首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon tetrachloride (CT) is an important groundwater pollutant which is only subject to biotransformation in the absence of oxygen. The anaerobic biotransformation of CT is influenced by electron shuttling compounds. The purpose of this study was to evaluate the impact of redox active vitamins on CT (100 M) metabolism in a methanogenic sludge consortium (0.5 g VSSl-1) supplied with volatile fatty acids as electron donor (0.2 g CODl-1). The redox active vitamins, tested at concentrations ranging from 0.5 to 20 M, were riboflavin (RF) and two forms of vitamin B12, cyanocobalamin (CNB12) and hydroxycobalamin (HOB12), and these were compared with a redox mediating quinone, anthraquinone-2,6-disulfonate (AQDS). Substoichiometric concentrations of RF, CNB12, HOB12 at molar ratios of vitamin:CT as low as 0.005 significantly increased rates of CT-bioconversion. These are the lowest molar ratios of vitamin B12 reported having an impact on dechlorination. Additionally, this study constitutes the first report of RF having a role in reductive dechlorination. At molar ratios of 0.1 vitamin:CT, RF, CNB12, HOB12 increased the first order rate constant of CT bioconversion by 4.0-, 13.3-and 13.6-fold, respectively. The redox active vitamins also enhanced the rates of abiotic CT conversion in heat killed sludge treatments, but the rates were approximately 4- to 5-fold lower than the corresponding vitamin enhanced rates of biological CT conversion. The addition of CNB12 or HOB12 to the live methanogenic sludge consortium increased the yield of inorganic chloride (Cl-) from CT-converted. Chloroform was a transient intermediate in CNB12 or HOB12 supplemented cultures. In contrast, the addition of RF increased the yield of chloroform from CT-converted. Taken as a whole the results clearly demonstrate that very low concentrations of redox active vitamins could potentially play an important role in accelerating the anaerobic the bioremediation of CT as well as influencing the proportions of biotransformation products formed.  相似文献   

2.
Summary Soil was taken from the top 10 cm of a soil column that removed halogenated aliphatic hydrocarbons in the presence of natural gas. This soil was used as an enrichment inoculum to determine that the removals seen in the soil column were in fact of a microbiological nature. Methane served as the source of carbon and energy and was consumed immediately by the enrichments. After several transfers of the enrichments, a stable consortium of at least three bacterial types was obtained. The predominant bacterium was a non-motile, gram-negative coccus. This stable consortium was able to remove chlorinated methanes, ethanes, and ethylenes when grown with methane and oxygen in the headspace. Methane was required for the removals to be observed. Acetylene inhibited the removals, which further suggests the involvement of methanotrophs. Benzene and toluene were removed by the mixed culture with or without methane in the headspace. Fatty acid analysis of the mixed culture resulted in a profile that indicated that the predominant organism was a type II methanotroph. This study provides further evidence that methanotrophic bacteria are capable of cometabolizing a wide range of chlorinated methanes, ethanes, and ethylenes.  相似文献   

3.
Relatively low concentrations of Vitamin B12 are known to accelerate the anaerobic biotransformation of carbon tetrachloride (CT) and chloroform (CF). However, the addition of vitamin B12 for field-scale bioremediation is expected to be costly. The present study considered a strategy to generate vitamin B12 by addition of biosynthetic precursors. One of the precursors, porphobilinogen (PB) involved in the formation of the corrin ring, significantly increased the CT biotransformation rates by 2.7−, 8.8- and 10.9-fold when supplemented at 160, 500 and 900 μM, respectively. A positive control with 10 μM of vitamin B12 resulted in a 5.9-fold increase in the CT-bioconversion rate. PB additions provided high molar yields of inorganic chloride (57% of CT organochlorine), comparable to that obtained with vitamin B12 supplemented cultures. The primary substrate, methanol, known to induce vitamin B12 production in methanogens and acetogens, was required for PB to have a significant impact on CT conversion. The observation suggests that PB’s role was due to stimulating vitamin B12 biosynthesis. The present study therefore provides insights on how to achieve vitamin B12 enhanced rates of CT bioremediation through the use of less complex compounds that are precursors of vitamin B12. Although PB is a costly chemical, its large impact points to corrin ring formation as the rate-limiting step.  相似文献   

4.
Dechlorination was the initial step of 2CB biodegradation in four 2-chlorobenzoate-degrading methanogenic consortia. Selected characteristics of ortho reductive dehalogenation were examined in consortia developed from the highest actively dechlorinating dilutions of the original 2CB consortia, designated consortia M34-9, P20-9, P21-9 and M50-7. In addition to 2-chlorobenzote, all four dilution consortia dehalogenated 4 of 32 additional halogenated aromatic substrates tested, including 2-bromobenzoate; 2,6-dichlorobenzoate; 2,4-dichlorobenzoate; and 2-chloro-5-hydroxybenzoate. Dehalogenation occurred exclusively at the ortho position. Both ortho chlorines were removed from 2,6-dichlorobenzoate. Benzoate was detected from 2-bromobenzoate and 2,6-dichlorobenzoate. 4-Chlorobenzoate and 3-hydroxybenzoate were formed from 2,4-dichlorobenzoate and 2-chloro-5-hydroxybenzoate, respectively. Only benzoate was further degraded. Slightly altering the structure of the parent 'benzoate molecule' resulted in observing reductive biotransformations other than dehalogenation. 2-Chlorobenzaldehyde was reduced to 2-chlorobenzyl alcohol by all four consortia. 2-chloroanisole was O-demethoxylated by three of the four consortia forming 2-chlorophenol. GC-MS analysis indicated reduction of the double bond in the propenoic side chain of 2-chlorocinnamate forming 2-chlorohydrocinnamate. None of the reduction products was dechlorinated. The following were not dehalogenated: 3- and 4-bromobenzoate; 3- and 4-chlorobenzoate; 2-, 3-, and 4-fluorobenzoate; 2-, 3-, and 4-iodobenzoate; 2-, 3-, and 4-chlorophenol; 2-chloroaniline; 2-chloro-5-methylbenzoate; 2,3-dichlorobenzoate; 2,5-dichlorobenzoate; 2,4,5-trichlorophenoxyacetic acid; and 2,4-dichlorophenoxyacetic acid. Consortia M34-9, P20-9, P21-9, and M50-7 dechlorinated 2-chlorobenzoate at 4 mm. Dechlorination rates were highest for consortia P20-9 followed by those of M50-7with rates declining above 2 and 3mm 2CB, respectively. The major physiological types of microorganisms in consortia M34-9, P20-9, P21-9, and M50-7 were sulfate-reducing and hydrogen-utilizing anaerobes.  相似文献   

5.
The biodegradability of chlorinated methanes, chlorinated ethanes, chlorinated ethenes, chlorofluorocarbons (CFCs), chlorinated acetic acids, chlorinated propanoids and chlorinated butadienes was evaluated based on literature data. Evidence for the biodegradation of compounds in all of the compound categories evaluated has been reported. A broad range of chlorinated aliphatic structures are susceptible to biodegradation under a variety of physiological and redox conditions. Microbial biodegradation of a wide variety of chlorinated aliphatic compounds was shown to occur under five physiological conditions. However, any given physiological condition could only act upon a subset of the chlorinated compounds. Firstly, chlorinated compounds are used as an electron donor and carbon source under aerobic conditions. Secondly, chlorinated compounds are cometabolized under aerobic conditions while the microorganisms are growing (or otherwise already have grown) on another primary substrate. Thirdly, chlorinated compounds are also degraded under anaerobic conditions in which they are utilized as an electron donor and carbon source. Fourthly, chlorinated compounds can serve as an electron acceptor to support respiration of anaerobic microorganisms utilizing simple electron donating substrates. Lastly chlorinated compounds are subject to anaerobic cometabolism becoming biotransformed while the microorganisms grow on other primary substrate or electron acceptor. The literature survey demonstrates that, in many cases, chlorinated compounds are completely mineralised to benign end products. Additionally, biodegradation can occur rapidly. Growth rates exceeding 1 d-1 were observed for many compounds. Most compound categories include chlorinated structures that are used to support microbial growth. Growth can be due to the use of the chlorinated compound as an electron donor or alternatively to the use of the chlorinated compound as an electron acceptor (halorespiration). Biodegradation linked to growth is important, since under such conditions, rates of degradation will increase as the microbial population (biocatalyst) increases. Combinations of redox conditions are favorable for the biodegradation of highly chlorinated structures that are recalcitrant to degradation under aerobic conditions. However, under anaerobic conditions, highly chlorinated structures are partially dehalogenated to lower chlorinated counterparts. The lower chlorinated compounds are subsequently more readily mineralized under aerobic conditions.  相似文献   

6.
The strains of Arthrobacter globiformis KZT1, Corynebacterium sepedonicum KZ4 and Pseudomonas cepacia KZ2 capable of early dehalogenation and complete oxidation of 4-chloro-, 2,4-dichloro-and 2-chlorobenzoic acids, respectively, have been analyzed for the origin of the genetic control of degradation. The occurrence and molecular sizes of plasmids in all the strains have been established. Plasmid pBS1501 was shown to control 4-chlorobenzoate dehalogenation in the case of KZT1 strain. The same possibility is proposed for plasmid pBS1502 for dehalogenation of 2,4DCBA by KZ4 strain. The chromosome localization of the genes controlling oxidation of 4-hydroxybenzoate in strain KZT1 is shown. Localization of the whole set of genes responsible for 2CBA degradation in the strain KZ2 chromosome is suggested.  相似文献   

7.
Molecular analysis of pentachlorophenol degradation   总被引:10,自引:0,他引:10  
A limited number of microorganisms have been described for their ability to partially degrade pentachlorophenol (PCP), or to completely mineralize it. Several years ago we chose one of these microorganisms,Flavobacterium sp. strain ATCC 39723, for use in a detailed molecular analysis of the catabolism of PCP. This strain was chosen because it had previously been studied in great detail for its growth characteristics in relation to degradation of PCP. In this paper we provide an overview of the degradation pathway of PCP to 2,6-dichloro-p-hydroquinone byFlavobacterium. The specific biochemical reactions and the genes encoding the enzymes are reviewed. The successful transformation and site specific mutagenesis ofFlavobacterium, as well as the discovery of two newpcp alleles is also presented.  相似文献   

8.
Study of the conversion of chlorophenols byRhodococcus opacus 1G,R. rhodnii 135,R. rhodochrous 89, andR. opacus 1cp disclosed the dependence of the conversion rate and pathway on the number and position of chlorine atoms in the aromatic ring. The most active chlorophenol converter, strainR. opacus 1cp, grew on each of the three isomeric monochlorophenols and on 2,4-dichlorophenol; the rate of growth decreased from 4-chlorophenol to 3-chlorophenol and then to 2-chlorophenol. The parameters of growth on 2,4-dichlorophenol were the same as on 3-chlorophenol. None of the strains studied utilized trichlorophenols. A detailed study of the pathway of chlorophenol transformation showed that 3-chloro-, 4-chloro-, and 2,4-dichlorophenol were utilized by the strains via a modifiedortho-pathway. 2-Chlorophenol and 2,3-dichlorophenol were transformed by strainsR. opacus 1cp andR. rhodochrous 89 via corresponding 3-chloro- and 3,4-dichlorocatechols, which were then hydroxylated with the formation of 4-chloropyrogallol and 4,5-dichloropyrogallol; this route had not previously been described in bacteria. Phenol hydroxylase ofR. opacus 1G exhibited a previously undescribed catalytic pattern, catalyzing oxidative dehalogenation of 2,3,5-trichlorophenol with the formation of 3,5-dichlorocatechol but not hydroxylation of the nonsubstituted position 6.  相似文献   

9.
Surfaces with nanophase compared to conventional (or nanometer smooth) topographies are known to have different properties of area, charge, and reactivity. Previously published research indicates that the attachment of certain bacteria (such as Pseudomonas fluorescens 5RL) is higher on surfaces with nanophase compared to conventional topographies, however, their effect on bacterial metabolism is unclear. Results presented here show that the adhesion of Pseudomonas fluorescens 5RL and Pseudomonas putida TVA8 was higher on nanophase than conventional titania. Importantly, in terms of metabolism, bacteria attached to the nanophase surfaces had higher bioluminescence rates than on the conventional surfaces under all nutrient conditions. Thus, the results from this study show greater select bacterial metabolism on nanometer than conventional topographies, critical results with strong consequences for the design of improved biosensors for bacteria detection.  相似文献   

10.
Several strains of aerobic bacteria tolerant to some chemical toxins were isolated from the water of man-made Yerevan Lake and from the soil and air of different regions of the city of Yerevan. Some of these bacteria were capable of degrading 2,4,6-trinitrotoluene (TNT) during shake-flask fermentation in liquid medium. Two bacterial strains with good ability to degrade TNT were isolated. These strains showed visible morphological and physiological differences during growth on numerous elective media. The comparative ability of these strains to transform TNT was investigated.  相似文献   

11.
A bacterial community degrading branched alkylphenol ethoxylate (APE) was selected from coastal sea water intermittently polluted by urban sewage. This community degraded more than 99% of a standard surfactant, TRITON X 100, but I.R. analysis of the remaining compound showed the accumulation of APE2 (alkylphenol with a two units length ethoxylated chain) which seemed very recalcitrant to further biodegradation. Twenty-five strains were isolated from this community, essentially Gram negative and were related to Pseudomonas, Oceanospirillum or Deleya genera. Among these strains, only four were able to degrade APE9–10 (TRITON X 100). They were related to the Pseudomonas genus and were of marine origin. Pure cultures performed with these strains on TRITON X 100 gave APE5 and APE4 as end products. These products were further degraded to APE2 by two other strains unable to degrade the initial surfactant.  相似文献   

12.
Chloroform (CF) is an important priority pollutant contaminating groundwater. Reductive dechlorination by anaerobic microorganisms is a promising strategy towards the remediation of CF. The objective of this study was to evaluate the use of redox active vitamins as electron shuttles to enhance the anaerobic biodegradation of CF in an unadapted methanogenic consortium not previously exposed to chlorinated compounds. Only negligible degradation of CF was observed in control cultures lacking redox active vitamins. The addition of riboflavin (RF), cyanocobalamin (CNB12), and hydroxycobalamin (HOB12) enabled biodegradation of CF. The reactions were predominantly catalyzed biologically as evidenced by the lack of any CF conversion in heat-killed controls amended with the cobalamins or minor conversion with RF. In live cultures, significant increases in the rate of CF conversion was observed at substoichiometric molar ratios as low as 0.1 to 0.01 vitamin:CF for RF and CNB12, respectively. At the highest molar vitamin:CF ratios tested of 0.2, the first-order rate constant of CF degradation was 5.3- and 91-fold higher in RF and CNB12 amended cultures, respectively, compared to the unamended control culture. The distribution of biotransformation products was highly impacted by the type of redox active vitamin utilized. Cultures supplemented with RF provided high yields of dichloromethane (DCM). On the other hand, cobalamins promoted the near complete mineralization of organochlorine in CF to inorganic chloride and lowered the yield of DCM. In cultures where no or little CF bioconversion occurred, prolonged exposure to CF resulted in cell lysis, as evidenced by the release of intracellular chloride. The results taken as a whole suggest that the anaerobic bioremediation of CF-contaminated sites can greatly be improved with strategies aimed at increasing the concentration of redox active vitamins.  相似文献   

13.
AIMS: A possibility for the complementation of both ortho- and meta-cleavage pathway for chlorocatechols in one strain and its impact on degradation of chlorobenzoates accumulated during degradation of polychlorinated biphenyls was investigated. METHODS AND RESULTS: Genes responsible for ortho-cleavage of chlorocatechols were subcloned into two biphenyl degraders and the activities of chlorocatechol dioxygenases responsible for ortho- and meta-cleavage in these hybrid strains were monitored spectrophotometrically and also electrochemically by ion-selective electrode. CONCLUSIONS: While strain Pseudomonas fluorescens S12/C apparently gained metabolic advantage from this gene manipulation, strain Burkholderia cepacia P166/C did not express better degradation features in comparison with the parental strain. SIGNIFICANCE AND IMPACT OF THE STUDY: This approach has the potential to enhance chlorocatechol metabolism in selected biphenyl degraders.  相似文献   

14.
多环芳烃降解菌的筛选与降解能力测定   总被引:3,自引:0,他引:3  
从本溪多环芳烃(PAHs)污染土壤中经富集培养筛选出8株PAHs降解菌,研究了8株菌及其等比例混合培养对菲、芘和苯并[a]芘的降解能力。结果表明,在28℃,培养基中菲、芘和苯并[a]芘的浓度分别为50、50和5mg·L-1的复合底物条件下,培养28d后,菌株B3的降解效果最好,对菲、芘和苯并[a]芘的降解率分别为88.4%、54.0%和68.4%,8株菌的混合培养对菲、芘和苯并[a]芘的降解率分别为87.7%、35.3%和42.0%;经生理生化实验和16SrRNA序列比对,初步鉴定B3菌为假单胞菌属(Pseudomonas sp.)。  相似文献   

15.
Six alkylthiophenes, 2-hexadecyl-5-methylthiophene (I), 2-methyl-5-tridecylthiophene (II) and 2-butyl-5-tridecylthiophene (III), 2-(3,7-dimethyloctyl)-5-methylthiophene (IV), 2-methyl-5-(3,7,11,15-tetramethyl-hexadecyl)thiophene (V) and 2-ethyl-5-(3,7,11,15-tetramethylhexadecyl)thiophene (VI) were synthesized and used as substrates in biodegradation studies. The products of their aerobic metabolism by pure bacterial cultures were identified. In most cases, the long alkyl chains of these thiophenes were preferentially attacked and in pure cultures of alkane-degrading bacteria, the major metabolites that accumulated in the medium were 5-methyl-2-thiopheneacetic acid from (I), 5-methyl-2-thiophenecarboxylic acid from (II) and occasionally from (V), 5-butyl-2-thiophenecarboxylic acid from (III) and 5-ethyl-2-thiopheneacetic acid from (VI). These transformations are consistent with the metabolism of the alkyl side chains via the beta-oxidation pathway. In contrast, 5-(3,7-dimethyloctyl)-2-thiophenecarboxylic acid was produced from (IV). Because it was available in greatest supply, (I) was studied most thoroughly. It supported growth of the six n-alkanedegrading bacteria tested and (I) was degraded more quickly than pristance but not as quickly as n-hexadecance in mixtures of these three compounds. In the presence of Prudhoe Bay crude oil and a mixed culture of petroleum-degrading bacteria, the acid metabolites from (I), (II) and (III) underwent further biotransformations to products that were not detected by the analytical methods used. The addition of n-hexadecane to the mixed culture of petroleum-degrading bacteria also enhanced the further biotransformations of the metabolites from (I).  相似文献   

16.
Enzymatic degradation of TNT by aerobic bacteria is mediated by oxygen insensitive (Type 1) or by oxygen sensitive nitroreductases (Type II nitroreductases). Transformation by Type I nitroreductases proceeds through two successive electron reductions either by hydride addition to the aromatic ring or by direct nitro group reduction following a ping pong kinetic mechanism. TNT is reduced to the level of hydroxylaminodinitrotoluenes and aminodinitrotoluenes by pure enzyme preparations without achieving mineralization. Interestingly, database gene and amino acid sequence comparisons of nitroreductases reveal a close relationship among all enzymes involved in TNT transformation. They are all flavoproteins which use NADPH/NADH as electron donor and reduce a wide range of electrophilic xenobiotics. TNT degradation by fungi is initiated by mycelia bound nitroreductases which reduce TNT to hydroxylaminodinitrotoluenes and aminodinitrotoluenes. Further degradation of these products and mineralization is achieved through the activity of oxidative enzymes especially lignin degrading enzymes (lignin and manganese peroxidases).  相似文献   

17.
A coryneform bacterium that is able to utilize cis- and trans-3-chloroacrylic acid as sole carbon source for growth was isolated from freshwater sediment. The organism was found to produce two inducible dehalogenases, one specific for the cis- and the other for trans-3-chloroacrylic acid. Both dehalogenases were purified to homogeneity from cells induced for dehalogenase synthesis with 3-chlorocrotonic acid. The enzymes produced muconic acid semialdehyde (3-oxopropionic acid) from their respective 3-chloroacrylic acid substrate. No other substrates were found. The cis-3-chloroacrylic acid dehalogenase consisted of two polypeptide chains of a molecular weight 16.2 kDa. Trans-3-chloroacrylic acid dehalogenase was a protein with subunits of 7.4 and 8.7 kDa. The subunit and amino acid compositions and the N-terminal amino acid sequences of the enzymes indicate that they are not closely related.  相似文献   

18.
Recent analyses of ribosomal RNA sequence diversity have demonstrated the extent of bacterial diversity in the human colon, and have provided new tools for monitoring changes in the composition of the gut microbial community. There is now an excellent opportunity to correlate ecological niches and metabolic activities with particular phylogenetic groups among the microbiota of the human gut. Bacteria that associate closely with particulate material and surfaces in the gut include specialized primary degraders of insoluble substrates, including resistant starch, plant structural polysaccharides and mucin. Butyrate-producing bacteria found in human faeces belong mainly to the clostridial clusters IV and XIVa. In vitro and in vivo evidence indicates that a group related to Roseburia and Eubacterium rectale plays a major role in mediating the butyrogenic effect of fermentable dietary carbohydrates. Additional cluster XIVa species can convert lactate to butyrate, while some members of the clostridial cluster IX convert lactate to propionate. The metabolic outputs of the gut microbial community depend not only on available substrate, but also on the gut environment, with pH playing a major role. Better understanding of the colonic microbial ecosystem will help to explain and predict the effects of dietary additives, including nondigestible carbohydrates, probiotics and prebiotics.  相似文献   

19.
Aging affects a myriad of genetic, biochemical, and metabolic processes, and efforts to understand the underlying molecular basis of aging are often thwarted by the complexity of the aging process. By taking a systems biology approach, network analysis is well-suited to study the decline in function with age. Network analysis has already been utilized in describing other complex processes such as development, evolution, and robustness. Networks of gene expression and protein-protein interaction have provided valuable insight into the loss of connectivity and network structure throughout lifespan. Here, we advocate the use of metabolic networks to expand the work from genomics and proteomics. As metabolism is the final fingerprint of functionality and has been implicated in multiple theories of aging, metabolomic methods combined with metabolite network analyses should pave the way to investigate how relationships of metabolites change with age and how these interactions affect phenotype and function of the aging individual. The metabolomic network approaches highlighted in this review are fundamental for an understanding of systematic declines and of failure to function with age.  相似文献   

20.
Biodegradation of 2,4,6-trinitrotoluene (TNT): An enzymatic perspective   总被引:2,自引:0,他引:2  
Enzymatic degradation of TNT by aerobic bacteria is mediated by oxygen insensitive (Type 1) or by oxygen sensitive nitroreductases (Type II nitroreductases). Transformation by Type I nitroreductases proceeds through two successive electron reductions either by hydride addition to the aromatic ring or by direct nitro group reduction following a ping pong kinetic mechanism. TNT is reduced to the level of hydroxylaminodinitrotoluenes and aminodinitrotoluenes by pure enzyme preparations without achieving mineralization. Interestingly, database gene and amino acid sequence comparisons of nitroreductases reveal a close relationship among all enzymes involved in TNT transformation. They are all flavoproteins which use NADPH/NADH as electron donor and reduce a wide range of electrophilic xenobiotics. TNT degradation by fungi is initiated by mycelia bound nitroreductases which reduce TNT to hydroxylaminodinitrotoluenes and aminodinitrotoluenes. Further degradation of these products and mineralization is achieved through the activity of oxidative enzymes especially lignin degrading enzymes (lignin and manganese peroxidases).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号