首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic studies of inhibition of estradiol 2- and 16 alpha-hydroxylase activities in male rat liver microsomes with cytochrome P-450 inhibitors, alpha-naphthoflavone, DL-aminoglutethimide, SKF-525A and metyrapone, were extensively carried out. All of the inhibitors competitively blocked the two enzyme activities. The former three inhibitors preferentially inhibited the 16 alpha-hydroxylase activity while the reverse result was obtained in the case of metyrapone, and SKF-525A was the most potent inhibitors for the two enzyme among the four inhibitors. The kinetic data, the apparent Ki's for the four inhibitors and Km's for the substrate estradiol in the assays, along with the inhibition results with carbon monooxide suggest that different forms of cytochrome P-450 may be involved in the two hydroxylations. Kinetic parameters of the two hydroxylase activities in female rat liver microsomes were then determined to be an apparent Km of 23.0 and 158 microM and Vmax of 99.0 and 5.65 pmol/min/mg protein for the 2-hydroxylation and the 16 alpha-hydroxylation, respectively. The kinetic data show that the 2-hydroxylation may be quantitatively an exclusive hydroxylative pathway in estrogen metabolism in female.  相似文献   

2.
This study has characterized two new enzymatic hydroxylase activities specific for 5 alpha-androstane-3 beta, 17 beta-diol (3 beta-diol) in the rat ventral prostate: 5 alpha-androstane-3 beta, 17 beta-diol 6 alpha-hydroxylase (6 alpha-hydroxylase) and 5 alpha-androstane-3 beta, 17 beta-diol 7 alpha-hydroxylase (7 alpha-hydroxylase). Both of these irreversible hydroxylase activities require NADPH and are localized in the microsomal fraction of the prostate. The apparent Km for 3 beta-diol is 2.5 microM for both the 6 alpha- and 7 alpha-hydroxylase activities. The apparent Km for NADPH is 7.6 microM for the 6 alpha-hydroxylase and 7.0 microM for the 7 alpha-hydroxylase. The pH optimum for both activities is 7.4. Several steroid inhibitors of these hydroxylase activities in vitro were identified including cholesterol, progesterone, and estradiol. Estradiol was found in vitro to be a noncompetitive inhibitor (Ki = 5 microM). Injection of estradiol into intact male rats, simultaneously receiving exogenous testosterone, also produced a significant lowering of the 6 alpha-plus 7 alpha-hydroxylase activities. Both the 6 alpha- and 7 alpha-hydroxylase were found to be androgen sensitive. Following castration there is a rapid decrease in both activities.  相似文献   

3.
70% of the microsome-bound cholesterol is directly accessible to cholesterol 7alpha-hydroxylase in an assay in vitro. After 5 min of incubation this endogenous cholesterol makes a single pool with the exogenously added substrate and modifies its specific radioactivity. Thus, an accurate estimation of the enzymic activity should take the participation of endogenous cholesterol into account. Cholesterol 7alpha-hydroxylase activity is enhanced in vitro by thiol-containing substances like mercaptoethanol, dithiothreitol, or cysteamine. On the contrary, the enzymic activity is inhibited by heavy cations (Hg2+, Pb2+, Cu2+, Zn2+), or --SH-blocking agents (mersalic acid p-chloro-mercuribenzoic acid). Several steroids are potent inhibitors (Ki less than Km) of the enzyme, among them pregnenolone and its acetate derivative and the cholesterol closely related 7-oxocholesterol and 7-dehydrocholesterol. The cholesterol esters are neither substrates nor inhibitors of cholesterol 7alpha-hydroxylase. Only a high concentration (1 mM) of biliary acids or of their glyco or tauro derivatives inhibits cholesterol 7alpha-hydroxylase. The quantitatively less important lithocholic acid and deoxycholic acid are the strongest inhibitors; the most common cholic acid does not affect the enzymic activity even at 1 mM.  相似文献   

4.
1,25-Dihydroxyvitamin D3 induces both 25-hydroxyvitamin D3- and 1,25-dihydroxyvitamin D3- 24-hydroxylase activities. However, whether 24-hydroxylation of these substrates is catalyzed by a single enzyme is unknown. We have examined the substrate specificity of the enzyme using the solubilized and reconstituted chick renal mitochondrial 24-hydroxylase enzyme system. The soluble enzyme catalyzes 24-hydroxylation of both substrates. The apparent Km of the 24-hydroxylase for 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 were 1.47 and 0.14 microM, respectively. Kinetic studies demonstrated that 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 act as competitive inhibitors with respect to each other. 1,25-Dihydroxyvitamin D3 inhibited the production of 24,25-dihydroxyvitamin D3 with an apparent Ki of 0.09 microM and 25-hydroxyvitamin D3 inhibited the production of 1,24,25-trihydroxyvitamin D3 with an apparent Ki of 3.9 microM. These results indicate that chick 24-hydroxylase preferentially hydroxylates 1,25-dihydroxyvitamin D3 and support the idea that the 24-hydroxylation of these substrates is catalyzed by a single enzyme.  相似文献   

5.
Aromatase catalyzes the conversion of androstenedione (1a, AD) to estrone through three sequential oxygenations of the 19-methyl group. To gain insight into the spatial nature of the AD binding (active) site of aromatase in relation to the catalytic function of the enzyme, we tested for the ability of 2alpha-substituted (halogeno, alkyl, hydroxy, and alkoxy) ADs (1b-1i) to inhibit aromatase in human placental microsomes as well as their ability to serve as a substrate for the enzyme. All of the steroids inhibited the enzyme in a competitive manner with the apparent K(i)'s ranging from 45 to 1150 nM. 2alpha-Halogeno (F, Cl, and Br) and 2alpha-alkyl (CH3 and CH2CH3) steroids 1b-1f were powerful to good inhibitors (Ki=45-171 nM) whereas steroids 1g-1i, having an oxygen function (hydroxy or alkoxy) at C-2alpha, were poor inhibitors (Ki=670-1150 nM). Aromatization of some of the steroids with placental microsomes was analyzed by gas chromatography-mass spectrometry, indicating that the aromatization rate of the bromide 1d was about two-fold that of the natural substrate AD and that of 2alpha-methoxide 1h was similar to that of AD. Kinetic analysis of the aromatization of androgens revealed that a good substrate was not essentially a good inhibitor for aromatase.  相似文献   

6.
A K Verma  J T Penniston 《Biochemistry》1984,23(21):5010-5015
The highly purified Ca2+-pumping ATPase from human erythrocyte membranes displays two p-nitrophenylphosphatase (NPPase) activities: one of these requires calmodulin and low concentrations of Ca2+, while the other requires ATP and higher Ca2+ concentrations. The free Ca2+ concentrations required for the expression of the two NPPase activities differed very substantially. Both activities required high free Mg2+ concentrations and displayed simple hyperbolic kinetics toward p-nitrophenyl phosphate (NPP) with a Km in the range of 5-20 mM. Study of the dependence of the calmodulin-stimulated NPPase on Mg2+ and NPP indicated that the Mg-NPP complex is not the substrate of the enzyme. Under conditions optimal for ATP-requiring NPPase (1 mM free Ca2+), the Ca2+-ATPase displayed simple hyperbolic kinetics with a low Km for ATP. NPP competitively inhibited this activity, and the apparent Ki for NPP was less than 1 mM, much lower than the Km for NPP as a substrate. If NPP were inhibiting the ATPase by binding at the same site at which NPP is hydrolyzed, the apparent Ki for NPP as inhibitor would be the same as the Km for NPP as substrate. (Under these circumstances, the apparent Ki and the Km can be directly compared, since NPP was being hydrolyzed under both circumstances.) Since Ki was much lower than Km, NPP must have been inhibiting at another site; thus, these data show the existence of two types of NPP sites on the enzyme, one at which NPP is hydrolyzed and the other at which it inhibits ATP hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The pregnene derivative, 4-pregnene-3-one-20 beta-carboxaldehyde (22-A) was evaluated as an inhibitor of 17 alpha-hydroxylase/C17,20-lyase in rat testicular microsomes and of 5 alpha-reductase in human prostatic homogenates. The effect of the compound in vivo was studied in adult male rats. The 22-A demonstrated potent and competitive inhibition of 17 alpha-hydroxylase and C17,20-lyase with Ki values 8.48 and 0.41 microM, respectively, significantly below the Km values for these two enzymes (33.75 and 4.55 microM). This compound also showed potent inhibition of 5 alpha-reductase with a Ki value of 15.6 nM (Km for this enzyme is 50 nM). By comparison, ketoconazole, a currently studied 17 alpha-hydroxylase/C17,20-lyase inhibitor for the treatment of prostatic cancer, showed less potent inhibition of 17 alpha-hydroxylase (Ki 39.5 microM) and C17,20-lyase (Ki 3.6 microM) and did not inhibit 5 alpha-reductase. Progesterone which has been reported to inhibit the 17 alpha-hydroxylase/C17,20-lyase, did not significantly reduce the production of testosterone by rat testes in vitro in comparison to controls, while the same concentration of 22-A demonstrated a 42% reduction of testosterone biosynthesis. When the adult male rats were injected s.c. with 22-A at 50 mg/day/kg for a 2 week period, the testosterone concentrations in the rat sera were significantly lower than control values (P less than 0.05), whereas serum corticosterone levels did not change. These results suggest that 22-A is a selective potent inhibitor for 17 alpha-hydroxylase and C17,20-lyase, but is more potent for the C17,20-lyase. The compound also inhibits 5 alpha-reductase, and therefore may reduce biosynthesis of testosterone and dihydrotestosterone effectively. Thus, 22-A may be useful in the treatment of problems associated with the androgen excess and prostatic cancer.  相似文献   

8.
9.
The yeast Rhodotorula glutinis (Rhodosporidium toruloides) is capable of accumulative transport of a wide variety of monosaccharides. Initial velocity studies of the uptake of 2-deoxy-D-glucose were consistent with the presence of at least two carriers for this sugar in the Rhodotorula plasma membrane. Non-linear regression analysis of the data returned maximum velocities of 0.8 +/- 0.2 and 2.0 +/- 0.2 nmol/min per mg (wet weight) and Km values of 18 +/- 4 and 120 +/- 20 microM, respectively, for the two carriers. Kinetic studies of D-glucose transport also revealed two carriers with maximum velocities of 1.1 +/- 0.4 and 2.4 +/- 0.4 nmol/min per mg (wet weight) and Km values of 12 +/- 3 and 55 +/- 12 microM. As expected, 2-deoxy-D-glucose was a competitive inhibitor of D-glucose transport. Ki values for the inhibition were 16 +/- 8 and 110 +/- 40 microM. These Ki values were in good agreement with the Km values for 2-deoxy-D-glucose transport. D-Xylose, the 5-deoxymethyl analog of D-glucose, appears to utilize the D-glucose/2-deoxy-D-glucose carriers. This pentose was observed to be a competitive inhibitor of D-glucose (Ki values = 0.14 +/- 0.06 and 5.6 +/- 1.6 mM) and 2-deoxy-D-glucose (Ki values = 0.15 +/- 0.07 and 4.6 +/- 1.2 mM) transport.  相似文献   

10.
The properties of 5-ene-3β-hydroxysteroid oxidoreductase (3β-HSD) from human placental homogenates were studied invitro. The apparent Michaelis constants for 3β-HSD with the substrates pregnenolone (Δ5P) and dehydroepiandrosterone (DHA) were 170 nM and 40 nM respectively. The optimal pH for both these substrates was between 10 and 12. With NAD as the substrate, the Km for pregnenolone was 20 μM and for DHA, 17 μM. The activity of 3β-HSD was inhibited by various steroids. Competitive inhibitors (pregnenolone substrate) included: ethynylestradiol (inhibition constant Ki=7.3 nM), DHA (Ki=46 nM), estradiol-17β (Ki=46 nM), cholesterol (Ki=0.68 μM) and 16α-hydroxydehydroepiandrosterone (16αOHDHA) (Ki=2.2 μM). When the substrate was DHA, competitive inhibition occurred with the following steroids: ethynylestradiol (Ki=6.4 nM), estradiol-17β (Ki=69 nM), pregnenolone (Ki=91 μM), cholesterol (Ki=1.3 μM) and 16αOHDHA (Ki=1.9 μM). 4-Ene-3-ketosteroids such as androstenedione, progesterone (Δ4P), norethindrone and chlormadinone acetate acted as noncompetitive inhibitors towards both substrates.  相似文献   

11.
Yao HT  Chang YW  Lan SJ  Chen CT  Hsu JT  Yeh TK 《Life sciences》2006,79(26):2432-2440
The inhibitory effect of saturated fatty acids (SFAs): palmitic acid (PA), stearic acid (SA) and polyunsaturated fatty acids (PUFAs): linoleic acid (LA), linolenic acid (LN), arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on six human drug-metabolizing enzymes (CYP1A2, 2C9, 2C19, 2D6, 2E1 and 3A4) was studied. Supersomes from baculovirus-expressing single isoforms were used as the enzyme source. Phenacetin O-deethylation (CYP1A2), diclofenac 4-hydroxylation (CYP2C9), mephenytoin 4-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1) and midazolam 1-hydroxylation (CYP3A4) were used as the probes. Results show that all the five examined PUFAs competitively inhibited CYP2C9- and CYP2C19-catalyzed metabolic reactions, with Ki values ranging from 1.7 to 4.7 microM and 2.3 to 7.4 microM, respectively. Among these, AA, EPA and DHA tended to have greater inhibitory potencies (lower IC(50) and Ki values) than LA and LN. In addition, these five PUFAs also competitively inhibited the metabolic reactions catalyzed by CYP1A2, 2E1 and 3A4 to a lesser extent (Ki values>10 microM). On the other hand, palmitic and stearic acids, the saturated fatty acids, had no inhibitory effect on the activities of six human CYP isozymes at concentrations up to 200 microM. Incubation of PUFAs with CYP2C9 or CYP2C19 in the presence of NADPH resulted in the decrease of PUFA concentrations in the incubation mixtures. These results indicate that the PUFAs are potent inhibitors as well as the substrates of CYP2C9 and CYP2C19.  相似文献   

12.
Rat cytochrome P-450(M-1) cDNA was expressed in Saccharomyces cerevisiae TD1 cells by using a yeast-Escherichia coli shuttle vector consisting of P-450(M-1) cDNA, yeast alcohol dehydrogenase promoter and yeast cytochrome c terminator. The yeast cells synthesized up to 2 X 10(5) molecules of P-450(M-1) per cell. The microsomal fraction prepared from the transformed cells contained 0.1 nmol of cytochrome P-450 per mg of protein. The expressed cytochrome P-450 catalyzed 16 alpha- and 2 alpha-hydroxylations of testosterone in accordance with the catalytic activity of P-450(M-1), but did not hydroxylate vitamin D3 or 1 alpha-hydroxycholecalciferol at the 25 position. The expressed cytochrome P-450 also catalyzed the oxidation of several drugs and did not show 25-hydroxylation activity toward 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol. However, it cross-reacted with the polyclonal and monoclonal antibodies elicited against purified P-450cc25 which catalyzed the 25-hydroxylation of vitamin D3. These results indicated that P-450(M-1) cDNA coded the 2 alpha- and 16 alpha-hydroxylase of testosterone, and that these two positions of testosterone are hydroxylated by a single form of cytochrome P-450. Vitamin D3 25-hydroxylase and testosterone 16 alpha- and 2 alpha-hydroxylase are different gene products, although these two hydroxylase activities are immunochemically indistinguishable.  相似文献   

13.
The rapid and sensitive assay of 1beta,2beta-3H-androgen aromatization by measurement of 3H2O release (Thompson, E.A., Jr., and Siiteri, P.K. (1974) J. Biol. Chem. 249, 5364-5372) has been analyzed to determine its applicability to initial rate studies. It was found that aromatization is the sole reaction catalyzed by lyophilized placental microsomes that causes a loss of tritium from position 1 or 2 of androstenedione and testosterone. Tritium is, however, removed from position 2 of the estrogen products, presumably in 2-hydroxylation, but this does not invalidate use of the assay for initial rate measurements; it was therefore used to characterize the catalytic properties of aromatase. Aromatization by the freeze-dried preparation was stimulated by K+, EDTA, and dithiothreitol, and was maximally active at pH 7.5 TO 8.0. With incubation conditions optimized for these factors, the apparent Km for NADPH is approximately 1 muM. The maximum velocity of androstenedione aromatization exceeds that of testosterone, and the affinity of the substrate binding site is higher for the former substrate, the apparent Km values being 0.1 muM and 0.4 muM, respectively. Mutual competition experiments with the androgen substrates showed that each gives simple competitive inhibition of the other's aromatization; furthermore, the apparent Ki values for each are in close agreement with their respective Km values. Androst-1,4,6-triene-3,17-dione competitively inhibits the aromatization of both androstenedione and testosterone, the apparent Ki, in both cases being 0.2 muM. It is concluded that the two androgen substrates are aromatized at a single, identical site.  相似文献   

14.
The regulation of purified yeast membrane-associated phosphatidylserine synthase (CDP-diacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) and phosphatidylinositol synthase (CDP-diacylglycerol:myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11) activities by phospholipids was examined using Triton X-100/phospholipid mixed micelles. Phosphatidate, phosphatidylcholine, and phosphatidylinositol stimulated phosphatidylserine synthase activity, whereas cardiolipin and the neutral lipid diacylglycerol inhibited enzyme activity. Phosphatidate was a potent activator of phosphatidylserine synthase activity with an apparent activation constant (0.033 mol %) 88-fold lower than the apparent Km (2.9 mol %) for the surface concentration of CDP-diacylglycerol. Phosphatidate caused an increase in the apparent Vmax and a decrease in the apparent Km for the enzyme with respect to the surface concentration of CDP-diacylglycerol. Phosphatidylcholine and phosphatidylinositol caused an increase in the apparent Vmax for phosphatidylserine synthase with respect to CDP-diacylglycerol with apparent activation constants of 3.4 and 3.2 mol %, respectively. Cardiolipin and diacylglycerol were competitive inhibitors of phosphatidylserine synthase activity with respect to CDP-diacylglycerol. The apparent Ki value for cardiolipin (0.7 mol %) was 4-fold lower than the apparent Km for CDP-diacylglycerol, whereas the apparent Ki for diacylglycerol (7 mol %) was 2.4-fold higher than the apparent Km for CDP-diacylglycerol. Phosphatidylethanolamine and phosphatidylglycerol did not affect phosphatidylserine synthase activity. Phosphatidylinositol synthase activity was not significantly effected by lipids. The role of lipid activators and inhibitors on phosphatidylserine synthase activity is discussed in relation to overall lipid metabolism.  相似文献   

15.
Much greater quantities of 16 alpha-hydroxyoestrogens (e.g. oestriol) than of 16-deoxyoestrogens (e.g. oestradiol-17 beta) are formed in human pregnancy than might be expected from the relative availability to the placenta of the 16 alpha-hydroxy- and 16-deoxy-C19 precursors. To investigate this further, 16 alpha-hydroxyandrostenedione (16 alpha-OH-A4) and androstenedione (A4) were tested in vitro as substrates and mutual inhibitors of human placental aromatase. It was found that the Km for aromatisation of A4 (mean = 0.26 mumol/l) was very similar to Ki (0.30, 0.35 mumol/l) for the inhibition by A4 of the aromatisation of 16 alpha-OH-A4. Similarly, Km for aromatisation of 16 alpha-OH-A4 (mean = 1.21 mumol/l) had the same value as the Ki (1.0, 1.2 mumol/l) for the inhibition by 16 alpha-OH-A4 of the aromatisation of A4. From graphical analysis of Lineweaver-Burk plots, both inhibitions were characterised as noncompetitive. Hence, it was concluded that the two 16-deoxy- and 16-hydroxy-C19 substrates bind at separate, but interactive, sites and that each substrate on binding inhibits the aromatisation of the other. Additional evidence for the separate but interactive substrate binding sites for the 16-deoxy- and 16-hydroxy-C19 steroids was obtained by use of the suicide inhibitor 4-hydroxyandrostenedione (4-OH-A4), which is recognised as binding to the aromatisation site for A4. Aromatisation of 16 alpha-OH-A4 was found to be inhibited by pre-incubation of the microsomes with 4-OH-A4 (0.1 mumol/l). The presence of A4 (4.6 mumol/l), but not of 16 alpha-OH-A4 (4.0 mumol/l) during the pre-incubation successfully protected the subsequent aromatisation of 16 alpha-OH-A4 from this inhibition. In addition, the Km values, reported here, suggest also that the 16-deoxyandrogens are preferred to the 16 alpha-hydroxyandrogens as oestrogen precursors. In consequence, factors other than substrate affinity and plasma concentrations must be presumed to be involved in the overwhelming production of 16 alpha-hydroxyoestrogens in human pregnancy.  相似文献   

16.
Using newborn rat adrenal cells in primary culture, 16 alpha-hydroxyprogesterone was bioconverted into numerous 16 alpha-hydroxylated steroids. The method of analysis of these steroids comprised the association of column and thin-layer chromatography to gas chromatography-mass spectrometry in order to obtain the mass spectra of pure compounds. The identified compounds resulted principally from the enzymatic reactions of 21-hydroxylation 11 beta-hydroxylation and reduction of the 20-oxo and 3-oxo-4-ene groups. Minor metabolites resulted from 18-hydroxylation and 6 beta-hydroxylation of the substrate. The metabolism of 16 alpha-hydroxyprogesterone is similar to that of progesterone in the same cell-culture system; however, there are two exceptions. The 21-hydroxylation of 16 alpha-hydroxyprogesterone occurs at a rate similar to that of its 11 beta-hydroxylation, whereas the 21-hydroxylation of progesterone is faster than its 11 beta-hydroxylation. The ratio of 11 beta- to 18-hydroxylation of 16 alpha-hydroxyprogesterone is about 3, whereas the ratio of 11 beta- to 18-hydroxylation of progesterone, 20 alpha-dihydroxyprogesterone and DOC is between 1./ and 2. It is most likely the rate of 18-hydroxylation which is decreased by the hydroxyl group at C-16. The use of adrenal cell cultures is a practical, simple method for the preparation of a variety of 16 alpha-hydroxylated steroids from a single substrate. Its adaptation to the production of important amounts of 16 alpha-hydroxylated corticosteroids will permit the study of their biological activity.  相似文献   

17.
J P Benedetto  M B Martel  R Got 《Biochimie》1979,61(10):1125-1132
Kinetic studies indicate that glucose-6-phosphatase is a multifunctional enzyme. a) Phosphohydrolase activities. The mannose-6-phosphatase activity is low (Km = 8 mM, VM = 90 nmoles. min-1mg-1). The enzyme shows a strong affinity for glucose-6-phosphate (Km = 2.5 mM, VM = 220 nmoles.min-1mg-1). beta-glycerophosphate (K1 = 30 mM), D-glucose (Ki = 120 mM) are mixed type inhibitors; pyrophosphate (Ki = 2 mM) is a non competitive one. b) Phosphotransferase activities. Di and triphosphate adenylic nucleosides or phosphoenol pyruvate are not substrates. Carbamylphosphate serves as a phosphoryl donor with D-glucose as acceptor. The phosphate transfer is consisstent with a random mechanism in which the binding of one substrate increases the enzymes affinity for the second substrate. Apparent Km values for carbamyl-phosphate range from 5.2 mM (D-glucose concentration leads to infinity) to 8 mM (D-glucose concentration leads to 0). The corresponding apparent Km values for D-glucose are 59 mM (carbamyl-phosphate concentration leads to infinity) to 119 mM (carbamyl-phosphate concentration leads to 0). Maximal reaction velocity with infinite levels of both substrates is 270 nmoles.min-1.mg-1. Pyrophosphate is a poor phosphoryl donnor (Km = 55 mM with D-glucose concentration 250 mM). In addition we do not find any latency; detergents, namely sodium deoxycholate, Triton X 100 do not affect or inhibit glucose-6-phosphatase activity.  相似文献   

18.
We have developed a sensitive and nonradiometric assay of estradiol 2- and 16 alpha-hydroxylase activities using reverse-phase high-performance liquid chromatography with voltametric detector. The 2- and 16 alpha-hydroxylated estrogens produced by the incubation of estradiol with rat liver microsomes were initially separated into the catechol and phenolic fractions using a QAE-Sephadex A-25 borate column. The metabolites were detected in quantities as low as 0.5-1 ng using 3-methoxy-1,3,5(10)-estratriene-2,16 alpha,17 beta-triol or 4-hydroxyestrone 17-oxime as an internal standard. Apparent Km and Vmax of the 2- and 16 alpha-hydroxylases were 41.9 microM and 1.3 nmol/mg protein/min, and 82 microM and 480 pmol/mg protein/min, respectively.  相似文献   

19.
The synthesis and evaluation of 4-thiosubstituted-4-androstenedione analogs as inhibitors of estrogen synthetase (aromatase) is described. All compounds were prepared by the addition of various thiol reagents to 4 beta,5 beta-epoxyandrostanedione. Inhibitory activity of synthesized compounds was assessed using a human placental microsomal preparation as the enzyme source and [1 beta-3H]4-androstene-3,17-dione as substrate. Synthesized compounds exhibiting high inhibitory activity were further evaluated under initial velocity conditions to determine apparent Ki values. Several compounds were effective competitive inhibitors, and have apparent Ki values ranging from 34 to 52 nM, with the apparent Km for androstenedione being 54 nM. The results of these studies demonstrate a tightly fitted enzyme pocket that can accommodate bulky substituents at the C-4 position of androstenedione not to exceed 4.3 A in width and 5.5 A in length.  相似文献   

20.
We have cloned human 25-hydroxyvitamin D3 1alpha-hydroxylase cDNAs from normal subjects and patients with pseudovitamin D-deficient rickets (PDDR), and expressed the cDNAs in Escherichia coli JM109 cells. Kinetic analysis of normal 1alpha-hydroxylase in the reconstituted system revealed that Km values for 25(OH)D3 and (24R), 25(OH)2D3 were 2.7 and 1.1 microM, respectively. The lower Km value and higher Vmax/Km value for (24R),25(OH)2D3 indicated that it is a better substrate than 25(OH)D3 for 1alpha-hydroxylase. These results are quite similar to those of mouse 1alpha-hydroxylase. To establish a highly sensitive in vivo system, 1alpha-hydroxylase, adrenodoxin and NADPH-adrenodoxin reductase were coexpressed in E. coli cells. The recombinant E. coli cells showed remarkably high 1alpha-hydroxylase activity, suggesting that the electrons were efficiently transferred from NADPH-adrenodoxin reductase through adrenodoxin to 1alpha-hydroxylase in E. coli cells. Using this system, the activities of four mutants of 1alpha-hydroxylase, R107H, G125E, R335P and P382S, derived from patients with PDDR were examined. Although no significant reduction in expression of these mutants was observed, none showed detectable activity. These results strongly suggest that the mutations found in the patients with PDDR completely abolished 1alpha-hydroxylase activity by replacement of one amino acid residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号