共查询到20条相似文献,搜索用时 0 毫秒
1.
Sikorsky JA Primerano DA Fenger TW Denvir J 《Biochemical and biophysical research communications》2007,355(2):431-437
DNA damage blocks DNA polymerase progression and increases miscoding. In this study, we assessed the effects of specific lesions on Taq DNA polymerase fidelity and amplification efficiency. In the presence of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), Taq DNA polymerase inserted dCMP and to a lesser extent dAMP. 8-Oxo-7,8-dihydro-2'-deoxyadenosine (8-oxodA) instructed the incorporation of dTMP and caused a pronounced n-1 deletion not observed in other systems. The presence of an abasic lesion led to dAMP incorporation and n-1 deletions. In addition, we introduce the mean modified efficiency (MME) as a more precise method for determining PCR amplification efficiency of damaged templates. Using this method, we were able to quantify reductions in amplification efficiency of templates containing 8-oxodG (single or multiple), 8-oxodA, or abasic sites. Because the MME method can detect small reductions in amplification efficiency, it may be useful in comparing the extent of damage in environmentally degraded or archival DNA specimens. 相似文献
2.
Ghosh S Hamdan SM Cook TE Richardson CC 《The Journal of biological chemistry》2008,283(46):32077-32084
Escherichia coli thioredoxin binds to a unique flexible loop of 71 amino acid residues, designated the thioredoxin binding domain (TBD), located in the thumb subdomain of bacteriophage T7 gene 5 DNA polymerase. The initial designation of thioredoxin as a processivity factor was premature. Rather it remodels the TBD for interaction with DNA and the other replication proteins. The binding of thioredoxin exposes a number of basic residues on the TBD that lie over the duplex region of the primer-template and increases the processivity of nucleotide polymerization. Two small solvent-exposed loops (loops A and B) located within TBD electrostatically interact with the acidic C-terminal tail of T7 gene 4 helicase-primase, an interaction that is enhanced by the binding of thioredoxin. Several basic residues on the surface of thioredoxin in the polymerase-thioredoxin complex lie in close proximity to the TBD. One of these residues, lysine 36, is located proximal to loop A. The substitution of glutamate for lysine has a dramatic effect on the binding of gene 4 helicase to a DNA polymerase-thioredoxin complex lacking charges on loop B; binding is decreased 15-fold relative to that observed with wild-type thioredoxin. This defective interaction impairs the ability of T7 DNA polymerase-thioredoxin together with T7 helicase to mediate strand displacement synthesis. This is the first demonstration that thioredoxin interacts with replication proteins other than T7 DNA polymerase. 相似文献
3.
Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7 总被引:34,自引:0,他引:34
Bacteriophage T7 gene 5 protein has been purified to apparent homogeneity from cells overexpressing its gene several hundred-fold. Gene 5 protein is a DNA polymerase with low processivity; it dissociates from the primer-template after catalyzing the incorporation of 1-50 nucleotides, depending on the salt concentration. Escherichia coli thioredoxin, a host protein that is tightly associated with the gene 5 protein in phage-infected cells, is not required for this activity. Thioredoxin acts as an accessory protein to bestow processivity on the polymerizing reaction; DNA synthesis catalyzed by the gene 5 protein-thioredoxin complex on a single-stranded DNA template can polymerize thousands of nucleotides without dissociation. Conditions that increase the stability of secondary structures in the template (i.e., low temperature or high ionic strength) decrease the processivity. E. coli single-stranded DNA-binding protein stimulates both the rate of elongation and the processivity of the gene 5 protein-thioredoxin complex. 相似文献
4.
Gene 5 protein (gp5) of bacteriophage T7 is a non-processive DNA polymerase, which acquires high processivity by binding to Escherichia coli thioredoxin. The gene 5 protein-thioredoxin complex (gp5/trx) polymerizes thousands of nucleotides before dissociating from a primer-template. We have engineered a disulfide linkage between the gene 5 protein and thioredoxin within the binding surface of the two proteins. The polymerase activity of the covalently linked complex (gp5-S-S-trx) is similar to that of gp5/trx on poly(dA)/oligo(dT). However, gp5-S-S-trx has only one third the polymerase activity of gp5/trx on single-stranded M13 DNA. gp5-S-S-trx has difficulty polymerizing nucleotides through sites of secondary structure on M13 DNA and stalls at these sites, resulting in lower processivity. However, gp5-S-S-trx has an identical processivity and rate of elongation when E. coli single-stranded DNA-binding protein (SSB protein) is used to remove secondary structure from M13 DNA. Upon completing synthesis on a DNA template lacking secondary structure, both complexes recycle intact, without dissociation of the processivity factor, to initiate synthesis on a new DNA template. However, a complex stalled at secondary structure becomes unstable, and both subunits dissociate from each other as the polymerase prematurely releases from M13 DNA. 相似文献
5.
Influence of DNA aptamer structure on the specificity of binding to Taq DNA polymerase 总被引:1,自引:0,他引:1
Yakimovich OY Alekseev YI Maksimenko AV Voronina OL Lunin VG 《Biochemistry. Biokhimii?a》2003,68(2):228-235
The secondary structure of DNA aptamer to Taq DNA polymerase was established as a hairpin. Both stem and loop structures of DNA ligand were shown to be involved in the interaction with Taq DNA polymerase. Moreover, the structure and sequence of DNA aptamer that was the most effective inhibitor of DNA polymerase activity were established. This crucial structure was evaluated as a GC-rich stem longer than 17 bp, and a loop consisting of 12 bases with strictly determined nucleotide sequence. It was demonstrated that nucleotide in position 23 counting from the 5"-end of DNA ligand was involved in direct contact with Taq DNA polymerase. The ability of optimized DNA aptamer TQ21-11 to form a complex with the enzyme was increased 5-fold in comparison to the initial aptamer. 相似文献
6.
Moarefi I Jeruzalmi D Turner J O'Donnell M Kuriyan J 《Journal of molecular biology》2000,296(5):1215-1223
The protein encoded by gene 45 of T4 bacteriophage (gene 45 protein or gp45), is responsible for tethering the catalytic subunit of T4 DNA Polymerase to DNA during high-speed replication. Also referred to as a sliding DNA clamp, gp45 is similar in its function to the processivity factors of bacterial and eukaryotic DNA polymerases, the beta-clamp and PCNA, respectively. Crystallographic analysis has shown that the beta-clamp and PCNA form highly symmetrical ring-shaped structures through which duplex DNA can be threaded. Gp45 shares no sequence similarity with beta-clamp or PCNA, and sequence comparisons have not been able to establish whether it adopts a similar structure. We have determined the crystal structure of gp45 from T4 bacteriophage at 2.4 A resolution, using multiple isomorphous replacement. The protein forms a trimeric ring-shaped assembly with overall dimensions that are similar to those of the bacterial and eukaryotic processivity factors. Each monomer of gp45 contains two domains that are very similar in chain fold to those of beta-clamp and PCNA. Despite an overall negative charge, the inner surface of the ring is in a region of positive electrostatic potential, consistent with a mechanism in which DNA is threaded through the ring. 相似文献
7.
8.
The replicative polymerase of bacteriophage T7 is structurally and mechanistically well characterized. The crystal structure of T7 DNA polymerase or gene 5 protein complexed to its processivity factor, Escherichia coli thioredoxin, a primer-template, and a dideoxynucleotide reveals how this enzyme interacts with the 3'-end of the primer-template, but does not show how thioredoxin confers processivity to the polymerase. In the crystal structure highly conserved amino acids Asn(335) and Ser(338) of the thumb subdomain of T7 DNA polymerase are seen to interact with phosphates 7 and 8 of the DNA template strand. Results with a mutant T7 DNA polymerase in which aliphatic residues are substituted for these amino acids and experiments with different length and methylphosphonate-modified primer-templates demonstrate that these interactions are essential for processive synthesis and d(A.T)(n) tract bypass. Our data with methylphosphonate-modified DNA suggests that thioredoxin confers processivity to T7 DNA polymerase in part by causing an interaction with the phosphate backbone or minor groove of DNA. Residues Asn(335) and Ser(338) may also function with a nearby helix-loop-helix motif located at residues 339-372 to enclose the DNA during processive synthesis. Our results suggest that this structure must be held close to the DNA by ionic interactions to function. These interactions also allow for DNA sliding but physically block the passage of a 3T bulge in the template. In contrast, yeast polymerase eta, a polymerase that non-mutagenically repairs cis-syn thymidine dimers, allows the same bulge to slide past its thumb subdomain during synthesis. A relaxed thumb interaction with the DNA could account for the notably low processivity of polymerase eta. 相似文献
9.
10.
The oligomeric "sliding clamp" processivity factors, such as PCNA, are thought to rely on a loose, topological association with DNA to slide freely along dsDNA. Unlike PCNA, the processivity subunit of the herpes simplex virus DNA polymerase, UL42, is a monomer and has an intrinsic affinity for dsDNA that is remarkably high for a sequence-independent DNA binding protein. Using a DNase footprinting assay, we demonstrate that UL42 translocates with the catalytic subunit of the polymerase during chain elongation. In addition, footprinting and electrophoretic mobility shift assays show that, despite its tight DNA binding, UL42 is capable of linear diffusion on DNA at a rate of between 17 and 47 bp/s. Our results thus suggest that, despite profound biochemical differences with the sliding clamps, UL42 can freely slide downstream with the catalytic subunit during DNA replication. 相似文献
11.
Proflavine and fidelity of DNA polymerase 总被引:1,自引:0,他引:1
12.
Summary We have studied the effects of agar and agarose on Vent DNA polymerase and Taq DNA polymerase. Agar strongly inhibited Vent DNA polymerase but only moderately inhibited Taq DNA polymerase. Such a difference may be due to the fact that the two polymerases belong to different structural families. When Vent DNA polymerase is used to amplify DNA from lambda plaques, agarose rather than agar is the solid medium of choice. 相似文献
13.
Y Timsit 《Journal of molecular biology》1999,293(4):835-853
The accuracy of DNA replication results from both the intrinsic DNA polymerase fidelity and the DNA sequence. Although the recent structural studies on polymerases have brought new insights on polymerase fidelity, the role of DNA sequence and structure is less well understood. Here, the analysis of the crystal structures of hotspots for polymerase slippage including (CA)n and (A)n tracts in different intermolecular contexts reveals that, in the B-form, these sequences share common structural alterations which may explain the high rate of replication errors. In particular, a two-faced "Janus-like" structure with shifted base-pairs in the major groove but an apparent normal geometry in the minor groove constitutes a molecular decoy specifically suitable to mislead the polymerases. A model of the rat polymerase beta bound to this structure suggests that an altered conformation of the nascent template-primer duplex can interfere with correct nucleotide incorporation by affecting the geometry of the active site and breaking the rules of base-pairing, while at the same time escaping enzymatic mechanisms of error discrimination which scan for the correct geometry of the minor groove.In contrast, by showing that the A-form greatly attenuates the sequence-dependent structural alterations in hotspots, this study suggests that the A-conformation of the nascent template-primer duplex at the vicinity of the polymerase active site will contribute to fidelity. The A-form may play the role of a structural buffer which preserves the correct geometry of the active site for all sequences. The detailed comparison of the conformation of the nascent template-primer duplex in the available crystal structures of DNA polymerase-DNA complexes shows that polymerase beta, the least accurate enzyme, is unique in binding to a B-DNA duplex even close to its active site. This model leads to several predictions which are discussed in the light of published experimental data. 相似文献
14.
He ZG Rezende LF Willcox S Griffith JD Richardson CC 《The Journal of biological chemistry》2003,278(32):29538-29545
Gene 2.5 of bacteriophage T7 is an essential gene that encodes a single-stranded DNA-binding protein (gp2.5). Previous studies have demonstrated that the acidic carboxyl terminus of the protein is essential and that it mediates multiple protein-protein interactions. A screen for lethal mutations in gene 2.5 uncovered a variety of essential amino acids, among which was a single amino acid substitution, F232L, at the carboxyl-terminal residue. gp2.5-F232L exhibits a 3-fold increase in binding affinity for single-stranded DNA and a slightly lower affinity for T7 DNA polymerase when compared with wild type gp2.5. gp2.5-F232L stimulates the activity of T7 DNA polymerase and, in contrast to wild-type gp2.5, promotes strand displacement DNA synthesis by T7 DNA polymerase. A carboxyl-terminal truncation of gene 2.5 protein, gp2.5-Delta 26C, binds single-stranded DNA 40-fold more tightly than the wild-type protein and cannot physically interact with T7 DNA polymerase. gp2.5-Delta 26C is inhibitory for DNA synthesis catalyzed by T7 DNA polymerase on single-stranded DNA, and it does not stimulate strand displacement DNA synthesis at high concentration. The biochemical and genetic data support a model in which the carboxyl-terminal tail modulates DNA binding and mediates essential interactions with T7 DNA polymerase. 相似文献
15.
DNA repair pathways are essential for maintaining genome stability. DNA polymerase beta plays a critical role in base-excision repair in vivo. DNA polymerase lambda, a recently identified X-family homolog of DNA polymerase beta, is hypothesized to be a second polymerase involved in base-excision repair. The full-length DNA polymerase lambda is comprised of three domains: a C-terminal DNA polymerase beta-like domain, an N-terminal BRCA1 C-terminal domain, and a previously uncharacterized proline-rich domain. Strikingly, pre-steady-state kinetic analyses reveal that, although human DNA polymerase lambda has almost identical fidelity to human DNA polymerase beta, the C-terminal DNA polymerase beta-like domain alone displays a dramatic, up to 100-fold loss in fidelity. We further demonstrate that the non-enzymatic proline-rich domain confers the increase in fidelity of DNA polymerase lambda by significantly lowering incorporation rate constants of incorrect nucleotides. Our studies illustrate a novel mechanism, in which the DNA polymerase fidelity is controlled not by an accessory protein or a proofreading exonuclease domain but by an internal regulatory domain. 相似文献
16.
Washington MT Johnson RE Prakash S Prakash L 《The Journal of biological chemistry》1999,274(52):36835-36838
The yeast RAD30 gene functions in error-free replication of UV-damaged DNA, and RAD30 encodes a DNA polymerase, pol eta, that has the ability to efficiently and correctly replicate past a cis-syn-thymine-thymine dimer in template DNA. To better understand the role of pol eta in damage bypass, we examined its fidelity and processivity on nondamaged DNA templates. Steady-state kinetic analyses of deoxynucleotide incorporation indicate that pol eta has a low fidelity, misincorporating deoxynucleotides with a frequency of about 10(-2) to 10(-3). Also pol eta has a low processivity, incorporating only a few nucleotides before dissociating. We suggest that pol eta's low fidelity reflects a flexibility in its active site rendering it more tolerant of DNA damage, while its low processivity limits its activity to reduce errors. 相似文献
17.
Mutations that decrease DNA binding of the processivity factor of the herpes simplex virus DNA polymerase reduce viral yield, alter the kinetics of viral DNA replication, and decrease the fidelity of DNA replication
下载免费PDF全文

The processivity subunit of the herpes simplex virus DNA polymerase, UL42, is essential for viral replication and possesses both Pol- and DNA-binding activities. Previous studies demonstrated that the substitution of alanine for each of four arginine residues, which reside on the positively charged surface of UL42, resulted in decreased DNA binding affinity and a decreased ability to synthesize long-chain DNA by the polymerase. In this study, the effects of each substitution on the production of viral progeny, viral DNA replication, and DNA replication fidelity were examined. Each substitution mutant was able to complement the replication of a UL42 null mutant in transient complementation assays and to support the replication of plasmid DNA containing herpes simplex virus type 1 (HSV-1) origin sequences in transient DNA replication assays. Mutant viruses containing each substitution and a lacZ insertion in a nonessential region of the genome were constructed and characterized. In single-cycle growth assays, the mutants produced significantly less progeny virus than the control virus containing wild-type UL42. Real-time PCR assays revealed that these UL42 mutants synthesized less viral DNA during the early phase of infection. Interestingly, during the late phase of infection, the mutant viruses synthesized larger amounts of viral DNA than the control virus. The frequencies of mutations of the virus-borne lacZ gene increased significantly in the substitution mutants compared to those observed for the control virus. These results demonstrate that the reduced DNA binding of UL42 is associated with significant effects on virus yields, viral DNA replication, and replication fidelity. Thus, a processivity factor can influence replication fidelity in mammalian cells. 相似文献
18.
Inhibition of Taq DNA polymerase by catalpol. 总被引:2,自引:0,他引:2
C R Pungitore M Juri Ayub E J Borkowski C E Tonn G M Ciuffo 《Cellular and molecular biology, including cyto-enzymology》2004,50(6):767-772
DNA polymerases have recently emerged as important cellular targets for chemical intervention in the development of anti-cancer agents. This report describes a PCR assay as a method to investigate the action mechanism of the inhibition of Taq DNA polymerase by catalpol. This inhibition was not primer or template specific, nor was it due to chelation of Mg2+ ions. In assays of hyperchromicity of double-stranded DNA, catalpol did not affect melting profile. The inhibitory effect of catalpol does not appear to depend on DNA concentration. In contrast, increasing dNTP concentration rescue the Taq DNA polymerase activity, suggestingthat catalpol acts in a competitive way with dNTPs at the binding site of the enzyme. Theoretical calculations reinforce the experimental data and the proposed mode of action of catalpol. 相似文献
19.
Chromium(III) bound to DNA templates promotes increased polymerase processivity and decreased fidelity during replication in vitro 总被引:1,自引:0,他引:1
Carcinogenic chromium [Cr(VI)] compounds are reduced intracellularly to DNA- and protein-reactive chromium(III) species. However, the role of Cr(III) ions in chromium-induced genotoxicity remains unclear. We have investigated the effects of chromium(III) binding on DNA replication and polymerase processivity in vitro. Chromium ions bind slowly and in a dose-dependent manner to DNA. Micromolar concentrations of free chromium inhibit DNA replication, but if the unbound chromium is removed by gel filtration, the rate of DNA replication by polymerase I (Klenow fragment) on the chromium-bound template is increased greater than 6-fold relative to the control. This increase is paralleled by as much as a 4-fold increase in processivity and a 2-fold decrease in replication fidelity. These effects are optimum when very low concentrations of chromium ions are bound to the DNA [3-4 Cr(III) ions per 1000 nucleotide phosphates]. Increased concentrations of chromium lead to the production of DNA-DNA cross-links and inhibition of polymerase activity. These results suggest that low levels of DNA-bound chromium(III) ions may contribute to chromium mutagenesis and carcinogenesis by altering the kinetics and fidelity of DNA replication. 相似文献
20.
F G Pluthero 《Nucleic acids research》1993,21(20):4850-4851