首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
BphC derived from Pseudomonas sp. strain KKS102, an extradiol type catecholic dioxygenase, is a non-heam iron-containing enzyme, playing an important role in the degradation of biphenyl/PCB (Poly Chlorinated Biphenyls) in the microbe. Although we had earlier solved the crystal structure of KKS102 BphC, it was the inactive form with Fe(III) in the active site. In order to determine the active form structure, BphC was re-activated by anaerobic incubation with Fe(II) and ascorbate, and crystallized anaerobically. The crystal structures of activated BphC and its substrate complex (E x S complex) were determined at 2.0 A resolution under cryogenic condition. In addition, crystal structures of unactivated BphC in substrate free and complex forms were also re-determined. Comparison of activated and unactivated E x S complexes reveals that the orientation of the bound substrate in the active site is significantly different between the two. The structural comparison of the substrate free and complex forms of activated BphC show certain small conformational shifts around the active site upon substrate binding. As a result of the conformational shifts, His194, which has been suggested as the catalytic base, takes part in a weak hydrogen bond with hydroxyl group of the substrate.  相似文献   

2.
di Luccio E  Wilson DK 《Biochemistry》2008,47(13):4039-4050
Quinolinic acid phosphoribosyl transferase (QAPRTase, EC 2.4.2.19) is a 32 kDa enzyme encoded by the BNA6 gene in yeast and catalyzes the formation of nicotinate mononucleotide from quinolinate and 5-phosphoribosyl-1-pyrophosphate (PRPP). QAPRTase plays a key role in the tryptophan degradation pathway via kynurenine, leading to the de novo biosynthesis of NAD (+) and clearing the neurotoxin quinolinate. To improve our understanding of the specificity of the eukaryotic enzyme and the course of events associated with catalysis, we have determined the crystal structures of the apo and singly bound forms with the substrates quinolinate and PRPP. This reveals that the enzyme folds in a manner similar to that of various prokaryotic forms which are approximately 30% identical in sequence. In addition, the structure of the Michaelis complex is approximated by PRPP and the quinolinate analogue phthalate bound to the active site. These results allow insight into the kinetic mechanism of QAPRTase and provide an understanding of structural diversity in the active site of the Saccharomyces cerevisiae enzyme when compared to prokaryotic homologues.  相似文献   

3.
BACKGROUND: Bacillus stearothermophilus glycerol dehydrogenase (GlyDH) (glycerol:NAD(+) 2-oxidoreductase, EC 1.1.1.6) catalyzes the oxidation of glycerol to dihydroxyacetone (1,3-dihydroxypropanone) with concomitant reduction of NAD(+) to NADH. Analysis of the sequence of this enzyme indicates that it is a member of the so-called iron-containing alcohol dehydrogenase family. Despite this sequence similarity, GlyDH shows a strict dependence on zinc for activity. On the basis of this, we propose to rename this group the family III metal-dependent polyol dehydrogenases. To date, no structural data have been reported for any enzyme in this group. RESULTS: The crystal structure of B. stearothermophilus glycerol dehydrogenase has been determined at 1.7 A resolution to provide structural insights into the mechanistic features of this family. The enzyme has 370 amino acid residues, has a molecular mass of 39.5 kDa, and is a homooctamer in solution. CONCLUSIONS: Analysis of the crystal structures of the free enzyme and of the binary complexes with NAD(+) and glycerol show that the active site of GlyDH lies in the cleft between the enzyme's two domains, with the catalytic zinc ion playing a role in stabilizing an alkoxide intermediate. In addition, the specificity of this enzyme for a range of diols can be understood, as both hydroxyls of the glycerol form ligands to the enzyme-bound Zn(2+) ion at the active site. The structure further reveals a previously unsuspected similarity to dehydroquinate synthase, an enzyme whose more complex chemistry shares a common chemical step with that catalyzed by glycerol dehydrogenase, providing a striking example of divergent evolution. Finally, the structure suggests that the NAD(+) binding domain of GlyDH may be related to that of the classical Rossmann fold by switching the sequence order of the two mononucleotide binding folds that make up this domain.  相似文献   

4.
S-adenosylmethionine decarboxylase (AdoMetDC) is a critical regulatory enzyme of the polyamine biosynthetic pathway and belongs to a small class of pyruvoyl-dependent amino acid decarboxylases. Structural elucidation of the prokaryotic AdoMetDC is of substantial interest in order to determine the relationship between the eukaryotic and prokaryotic forms of the enzyme. Although both forms utilize pyruvoyl groups, there is no detectable sequence similarity except at the site of pyruvoyl group formation. The x-ray structure of the Thermatoga maritima AdoMetDC proenzyme reveals a dimeric protein fold that is remarkably similar to the eukaryotic AdoMetDC protomer, suggesting an evolutionary link between the two forms of the enzyme. Three key active site residues (Ser55, His68, and Cys83) involved in substrate binding, catalysis or proenzyme processing that were identified in the human and potato AdoMet-DCs are structurally conserved in the T. maritima AdoMetDC despite very limited primary sequence identity. The role of Ser55, His68, and Cys83 in the self-processing reaction was investigated through site-directed mutagenesis. A homology model for the Escherichia coli AdoMetDC was generated based on the structures of the T. maritima and human AdoMetDCs.  相似文献   

5.
Coproporphyrinogen oxidase (CPO) is an essential enzyme that catalyzes the sixth step of the heme biosynthetic pathway. Unusually for heme biosynthetic enzymes, CPO exists in two evolutionarily and mechanistically distinct families, with eukaryotes and some prokaryotes employing members of the highly conserved oxygen-dependent CPO family. Here, we report the crystal structure of the oxygen-dependent CPO from Saccharomyces cerevisiae (Hem13p), which was determined by optimized sulfur anomalous scattering and refined to a resolution of 2.0 A. The protein adopts a novel structure that is quite different from predicted models and features a central flat seven-stranded anti-parallel sheet that is flanked by helices. The dimeric assembly, which is seen in different crystal forms, is formed by packing of helices and a short isolated strand that forms a beta-ladder with its counterpart in the partner subunit. The deep active-site cleft is lined by conserved residues and has been captured in open and closed conformations in two different crystal forms. A substratesized cavity is completely buried in the closed conformation by the approximately 8-A movement of a helix that forms a lid over the active site. The structure therefore suggests residues that likely play critical roles in catalysis and explains the deleterious effect of many of the mutations associated with the disease hereditary coproporphyria.  相似文献   

6.
Escherichia coli L-arabinose isomerase (ECAI; EC 5.3.1.4) catalyzes the isomerization of L-arabinose to L-ribulose in vivo. This enzyme is also of commercial interest as it catalyzes the conversion of D-galactose to D-tagatose in vitro. The crystal structure of ECAI was solved and refined at 2.6 A resolution. The subunit structure of ECAI is organised into three domains: an N-terminal, a central and a C-terminal domain. It forms a crystallographic trimeric architecture in the asymmetric unit. Packing within the crystal suggests the idea that ECAI can form a hexameric assembly. Previous electron microscopic and biochemical studies supports that ECAI is hexameric in solution. A comparison with other known structures reveals that ECAI adopts a protein fold most similar to E. coli fucose isomerase (ECFI) despite very low sequence identity 9.7%. The structural similarity between ECAI and ECFI with regard to number of domains, overall fold, biological assembly, and active site architecture strongly suggests that the enzymes have functional similarities. Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro.  相似文献   

7.
The crystal structure of bovine pancreatic beta-trypsin (BPT) has been determined from a novel orthorhombic crystal form which contains substantially more solvent (filling 57% of the volume of the unit cell) than previously determined orthorhombic (44%) and trigonal (37%) BPT structures. The native and benzamidine-inhibited crystal structures of BPT in ammonium sulphate at pH 5.3 have been determined for the new form by molecular replacement techniques. The structures have been refined at 1.5 A resolution with final R-values of 16.7% and 16.9%, respectively. Comparison with the previously refined old orthorhombic forms shows that the overall conformation of the protein backbone is highly conserved. A great number of previously undefined side-chains have been located in density. At the C terminus an extra ion pair involving lysines 87 and 107 has been revealed. A far more detailed picture of the ordered solvent structure has been derived. Thirty water clusters have been identified. A large water network extends from the calcium binding site to the activation area and the autolysis loop. There is evidence for a water channel reaching from the depth of the specificity pocket to the nearby protein surface which might be involved in the displacement of water molecules upon substrate binding. A sulphate anion which forms hydrogen bonds to the active site residues His57, Ser195 and Gly193 was for the first time positioned in clearly defined electron density. Interaction with the sulphate ion may explain the increase in the pKa value of His57 at high sulphate concentrations which was observed by nuclear magnetic resonance studies of a bacterial serine protease both in crystalline form and in solution. Thus, a His-Ser hydrogen bond will not exist in solvents containing sulphate at low pH (up to at least 6.8) where the imidazole of His57 is protonated. The new crystal form is of considerable interest for substrate binding studies. Wide solvent channels should allow diffusion of large substrates (comparable in size to, e.g. pancreatic trypsin inhibitor) into the enzyme crystal. The active site is accessible; intermolecular contact areas are further remote from the active site than in the old orthorhombic form.  相似文献   

8.
Boulanger MJ  Murphy ME 《Biochemistry》2001,40(31):9132-9141
High-resolution nitrite soaked oxidized and reduced crystal structures of two active site mutants, D98N and H255N, of nitrite reductase (NIR) from Alcaligenes faecalis S-6 were determined to better than 2.0 A resolution. In the oxidized D98N nitrite-soaked structures, nitrite is coordinated to the type II copper via its oxygen atoms in an asymmetric bidentate manner; however, elevated B-factors and weak electron density indicate that both nitrite and Asn98 are less ordered than in the native enzyme. This disorder likely results from the inability of the N delta 2 atom of Asn98 to form a hydrogen bond with the bound protonated nitrite, indicating that the hydrogen bond between Asp98 and nitrite in the native NIR structure is essential in anchoring nitrite in the active site for catalysis. In the oxidized nitrite soaked H255N crystal structure, nitrite does not displace the ligand water and is instead coordinated in an alternative mode via a single oxygen to the type II copper. His255 is clearly essential in defining the nitrite binding site despite the lack of direct interaction with the substrate in the native enzyme. The resulting pentacoordinate copper site in the H255N structure also serves as a model for a proposed transient intermediate in the catalytic mechanism consisting of a hydroxyl and nitric oxide molecule coordinated to the copper. The formation of an unusual dinuclear type I copper site in the reduced nitrite soaked D98N and H255N crystal structures may represent an evolutionary link between the mononuclear type I copper centers and dinuclear Cu(A) sites.  相似文献   

9.
Tobacco etch virus (TEV) protease is a cysteine protease exhibiting stringent sequence specificity. The enzyme is widely used in biotechnology for the removal of the affinity tags from recombinant fusion proteins. Crystal structures of two TEV protease mutants as complexes with a substrate and a product peptide provided the first insight into the mechanism of substrate specificity of this enzyme. We now report a 2.7A crystal structure of a full-length inactive C151A mutant protein crystallised in the absence of peptide. The structure reveals the C terminus of the protease bound to the active site. In addition, we determined dissociation constants of TEV protease substrate and product peptides using isothermal titration calorimetry for various forms of this enzyme. Data suggest that TEV protease could be inhibited by the peptide product of autolysis. Separate modes of recognition for native substrates and the site of TEV protease self-cleavage are proposed.  相似文献   

10.
GTP cyclohydrolase I catalyses the hydrolytic release of formate from GTP followed by cyclization to dihydroneopterin triphosphate. The enzymes from bacteria and animals are homodecamers containing one zinc ion per subunit. Replacement of Cys110, Cys181, His112 or His113 of the enzyme from Escherichia coli by serine affords catalytically inactive mutant proteins with reduced capacity to bind zinc. These mutant proteins are unable to convert GTP or the committed reaction intermediate, 2-amino-5-formylamino-6-(beta-ribosylamino)-4(3H)-pyrimidinone 5'-triphosphate, to dihydroneopterin triphosphate. The crystal structures of GTP complexes of the His113Ser, His112Ser and Cys181Ser mutant proteins determined at resolutions of 2.5A, 2.8A and 3.2A, respectively, revealed the conformation of substrate GTP in the active site cavity. The carboxylic group of the highly conserved residue Glu152 anchors the substrate GTP, by hydrogen bonding to N-3 and to the position 2 amino group. Several basic amino acid residues interact with the triphosphate moiety of the substrate. The structure of the His112Ser mutant in complex with an undefined mixture of nucleotides determined at a resolution of 2.1A afforded additional details of the peptide folding. Comparison between the wild-type and mutant enzyme structures indicates that the catalytically active zinc ion is directly coordinated to Cys110, Cys181 and His113. Moreover, the zinc ion is complexed to a water molecule, which is in close hydrogen bond contact to His112. In close analogy to zinc proteases, the zinc-coordinated water molecule is suggested to attack C-8 of the substrate affording a zinc-bound 8R hydrate of GTP. Opening of the hydrated imidazole ring affords a formamide derivative, which remains coordinated to zinc. The subsequent hydrolysis of the formamide motif has an absolute requirement for zinc ion catalysis. The hydrolysis of the formamide bond shows close mechanistic similarity with peptide hydrolysis by zinc proteases.  相似文献   

11.
The structure of triosephosphate isomerase from Trypanosoma brucei complexed with the competitive inhibitor N-hydroxy-4-phosphono-butanamide was determined by X-ray crystallography to a resolution of 2.84 A. Full occupancy binding of the inhibitor is observed only at one of the active sites of the homodimeric enzyme where the flexible loop is locked in a completely open conformation by crystal contacts. There is evidence that the inhibitor also binds to the second active site of the enzyme, but with low occupancy. The hydroxamyl group of the inhibitor forms hydrogen bonds to the side chains of Asn 11, Lys 13, and His 95, whereas each of its three methylene units is involved in nonpolar interactions with the side chain of the flexible loop residue Ile 172. Interactions between the hydroxamyl and the catalytic base Glu 167 are absent. The binding of this phosphonate inhibitor exhibits three unusual features: (1) the flexible loop is open, in contrast with the binding mode observed in eight other complexes between triosephosphate isomerase and various phosphate and phosphonate compounds; (2) compared with these complexes the present structure reveals a 1.5-A shift of the anion-binding site; (3) this is the first phosphonate inhibitor that is not forced by the enzyme into an eclipsed conformation about the P-CH2 bond. The results are discussed with respect to an ongoing drug design project aimed at the selective inhibition of glycolytic enzymes of T. brucei.  相似文献   

12.
Fumarylacetoacetate hydrolase (FAH) catalyzes the hydrolytic cleavage of a carbon-carbon bond in fumarylacetoacetate to yield fumarate and acetoacetate as the final step of Phe and Tyr degradation. This unusual reaction is an essential human metabolic function, with loss of FAH activity causing the fatal metabolic disease hereditary tyrosinemia type I (HT1). An enzymatic mechanism involving a catalytic metal ion, a Glu/His catalytic dyad, and a charged oxyanion hole was previously proposed based on recently determined FAH crystal structures. Here we report the development and characterization of an FAH inhibitor, 4-(hydroxymethylphosphinoyl)-3-oxo-butanoic acid (HMPOBA), that competes with the physiological substrate with a K(i) of 85 microM. The crystal structure of FAH complexed with HMPOBA refined at 1.3-A resolution reveals the molecular basis for the competitive inhibition, supports the proposed formation of a tetrahedral alkoxy transition state intermediate during the FAH catalyzed reaction, and reveals a Mg(2+) bound in the enzyme's active site. The analysis of FAH structures corresponding to different catalytic states reveals significant active site side-chain motions that may also be related to catalytic function. Thus, these results advance the understanding of an essential catabolic reaction associated with a fatal metabolic disease and provide insight into the structure-based development of FAH inhibitors.  相似文献   

13.
Upon irradiation of aqueous ethylene glycol/water solutions of native chloroperoxidase (CPO) with 60Co-gamma rays at 77K one observes the one-electron reduction of the enzyme active site by radiolytically generated thermolyzed electrons. In the present study the first absorption spectrum of a low-spin ferrous form of CPO is reported which has peaks at 438, 532 and 563 nm, similar to those observed previously for cytochrome P-450. All previously described ferrous forms of CPO are high spin. In order to observe the final results of the CPO reaction with electrons, the spectral changes of native enzyme after room temperature-gamma-irradiation have also been investigated. Evidence of changes is also presented probably connected with disruption of the tertiary structure of enzyme, correlated with decrease of enzyme activity.  相似文献   

14.
The crystal structure of the mitochondrial NAD-malic enzyme from Ascaris suum, in a quaternary complex with NADH, tartronate, and magnesium has been determined to 2.0-A resolution. The structure closely resembles the previously determined structure of the same enzyme in binary complex with NAD. However, a significant difference is observed within the coenzyme-binding pocket of the active site with the nicotinamide ring of NADH molecule rotating by 198 degrees over the C-1-N-1 bond into the active site without causing significant movement of the other catalytic residues. The implications of this conformational change in the nicotinamide ring to the catalytic mechanism are discussed. The structure also reveals a binding pocket for the divalent metal ion in the active site and a binding site for tartronate located in a highly positively charged environment within the subunit interface that is distinct from the active site. The tartronate binding site, presumably an allosteric site for the activator fumarate, shows striking similarities and differences with the activator site of the human NAD-malic enzyme that has been reported recently. Thus, the structure provides additional insights into the catalytic as well as the allosteric mechanisms of the enzyme.  相似文献   

15.
2-Hydroxy-6-ketonona-2,4-diene-1,9-dioic acid 5,6-hydrolase (MhpC) is a 62 kDa homodimeric enzyme of the phenylpropionate degradation pathway of Escherichia coli. The 2.1 A resolution X-ray structure of the native enzyme determined from orthorhombic crystals confirms that it is a member of the alpha/beta hydrolase fold family, comprising eight beta-strands interconnected by loops and helices. The 2.8 A resolution structure of the enzyme co-crystallised with the non-hydrolysable substrate analogue 2,6-diketo-nona-1,9-dioic acid (DKNDA) confirms the location of the active site in a buried channel including Ser110, His263 and Asp235, postulated contributors to a serine protease-like catalytic triad in homologous enzymes. It appears that the ligand binds in two separate orientations. In the first, the C6 keto group of the inhibitor forms a hemi-ketal adduct with the Ser110 side-chain, the C9 carboxylate group interacts, via the intermediacy of a water molecule, with Arg188 at one end of the active site, while the C1 carboxylate group of the inhibitor comes close to His114 at the other end. In the second orientation, the C1 carboxylate group binds at the Arg188 end of the active site and the C9 carboxylate group at the His114 end. These arrangements implicated His114 or His263 as plausible contributors to catalysis of the initial enol/keto tautomerisation of the substrate but lack of conservation of His114 amongst related enzymes and mutagenesis results suggest that His263 is the residue involved. Variability in the quality of the electron density for the inhibitor amongst the eight molecules of the crystal asymmetric unit appears to correlate with alternative positions for the side-chain of His114. This might arise from half-site occupation of the dimeric enzyme and reflect the apparent dissociation of approximately 50% of the keto intermediate from the enzyme during the catalytic cycle.  相似文献   

16.
Organophosphorus compounds (OPs) interfere with the catalytic mechanism of acetylcholinesterase (AChE) by rapidly phosphorylating the catalytic serine residue. The inhibited enzyme can at least partly be reactivated with nucleophilic reactivators such as oximes. The covalently attached OP conjugate may undergo further intramolecular dealkylation or deamidation reactions, a process termed "aging" that results in an enzyme considered completely resistant to reactivation. Of particular interest is the inhibition and aging reaction of the OP compound tabun since tabun conjugates display an extraordinary resistance toward most reactivators of today. To investigate the structural basis for this resistance, we determined the crystal structures of Mus musculus AChE (mAChE) inhibited by tabun prior to and after the aging reaction. The nonaged tabun conjugate induces a structural change of the side chain of His447 that uncouples the catalytic triad and positions the imidazole ring of His447 in a conformation where it may form a hydrogen bond to a water molecule. Moreover, an unexpected displacement of the side chain of Phe338 narrows the active site gorge. In the crystal structure of the aged tabun conjugate, the side chains of His447 and Phe338 are reversed to the conformation found in the apo structure of mAChE. A hydrogen bond between the imidazole ring of His447 and the ethoxy oxygen of the aged tabun conjugate stabilizes the side chain of His447. The displacement of the side chain of Phe338 into the active site gorge of the nonaged tabun conjugate may interfere with the accessibility of reactivators and thereby contribute to the high resistance of tabun conjugates toward reactivation.  相似文献   

17.
Delta-crystallin, the major soluble protein component of avian and reptilian eye lenses, is highly homologous to the urea cycle enzyme, argininosuccinate lyase (ASL). In duck lenses, there are two highly homologous delta crystallins, delta I and delta II, that are 94% identical in amino acid sequence. While delta II crystallin has been shown to exhibit ASL activity in vitro, delta I is enzymatically inactive. The X-ray structure of a His to Asn mutant of duck delta II crystallin (H162N) with bound argininosuccinate has been determined to 2.3 A resolution using the molecular replacement technique. The overall fold of the protein is similar to other members of the superfamily to which this protein belongs, with the active site located in a cleft formed by three different monomers in the tetramer. The active site of the H162N mutant structure reveals that the side chain of Glu 296 has a different orientation relative to the homologous residue in the H91N mutant structure [Abu-Abed et al. (1997) Biochemistry 36, 14012-14022]. This shift results in the loss of the hydrogen bond between His 162 and Glu 296 seen in the H91N and turkey delta I crystallin structures; this H-bond is believed to be crucial for the catalytic mechanism of ASL/delta II crystallin. Argininosuccinate was found to be bound to residues in each of the three monomers that form the active site. The fumarate moiety is oriented toward active site residues His 162 and Glu 296 and other residues that are part of two of the three highly conserved regions of amino acid sequence in the superfamily, while the arginine moiety of the substrate is oriented toward residues which belong to either domain 1 or domain 2. The analysis of the structure reveals that significant conformational changes occur on substrate binding. The comparison of this structure with the inactive turkey delta I crystallin reveals that the conformation of domain 1 is crucial for substrate affinity and that the delta I protein is almost certainly inactive because it can no longer bind the substrate.  相似文献   

18.
Glycine N-methyltransferases (GNMTs) from three mammalian sources were compared with respect to their crystal structures and kinetic parameters. The crystal structure for the rat enzyme was published previously. Human and mouse GNMT were expressed in Escherichia coli in order to determine their crystal structures. Mouse GNMT was crystallized in two crystal forms, a monoclinic form and a tetragonal form. Comparison of the three structures reveals subtle differences, which may relate to the different kinetic properties of the enzymes. The flexible character of several loops surrounding the active site, along with an analysis of the active site boundaries, indicates that the observed conformations of human and mouse GNMTs are more open than that of the rat enzyme. There is an increase in kcat when going from rat to mouse to human, suggesting a correlation with the increased flexibility of some structural elements of the respective enzymes.  相似文献   

19.
The active site of heme catalases is buried deep inside a structurally highly conserved homotetramer. Channels leading to the active site have been identified as potential routes for substrate flow and product release, although evidence in support of this model is limited. To investigate further the role of protein structure and molecular channels in catalysis, the crystal structures of four active site variants of catalase HPII from Escherichia coli (His128Ala, His128Asn, Asn201Ala, and Asn201His) have been determined at approximately 2.0-A resolution. The solvent organization shows major rearrangements with respect to native HPII, not only in the vicinity of the replaced residues but also in the main molecular channel leading to the heme distal pocket. In the two inactive His128 variants, continuous chains of hydrogen bonded water molecules extend from the molecular surface to the heme distal pocket filling the main channel. The differences in continuity of solvent molecules between the native and variant structures illustrate how sensitive the solvent matrix is to subtle changes in structure. It is hypothesized that the slightly larger H(2)O(2) passing through the channel of the native enzyme will promote the formation of a continuous chain of solvent and peroxide. The structure of the His128Asn variant complexed with hydrogen peroxide has also been determined at 2.3-A resolution, revealing the existence of hydrogen peroxide binding sites both in the heme distal pocket and in the main channel. Unexpectedly, the largest changes in protein structure resulting from peroxide binding are clustered on the heme proximal side and mainly involve residues in only two subunits, leading to a departure from the 222-point group symmetry of the native enzyme. An active role for channels in the selective flow of substrates through the catalase molecule is proposed as an integral feature of the catalytic mechanism. The Asn201His variant of HPII was found to contain unoxidized heme b in combination with the proximal side His-Tyr bond suggesting that the mechanistic pathways of the two reactions can be uncoupled.  相似文献   

20.
Infectious pancreatic necrosis virus (IPNV), an aquatic birnavirus that infects salmonid fish, encodes a large polyprotein (NH(2)-pVP2-VP4-VP3-COOH) that is processed through the proteolytic activity of its own protease, VP4, to release the proteins pVP2 and VP3. pVP2 is further processed to give rise to the capsid protein VP2 and three peptides that are incorporated into the virion. Reported here are two crystal structures of the IPNV VP4 protease solved from two different crystal symmetries. The electron density at the active site in the triclinic crystal form, refined to 2.2-A resolution, reveals the acyl-enzyme complex formed with an internal VP4 cleavage site. The complex was generated using a truncated enzyme in which the general base lysine was substituted. Inside the complex, the nucleophilic Ser(633)Ogamma forms an ester bond with the main-chain carbonyl of the C-terminal residue, Ala(716), of a neighboring VP4. The structure of this substrate-VP4 complex allows us to identify the S1, S3, S5, and S6 substrate binding pockets as well as other substrate-VP4 interactions and therefore provides structural insights into the substrate specificity of this enzyme. The structure from the hexagonal crystal form, refined to 2.3-A resolution, reveals the free-binding site of the protease. Three-dimensional alignment with the VP4 of blotched snakehead virus, another birnavirus, shows that the overall structure of VP4 is conserved despite a low level of sequence identity ( approximately 19%). The structure determinations of IPNV VP4, the first of an acyl-enzyme complex for a Ser/Lys dyad protease, provide insights into the catalytic mechanism and substrate recognition of this type of protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号