in the Romanov ewe is due to the greater number of large follicles available to be stimulated for ovulation.  相似文献   

19.
Laparoscopic observations of ovaries before and after ovulation were made in 74 cycles in 39 Japanese monkeys (Macaca fuscata). Lengths of menstrual cycles, the follicular phase and the luteal phase in these animals were 25.3±2.8 days, 13.2±1.4 days, and 12.8±2.3 days, respectively. Ovarian morphology during the menstrual cycle in the Japanese monkey agreed in some features and disagreed in others, with findings inMacaca mulatta andMacaca fascicularis reported in the previous papers using laparotomy or laparoscopy. Follicular appearance before and after ovulation varied so considerably from ovary to ovary that it was hard to predict the accurate ovulation time or to estimate the precise age of corpus luteum by means of observations on the morphological appearance only. However, diagnosis of whether ovulation had already occurred or not, was possible when careful observations were made, although some ovaries without haemorrhagic and luteinized appearance after ovulation were very similar to pre-ovulatory follicle. Clear luteinization was detected without fail in many cases three days after ovulation. This study was supported by the Scientific Research Fund of the Ministry of Education of Japan (No. 856165).  相似文献   

20.
The plasminogen-activator system provides proteolytic activity in many biological processes. The regulation of plasminogen activation may occur at many levels including the synthesis and secretion of plasminogen activators (PA) and the specific inhibition of PA activity by inhibitors. PA-inhibitor type-1 (PAI-1) is an efficient inhibitor of tissue-type PA (tPA) and urokinase-type PA (uPA) that may therefore be instrumental for the control of plasminogen activation. To investigate if coordinated regulation of PA and PA inhibitors take place in vivo in response to physiological signals, we have examined the regulation of PAI-1 and tPA in the ovary during gonadotropin-induced ovulation. We found that PAI-1, as well as tPA activity and mRNA levels, were coordinately regulated by gonadotropins in a time-dependent and cell-specific manner, such that a surge of PA-activity was obtained just prior to ovulation. Both theca-interstitial and granulosa cells synthesized PAI-1, but their maximal PAI-1 expression occurred at different times during the periovulatory period, ensuring inhibition of proteolytic activity in ovarian extra cellular compartments both before and after ovulation. The coordinated regulation of tPA and PAI-1 in the ovary may fine-tune the peak of PA activity which may be important for the regulation of the ovulatory process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号