首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Bogaert  N Brown  M Wilcox 《Cell》1987,51(6):929-940
We establish that the position-specific antigen 2 (PS2), a Drosophila cell surface glycoprotein complex, is an invertebrate member of the vertebrate fibronectin receptor (integrin) family. New monoclonal antibodies show that in Drosophila embryos and larvae PS2 alpha subunits have a size of ca. 140 kd. Analysis of cDNA and genomic clones revealed that the canonical PS2 alpha subunit contains 1394 amino acids and has extensive homology to the heavy and light chains of integrin alpha subunits. The distribution of the PS2 antigen is regulated at the level of PS2 alpha subunit mRNA. In early Drosophila development the protein is restricted to mesoderm and appears to be involved in muscle attachment. We suggest that PS2, like vertebrate fibronectin receptors, mediates changes in cell shape and cell-extracellular matrix adhesion by binding to a basement membrane protein.  相似文献   

2.
The Down syndrome cell adhesion molecule (Dscam) is a protein overexpressed in the brains of Down syndrome patients and implicated in mental retardation. Dscam is involved in axon guidance and branching in Drosophila, but cellular roles in vertebrates have yet to be elucidated. To understand its role in vertebrate development, we cloned the zebrafish homolog of Dscam and showed that it shares high amino acid identity and structure with the mammalian homologs. Zebrafish dscam is highly expressed in developing neurons, similar to what has been described in Drosophila and mouse. When dscam expression is diminished by morpholino injection, embryos display few neurons and their axons do not enter stereotyped pathways. Zebrafish dscam is also present at early embryonic stages including blastulation and gastrulation. Its loss results in early morphogenetic defects. dscam knockdown results in impaired cell movement during epiboly as well as in subsequent stages. We propose that migrating cells utilize dscam to remodel the developing embryo.  相似文献   

3.
Using the Drosophila cell line MLDmBG-1, a monoclonal antibody aBG-1 that can inhibit not only cell clumping but also cell spreading was generated. This antibody immunoprecipitates a complex of molecules consisting of a major 120 x 10(3) Mr and other components. To characterize the 120 x 10(3) Mr component, we purified it, generated antibodies to it, and cloned its cDNA. Sequencing of this cDNA suggests that the 120 x 10(3) Mr molecule is identical to PS beta, a beta chain of Drosophila integrins. The other components immunoprecipitated included two alpha chains of Drosophila integrins, PS1 alpha and PS2 alpha, as revealed using specific antibodies to these molecules. These suggest that aBG-1 recognizes the PS beta associated with PS1 alpha or PS2 alpha. However, immunostaining of embryos and larvae with aBG-1 showed that the staining pattern is similar to that for PS2 alpha but not for PS beta, suggesting that the antibody preferentially recognizes the PS beta associated with particular alpha chains in situ. We then attempted to characterize the ligands for these integrin complexes, using culture dishes coated with various vertebrate matrix proteins. These cells spread very well on dishes coated with vitronectin and, to a lesser extent, on those with fibronectin. This spreading was partially inhibited by aBG-1, but not by other control antibodies or RGD peptides. The cell attachment to these substrata was not affected by the antibody. The cells also can attach to dishes coated with laminin but without spreading, and this attachment was not inhibited by aBG-1. Furthermore, they do not attach to dishes coated with collagen type I, type IV, and fibrinogen. These results indicate that Drosophila PS integrins can recognize vertebrate vitronectin, and also fibronectin with a weaker affinity, at sites other than RGD sequences, and thus can function in cell-substratum adhesion.  相似文献   

4.
The twist gene is involved in the establishment of germ layers in Drosophila embryos: twist homozygous mutant embryos fail to form the ventral furrow at gastrulation and lack mesoderm and all internal organs. We have determined the sequence of the twist gene, that contains 'CAX' repeats in its 5' moiety, and codes for a protein of 490 amino acids. We have raised anti-twist antibodies that were used to study the distribution of the twist protein in whole mounts and tissue sections of wild-type embryos. Twist protein appears to be a nuclear protein at all developmental stages. It is present over both poles and in the midventral region (endoderm and mesoderm anlagen) at cellular blastoderm stage; later in development, it is detected within the mesodermal layer until its differentiation into somatopleura and splanchnopleura in which some cells are still labelled by anti-twist antibodies.  相似文献   

5.
The function of PS integrins during Drosophila embryogenesis   总被引:19,自引:0,他引:19  
M Leptin  T Bogaert  R Lehmann  M Wilcox 《Cell》1989,56(3):401-408
The Drosophila position-specific (PS) antigens are homologous to the vertebrate fibronectin receptor family, or integrins. A Drosophila gene required for embryonic morphogenesis, l(1)myospheroid, codes for a product homologous to the beta subunit of the vertebrate integrins. l(1)myospheroid mutants die during embryogenesis. We show here that they lack the beta subunit of the PS antigens. In the absence of the beta subunit in mutant embryos, the PS alpha subunits are not expressed on the cell surface. We conclude that the l(1)myospheroid phenotype represents the lack-of-function phenotype for these Drosophila integrins. In wild-type embryos, PS antigens are found at the interface between mesoderm and ectoderm, and later mainly at the attachment sites of muscles to the epidermis and gut. Together these results indicate that during embryogenesis, Drosophila integrins are used to attach mesoderm to ectoderm, and are required for the proper assembly of the extracellular matrix and for muscle attachment.  相似文献   

6.
Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin–fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular adhesion. These data indicate that Wnt/Glypican4/Frizzled signaling regulates ECM assembly through effects on cadherin-mediated cell cohesion. Together, our results demonstrate that zebrafish Vangl2/Prickle1a and non-canonical Wnt/Frizzled signaling have opposing effects on ECM organization underlying PCP and gastrulation cell movements.  相似文献   

7.
This study demonstrates that a collagenous extracellular matrix (ECM) is necessary for gastrulation in the sea urchin embryo. The approach taken was to disrupt collagen processing with two types of agents (a lathyritic agent, beta-aminopropionitrile (BAPN), and three types of proline analogs: dehydroproline, cis-OH-proline, and azetidine carboxylic acid) and to assess the effect on embryogenesis by morphological, immunological, and biochemical criteria. Embryos chronically exposed to either of the agents following fertilization displayed no detectable developmental abnormalities before the mesenchyme blastula stage. These embryos, however, did not gastrulate nor differentiate any further and remained at the mesenchyme blastula stage for at least 36 hr. Upon removal of the agents, the embryos resumed a normal developmental schedule and formed pluteus larvae that were indistinguishable from control embryos. By immunofluorescence studies with monospecific antibodies to type I and type IV collagens it is seen that the lathyritic agent BAPN reduces the accumulation of collagens within the ECM. This effect is confirmed and quantitated by use of an ELISA and by a biochemical determination of OH-proline. When the agents are removed from the inhibited embryos, collagen deposition returns to normal, coincident with gastrulation. Western-blot analysis, using monospecific antibodies to collagen, demonstrates that the effect of the lathyritic agent is to reduce the stability of the extracellular collagen by inhibiting the intra- and intermolecular crosslinking of collagen molecules. BAPN exhibits a dose-dependent effect on morphogenesis, but has no effect on respiration nor on protein synthesis of the embryos throughout development. Although the lathyritic agent affects collagen deposition, it is shown to not affect the expression of other molecules of the ECM, nor that of several cell surface molecules. However, a cell surface molecule that is expressed specifically in the endoderm, termed Endo 1, is not expressed in the inhibited embryos. Endo 1 is expressed after removal of the lathyritic agent and its appearance is coincident with gastrulation in the recovered embryos. These results suggest that a collagenous ECM is important for gastrulation and subsequent differentiation in the sea urchin, but not for earlier developmental processes. In addition, the dependence of Endo 1 expression on the collagenous ECM raises the possibility that this cell surface molecule is in some way regulated by interactions of the presumptive endodermal cells with the ECM.  相似文献   

8.
The biochemical identification of fibronectin in the sea urchin embryo   总被引:3,自引:0,他引:3  
We report the biochemical identification of fibronectin in the basal lamina of the sea urchin embryo. A. punctulata gastrula stage embryos were solubilized in Triton X-100 and the insoluble basal laminae extracted by incubation in buffer containing 8M urea, 2% 2-mercaptoethanol and 2% SDS. Extracted proteins were separated by SDS-PAGE, electrophoretically transferred to nitrocellulose filters and probed with monospecific antibodies directed against human plasma fibronectin (pFN). Incubation in 125I-labelled secondary antibody revealed a single band which co-migrates with human pFN at an apparent molecular weight of 220,000. This is the first direct biochemical demonstration of a fibronectin-like molecule in the sea urchin embryo which cross reacts with antibodies to vertebrate fibronectin.  相似文献   

9.
In recent years, genes that show left-right (L-R) asymmetric expression patterns have been identified one after another in vertebrate gastrula-neurula embryos. However, we still have little information about when the irreversible L-R specification is established in vertebrate embryos. In this report, we show that almost 100% of the embryos develop to be L-R-inverted larvae after microinjection of activin molecules into the right lateral hypodermic space of Xenopus neurula embryos. After right-side injection of 10-250 pg activin protein, both early neurulae just after gastrulation movement (stage 13-14) and late neurulae just before neural tube closure (stage 17-18) showed almost 100% reversal of the heart and gut L-R axes. At higher doses of activin, more than 90% of the L-R-inverted embryos showed L-R reversal of both heart and gut. The survival ratio of the right-injected 4-day embryos was 90% on average. In the left-injected embryos, the occurrence of L-R inversion was less than 2% as observed in normal untreated siblings (1.7%). When the same amount of activin (1-50 pg) was microinjected into both sides of neurula embryos, the incidence of L-R inversion was reduced to 58%. The injection of activin along the dorsal midline in the trunk region also randomized the visceral L-R axis. Injection of activin into the right side changed normal left-handed expression of Xnr-1 to right-handed or bilateral expression. In contrast, left-handed expression of Pitx2 was switched to the right side by right activin injection. This is the first report of a method that achieves complete inversion of the visceral L-R axis by treatment of embryos at the neurula stage. Activin not only acts on the neurulae to cancel the original L-R specification up to the late neurula stage, but also rebuilds a new L-R axis whose left side coincides with the injection side. It is suggested that the left and right halves of neurulae have equal potential for L-R differentiation.  相似文献   

10.
We have studied the localization and function of a 140-kDa glycoprotein complex implicated in cell adhesion to fibronectin- and laminin-rich extracellular matrices in Pleurodeles waltlii gastrulae. In particular, we have shown that antibodies directed against highly purified avian fibronectin (FN) receptor complex cross-react with two major polypeptides of apparent molecular weights of 140,000 and 100,000 and a third minor component of 90,000. Using sections of embryos or whole mounts, we have also discovered that the putative FN receptor is widely distributed on the early embryonic cell surface. We have also found that the basal surface of the roof of the blastocoel, a region particularly enriched in an extracellular matrix consisting of fibronectin- and laminin-rich fibrils, is rich in receptor complex. We have prepared monovalent Fab' fragments of this antibody and have found that they cause detachment of cells previously attached to substrata coated with fibronectin, and they also arrest gastrulation when injected into the blastocoel of early gastrulae. Thus, it appears that the fibronectin receptor complex plays a significant functional role in cell attachment of gastrula-stage cells in vitro and in cell migration in vivo during gastrulation.  相似文献   

11.
We have used amphibian gastrulation as a model system to study the action of the extracellular matrix (ECM) glycoprotein tenascin on mesodermal cell migration. Tenascin function was assayed in vitro during spreading of isolated cells from the dorsal marginal zone (DMZ) and during cell migration from DMZ explants. Plastic coated with bovine fibronectin or gastrula ECM was used as a substratum. In both cases, tenascin added to the medium inhibited spreading and migration of mesodermal cells. In addition, a substratum coated with a mixture of fibronectin and tenascin was found to prevent mesodermal cell migration. Tenascin was also microinjected into the blastocoel cavity of living embryos at the late blastula stage. This led to a complete arrest of gastrulation in more than 80% of the cases. Scanning electron microscopy of fractures from arrested gastrulae showed that mesodermal cell migration was blocked. Similar injection experiments carried out at the middle gastrula stage demonstrated that tenascin is able to inhibit cell migration after cells have already contacted the ECM. Mesodermal cell migration in the presence of tenascin could be restored in vitro and in vivo by the monoclonal antibody mAb Tn68 which is known to mask a cell binding site of the molecule. Finally, tenascin microinjected into the blastocoel of blastula or gastrula stage embryos bound within 15 min to the ECM fibrils at all the stages studied. Our results show that exogenous tenascin can be incorporated into embryonic ECM and interferes in vivo with the interactions of cells with a fibronectin-rich matrix.  相似文献   

12.
Summary The present report firstly describes a pilot study in which, during early development of embryos of the common carp, Cyprinus carpio, the cellular adhesion to fibronectin (FN) was blocked by administration of GRGDS peptide (which binds to the FN-receptor). As this treatment resulted in developmental aberrations, suggesting a functional role for FN, the major part of the work was focussed on the distribution of reactivity of anti-FN antibodies during epiboly and gastrulation. GRGDS treatment had a concentration dependent effect on development. Incubation of embryos in 1.5 mg/ml from the 32-cell stage onwards caused a retardation of epiboly, which did not proceed beyond 60%. The embryos did not show involution, as was confirmed by histological study. These preliminary results suggest that FN is involved in both epiboly and gastrulation of carp embryos. During cleavage, no specific extracellular binding of anti-FN antiserum could be observed. However, binding to a number of cell membranes took place from early epiboly onwards. After the onset of gastrulation, we observed a gradually increasing number of the deepest epiblast cells, showing immunostaining on part of their surface, facing the yolk syncytial layer (YSL) or the involuted cells. During early epiboly, anti-FN binding was restricted to areas in front of the migratory hypoblast cells. Later on, binding was found at the border of hypoblast and epiblast cells. At 100% epiboly, some contact areas of epiblast and hypoblast showed a discontinuous lining of reactivity, whilst other areas appeared devoid of anti-FN binding sites. The results indicate that FN is involved in the migration and guidance of hypoblast cells during gastrulation in carp. Correspondence to: P. Gevers  相似文献   

13.
A collagen was isolated from Drosophila E85, Schneider line 2L and Kc cell cultures. The purified protein was characterized and antibodies were raised against it. Immunofluorescence microscopy locates this material to the regions of basement membranes of Drosophila embryos, larvae, and adults. The molecules are mostly, or entirely, homotrimers of one polypeptide chain linked by interchain disulfide bonds. The partial amino acid sequences of a cyanogen bromide cleavage product of this chain are identical with a part of the virtual translation product of the Drosophila pro alpha 1(IV) nucleotide sequence that is reported in the accompanying paper. This gene is at Drosophila chromosome location 25C and was identified by the high homology of one part of it with the noncollagenous carboxyl terminus (NC1) of vertebrate type IV basement membrane collagens (Blumberg, B., MacKrell, A. J., Olson, P. F., Kurkinen, M., Monson, J. M., Natzle, J. E., and Fessler, J. H. (1987) J. Biol. Chem. 262, 5947-5950). In the electron microscope each molecule appears as a thread with a knob at one end, which contains the carboxyl peptide domains. The variation of flexibility of the thread was mapped along its length. Pulse-chase labeling of cell cultures showed that these molecules associate into disulfide-linked dimers and higher oligomers that can be partly separated by velocity sedimentation and are resolved by sodium dodecyl sulfate-agarose gel electrophoresis. Dimers and higher oligomers formed by overlap of the amino ends of molecules were found. Mild pepsin digestion of Drosophila embryos and larvae solubilized the corresponding disulfide-linked collagen molecules, and Staphylococcus aureus V8 protease peptide maps showed the identity of the collagen derived from animals and from cell cultures. Individual, native molecules have a sedimentation coefficient s20,w = 4.1 S, the dichroic spectrum and amino acid composition of a collagen, and a Tm = 31 degrees C. Positive in situ hybridization with a specific probe for this collagen began 6-8 h after egg laying and showed message in the locations of embryos and larvae which reacted with the antibodies. This included some prominent individual cells in the hemolymph.  相似文献   

14.
Summary The ultrastructural organization of fibronectin (FN) in early amphibian embryos (Ambystoma mexicanum, Pleurodeles waltlii) was studied with the use of antibodies directed against amphibian plasmatic FN. Scanning and transmission electron microscopy combined with immunogold labeling of FN revealed that the extracellular matrix that covers the inner surface of the ectodermal layer consists of FN-containing fibrils. During gastrulation, the mesodermal cells appear to be devoid of FN. These cells extend filopodia adhering to the FN-containing fibrils and are spreading along them. These findings suggest that FN may be involved in contact formation between mesodermal cells and the extracellular matrix that serves as a substratum for migration.  相似文献   

15.
16.
In order to testify the function of the TGF beta related protein, we microinjected the antibodies against the TGF beta-1 to one blastomere of two-cell stage embryos. Dosages of antibodies injected were 24-36 ng, 12 -18 ng, 6-9 ng and 1.5-2.25 ng. Malformed embryos with exposed yolk mass were produced. They were designated as YE-1, YE-2 and YE-3 according to the degree of malformation which was found to be related to the dosage of antibodies injected to the blastomere. These malformed embryos could normally develop to blastula, but the yolk mass was exposed on the injection half during gastrulation. In the group with the highest dosage, the most seriously affected embryos belong to the YE-1. For most of them, no muscle tissue could be found from head to tail in the injection half, the development of mesoderm seemed to be thoroughly inhibited. YE-2 was the group with decreased dosage, small block of muscle tissue was usually observed in the injection half. YE-3 was the least affected group with the injection half containing blocks of muscle tissue similar to that of the non-injection half. The different groups of malformations seemed to be related to the degree and range of interference on gastrulation. In the group with highest dosage, the gastrulation of the entire injection half seemed to be prohibited, and YE-1 was produced. In the groups with lower dosages, only part of injection half was interfered, and YE-3 v and YE-3 d were resulted. From the results mentioned above, we concluded that TGF beta-related protein are not only present in the early embryos of Xenopus laevis, but also may be concerned with mesoderm induction.  相似文献   

17.
Hydrozoans such as Hydra vulgaris, as with all classes of Cnidaria, are characterized by having their body wall organized as an epithelial bilayer with an intervening acellular layer termed the mesoglea. The present study was undertaken to determine what extracellular matrix (ECM) components are associated with Hydra mesoglea. Using polyclonal antibodies generated from vertebrate ECM molecules, initial light and electron microscopic immunocytochemical studies indicated the presence of type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin immunoreactive components in Hydra mesoglea. These immunocytochemical observations were in part supported by biochemical analyses of isolated Hydra mesoglea which indicated the presence of fibronectin and laminin based on Western blot analysis. Amino acid analysis of total mesoglea and some of its isolated components confirmed the presence of collagen molecules in mesoglea. Additional studies indicated the presence of (1) a gelatin binding protein in Hydra which was immunoreactive with antibodies raised to human plasma fibronectin and (2) a noncollagen fragment extracted from mesoglea which was immunoreactive to antibodies raised to the NC1 domain (alpha 1 subunit) of bovine glomerular basement membrane type IV collagen. These observations indicate that Hydra mesoglea is evolutionarily a primitive basement membrane that has retained some properties of interstitial ECM.  相似文献   

18.
The tracheal system of Drosophila melanogaster has proven to be an excellent model system for studying the development of branched tubular organs. Mechanisms regulating the patterning and initial maturation of the tracheal system have been largely worked out, yet important questions remain regarding how the mature tubes inflate with air at the end of embryogenesis, and how the tracheal system grows in response to the oxygen needs of a developing larva that increases nearly 1000-fold in volume over a four day period. Here we describe the cloning and characterization of uninflatable (uif), a gene that encodes a large transmembrane protein containing carbohydrate binding and cell signaling motifs in its extracellular domain. Uif is highly conserved in insect species, but does not appear to have a true ortholog in vertebrate species. uif is expressed zygotically beginning in stage 5 embryos, and Uif protein localizes to the apical plasma membrane in all ectodermally derived epithelia, most notably in the tracheal system. uif mutant animals show defects in tracheal inflation at the end of embryogenesis, and die primarily as larvae. Tracheal tubes in mutant larvae are often crushed or twisted, although tracheal patterning and maturation appear normal during embryogenesis. uif mutant larvae also show defects in tracheal growth and molting of their tracheal cuticle.  相似文献   

19.
20.
Summary Most hybrids betweenBufo bufo andB. calamita obtained by nuclear transplantation become arrested at the early gastrula stage. In both parental controls and the hybrid embryos, the presence and distribution of extracellular matrix was analysed with fluorescent wheat germ agglutinin and by immunolabelling with antibodies directed against fibronectin. InB. bufo andB. calamita gastrulae and in the few hybrids that complete gastrulation, the inner surface of the blastocoel roof is covered by a fibronectin-rich fibrillar matrix. In nucleocytoplasmic hybrids whose development was arrested at the gastrula stage, the fibronectin-containing extracellular matrix was either totally absent or poorly developed and disorganized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号