首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Data on phosphate excretion rates of zooplankton are based on measurements using the pelagic crustacean zooplankton of Lake Vechten and laboratory-cultured Daphnia galeata. In case of Daphnia sp we measured the effects of feeding on P-rich algae and P-poor algae (Scenedesmus) as food on the P-excretion rates at 20°C. The excretion rates of the natural zooplankton community, irrespective of the influence of the factors mentioned, varied by an order of magnitude: 0.025–0.275µg PO4-Pmg–1C in zooplankton (C zp ) h–1. The temperature accounted for about half the observed variation in excretion rates. The mean excretion rates in the lake, computed for 20°C, varied between 0.141 and 0.260 µg Pmg–1C zp h–1. Based on data of zooplankton biomass in the lake the P-regeneration rates by zooplankton covered between 22 and 239% of the P-demand of phytoplankton during the different months of the study period.In D. galeata, whereas the C/P ratios of the Scenedesmus used as food differed by a factor 5 in the experiments, the excretion rates differed by factor 3 only. Despite the higher P-excretion rates (0.258± 0.022 µg PO4-P mg–1 C h–1) of the daphnids fed with P-rich food than those fed with P-poor food (0.105 ± 0.047 µg PO4-P mg–1 C hp–1), both the categories of the animals were apparently conserving P. A survey of the literature on zooplankton excretion shows that in Daphnia the excretion rates vary by a factor 30, irrespective of the species and size of animals and method of estimation and temperature used.About two-thirds of this variation can be explained by size and temperature. A major problem of comparability of studies on P-regeneration by zooplankton relates to the existing techniques of P determination, which necessitates concentrating the animals several times above the in situ concentration (crowding) and prolonged experimental duration (starving), both of which manifest in marked changes that probably lead to underestimation of the real rates.  相似文献   

2.
Hydrolysis of natural dissolved organic phosphorus (DOP) in three hardwater lakes of different trophic level was calculated from kinetic data of phosphatase activity (PA) in different size fractions. DOP as well as kinetics of PA were determined every fortnight in depth profiles during the year 1990. 60% of DOP was assumed to be suitable substrate for phosphatases. The rate of hydrolysis increased markedly with higher trophic level. Average hydrolysis rate of DOP in polytrophic lake Thaler See was 3.26 nM P min–1 (6 µg P-PO4 l–1 h–1). In oligotrophic Lake Herrensee, dissolved phosphatases were responsible for more than half of the total hydrolysis. In the other two lakes, bacterial and algal surface PA dominated hydrolysis in changing parts depending on kinetics and DOP concentration. The regeneration rate of phosphate by PA was compared to phosphorus (P) excretion rate of zooplankton. Excretion was calculated from zooplankton data and excretion equations from the literature. In oligotrophic Lake Herrensee, excretion by zooplankton recycled in average 18% of the phosphate amount which was hydrolysed from DOP by PA. With higher trophic level, relevance of P excretion from zooplankton decreased drastically.  相似文献   

3.
Phosphorus and nitrogen excretion rates by zooplankton communities from two eutrophic and shallow Dutch lakes were measured in laboratory. The variations in excretion rates in the lakes (May–October) were caused mainly by fluctuation in zooplankton biomass. Mean summer excretion rates (June–September) were 2.4 and 0.9 µg PO4P·1–1·d–1 in Lake Loosdercht and Lake Breukeleveen, respectively. This difference between the lakes was caused mainly by the lower zooplankton biomass in Lake Breukeleveen. The excretion of 2.4 µg PO4P·1–1·d compared with the calculated P-demand of phytoplankton of 8.0 µg PO4P·1–1·d–1 is substantial in the summer (June–September) and far more important than the external P-supply of 0.4 µg P·1–1·d–1 and sediment release of 0.5 µg P·1–1·d–1. Both temperature and composition of zooplankton affected the weight specific excretion rates of the zooplankton community. The weight specific community excretion rates of P and N increased with temperature (exponential model); 1–8 g PO4P·mg–1 zooplankton-C·d–1 and 5–42 µg NH3N·mg–1 zooplankton-C·d–1 (10°C–20°C).  相似文献   

4.
Nagdali  Surendra S.  Gupta  P. K. 《Hydrobiologia》2002,468(1-3):45-51
Between 28th March and 4th April, 2000 a fungal infection killed >80% of the most abundant planktivorous fish, Gambusia affinis in Lake Naini Tal, Uttaranchal, India. In response to this mortality, planktonic communities and some eutrophication-related parameters viz., primary productivity, phosphate–phosphorus, nitrate–nitrogen and transparency of the water, were considerably changed. Total zooplankton number more than doubled, phytoplankton number reduced nearly to half, primary production and phosphate-phosphorus was dramatically reduced, while nitrate–nitrogen and water clarity increased. The phytoplankton decline was caused by increased zooplankton grazing (top-down control) rather than phosphorus deficiency (bottom-up control). After 3 months, Gambusia and planktonic communities and nutrient levels reverted back almost to their pre-mortality state. Thus removal of G. affinis could improve water quality of Lake Naini Tal.  相似文献   

5.
Hessen  Dag O.  Faafeng  Bj&#;rn A.  Brettum  P&#;l 《Hydrobiologia》2003,491(1-3):167-175
A survey on phytoplankton:zooplankton biomass ratios was performed in 342 Norwegian lakes, covering a wide range in lake size and productivity (total phosphorus: 3–246 g l–1), but with most localities being oligo- to mesotrophic. Mean phytoplankton biomass was 88 g C l–1, yet with the majority below 50 g C l–1and a median of 25 g C l–1. Total zooplankton biomass displayed a mean and median of 37 and 26 g C l–1, respectively. Cladocerans were by far the dominant group, making up a median of almost 60% of total zooplankton biomass. Total zooplankton biomass as well as that of major aggregated metazoan taxa (cladocerans, calanoid copepods, cyclopoid copepods and rotifers) all showed a positive, but weak correlation with total phytoplankton biomass. These weak correlations suggest that algal biomass per se is a poor predictor of zooplankton biomass. An average phyto-:zooplankton biomass ratio (C:C) of 2.8 (SD±4.7) was found. 30% of the lakes had a phyto-:zooplankton biomass ratio below unity. While there was no correlation between the phyto-:zooplankton biomass ratio with increasing productivity in terms of P concentration, there was a higher biomass ratio in lakes with high fish predation pressure. The low ratio of phyto-:zooplankton biomass suggest major requirements from non-algal sources of C in the zooplankton diet. The need for dietary subsidizing is also supported by the fact that more than 75% of the lakes had algal biomass less than the estimated threshold for net positive growth of zooplankton, although it should be kept in mind that a high share of picoplankton would imply an underestimation of autotroph biomass in these lakes. Since the C-deficiency apparently is most pronounced in oligotrophic systems, it contradicts the view that the detritus pathways plays a predominant role in highly productive systems only, but while the source of detritus probably is mostly of autochthonous origin in eutrophic lakes, allochthonous detritus will be more important in oligotrophic systems.  相似文献   

6.
1. We developed empirical models for predicting the release of nutrients [nitrogen (N) and phosphorus (P)] by aquatic metazoans (zooplankton, mussels, benthic macroinvertebrates and fish). 2. The number of species represented in each model ranged from 9 to 74 (n = 40 – 1122), organism dry mass from 1 × 10?5 to 8 × 104 mg and water temperature from ?1.8 to 32 °C for all models. Organisms were from marine and freshwater (both lotic and lentic) environments. 3. Rates and ratios of nutrient excretion were modelled and intra‐ and intertaxon differences in excretion were examined. Rates of N and P excretion were not significantly different between marine and freshwater species within the same taxon (e.g. zooplankton). However, rates of excretion (as a function of organism dry mass and water temperature) were significantly different among different orders of zooplankton, mussels and fish. However, excretion of N was similar among different orders of benthic macroinvertebrates. 4. Detritivorous fish excreted both N and P at rates greater than all other taxa; whereas mussels excreted N and P generally at rates less than other taxa. There were no significant differences in the rate of N and P excretion between zooplankton and fish (i.e. the allometry of N and P excretion was similar between zooplankton and fish). 5. Molar N : P ratios of nutrients excreted increased with increasing organism dry mass for each group of metazoans, except for zooplankton and detritivorous fish (where N : P ratios declined with increasing organism dry mass). Molar N : P ratios in the excretions of aquatic metazoans were generally below the Redfield ratio of 16:1. 6. We examined the influence of variable abundance of zooplankton, benthic macroinvertebrates and fish on assemblage excretion rates. Rates of N and P excretion were calculated by applying our models to metazoan biomass and abundance data over seven consecutive years in two oligotrophic lakes. Rates of N and P excretion (g ha?1 day?1) increased linearly with increasing assemblage biomass (kg ha?1). However, rates of N and P excretion were significantly and negatively correlated with the relative abundance of fish and positively correlated with the relative abundance of zooplankton.  相似文献   

7.
Dry matter, total carbon (C), nitrogen (N) and phosphorus (P) content of mature bream from Lake Balaton were investigated and the quantities of N and P stored in the bream population and their possible removal by fishery were estimated. Carbon made up 43.3–44.8% of dry weight, N made up on average 10.6% of the dry weight of bream and P accounted for a further 2.7%. About 3.3 kg N ha–1 and 0.9 kg P ha–l are stored in the bream population. Approximately 0.5 kg N ha–1 and 0.1 kg P ha–1 are removed from the lake by bream harvest. Taking into account the total fish yield, the N removal is 2.1% and P removal 3.4% of the amount entering the lake.  相似文献   

8.
L. Cardona  P. Royo  X. Torras 《Hydrobiologia》2001,462(1-3):233-240
Some mugilid fish are known to enhance small phytoplankton in freshwater macrophyte-free environments due to zooplankton depletion. This suggests that they may have negative effects on natural macrophyte beds of freshwater and oligohaline lagoons due to phytoplantkon enhancement. To test this hypothesis, we compared the ecosystems of control enclosures that contained no fish with those of enclosures stocked with Liza saliens at two different densities. The occurrence of L. saliens at a density of 321±92.42 kg ha–1 reduced cladoceran density, depleted epiphytic chironomid larvae, enhanced mayfly nymphs and cyclopoid copepods and reduced the organic matter content of sediment, all in comparison with control enclosures. At a density of 673±42.04 kg ha–1, L. saliens reduced total zooplankton density, depleted epiphytic and sediment dwelling chironomid larvae and enhanced mayfly nymphs. The organic matter contents of sediment was not affected. These results showed that L. saliens was very effective in reducing zooplankton density even when macrophyte biomass was high. However, these effects do not affect phytoplankton density, probably because zooplankton was dominated by species with low filter-feeding rates and macrophytes depleted nutrients.  相似文献   

9.
Gulati  R. D.  Ejsmont-Karabin  J.  Rooth  J.  Siewertsen  K. 《Hydrobiologia》1989,(1):347-354
Phosphorus (PO4-P) and nitrogen (NH4-N) excretion rates of Euchlanis dilatata lucksiana, a rotifer, isolated from Lake Loosdrecht (The Netherlands) and cultured in the lake water at 18–19 °C, were measured in the laboratory.In a series of experiments, the effects of experiment duration on the P and N excretion rates were examined. The rates measured in the first half-hour were about 2 times higher for P and 2–4 times for N than the rates in the subsequent three successive hours which were quite comparable.Eight experiments were carried out in triplicate, 4 each for P and N excretion measurements, using animals of two size ranges: 60–125 µm and > 125 µm. The specific excretion rates varied from 0.06 to 0.18 µg P.mg–1 DW.h–1 and 0.21 to 0.76 µg N.mg–1 DW.h–1. Generally an inverse relationship was observed between the specific excretion rates and the mean individual weight. The excretion rates of Euchlanis measured by us are lower than those reported for several other rotifer species, most of which are much smaller than Euchlanis.Extrapolating the excretion rates of Euchlanis to the other rotifer species in Lake Loosdrecht, and accounting for their density, size and temperature, rotifer excretion appears to be a significant, potential nutrient (N,P) source for phytoplankton growth in the lake. The excretion rates for the rotifers appear to be about two thirds of the total zooplankton excretion, even though the computed rotifer mean biomass is about one-third of the total zooplankton biomass.  相似文献   

10.
1. The St. Johns River Water Management District removed over 5.4 million kg of gizzard shad (Dorosoma cepedianum) from Lake Apopka, FL during 1993–2005, as a means of reducing lake phosphorus and phytoplankton concentrations and improving water clarity. Other steps included reduction of external nutrient inputs and operation of a treatment wetland. We measured nutrient excretion by Lake Apopka gizzard shad to quantify the nutrient effect of this biomanipulation. 2. Both N and P excretion were significantly affected by fish body mass and temperature. Larger fish had lower mass‐specific rates of excretion than smaller fish. 3. High water temperature increased P excretion to a much greater extent than N, resulting in a low N : P of nutrient excretion in midsummer. The N : P of excretion was lower than has been observed in other systems, probably because of higher water temperature. 4. Removal of gizzard shad >200 g prevented the annual release of 45 800 kg N year?1 (3.46 kg N ha?1 year?1) and 7700 kg P year?1 (0.62 kg P ha?1 year?1) on average. The actual impact on the P cycle varied substantially from year to year (range 7900–78 800 kg N year?1; 1200–14 800 kg P year?1), primarily because of fluctuations in the catch. 5. On an annual basis, the P directly removed in fish tissues was similar to that removed by the treatment wetland. The P excretion prevented by the removal of fish was approximately 20% of the reduction in external P loading achieved during 1993–2005. 6. In the short term, most of the P demand of planktonic primary producers is met through recycling of P, which greatly exceeds external P loading. Depending on population biomass, phosphorus excretion by the resident gizzard shad population was similar in magnitude to the P release by diffusive flux from the sediments.  相似文献   

11.
A large scale biomanipulation of pelagic fish by trawling was started in the eutrophic Enonselkä basin (26 km2) of Lake Vesijärvi to improve the water quality which had remained poor in spite of the termination of nutrient loading. The distribution and density of the fish were studied by hydroacoustics before and during the removal. The initial annual fish density varied between 13 000–21 000 fish ha–1 in the study area in August 1984–89. The mass-removal of the fish by pelagic trawling took place in 1989–1992. The catch varied annually between 64 and 92 kg ha–1. Roach (Rutilus rutilus (L.)) and smelt (Osmerus eperlanus (L.)) accounted for c. 85% of the weight of the catch. The mass-removal decreased the pelagic fish density in the Enonselkä basin during the trawling. An increase in the density was observed after the trawling ceased in these years, and the initial density level was reached within one month. The density level after mass-removal remained high compared with oligotrophic lakes. The pelagic fish had a diurnal ascending trend with the decreasing light intensity in August, and the fish were significantly (p < 0.01) higher in the water mass in temperature non-stratified water in autumn than in stratified water in summer. The fish were somewhat deeper in the years of mass-removal than before it. Mass-removal did not affect the individual length of the echosurveyed fish. Fish smaller than c. 15 cm (TS < –44 dB; mainly smelt) were numerically dominant throughout the whole study period.  相似文献   

12.
The life history and production characteristics of Neomysis mercedis from two British Columbia lakes were examined for their potential influence on zooplankton and limnetic fish communities. During the day, mysids in shallow Muriel Lake (45 m) were on or near the bottom; in Kennedy Lake (> 100 m), mysids remained deeper than 50 m. In both lakes, mysids spent summer nights at 0–15 m depths despite > 20 °C temperatures. Mysid density was not strongly correlated with lake depth. Mysids generally displayed spring to early summer minima and late summer to fall maxima in numbers and biomass. Single peaks in gravid females and juvenile mysid abundance, and the absence of pronounced seasonal size changes of gravid females suggest that N. mercedis produced a single generation each year. Fecundities of study lake mysids are the lowest on record, and although size-dependent, exhibited unusually high variability. Annual productivity of mysids averaged 485 mg m–2 y–1 (range 205–690). Calculations indicate mysids consume several times more zooplankton per annum than limnetic fish do. N. mercedis is likely an important competitor of juvenile sockeye salmon (Oncorhynchus nerka) since: (i) sockeye exhibit food limited growth and survival patterns in coastal lakes, (ii) mysids and sockeye consume similar zooplankton prey and (iii) mysids do not contribute greatly to sockeye diet (i.e. < 26% of summer and fall diets by numbers or weight).  相似文献   

13.
Experiments conducted on samples collected from a large oligotrophic lake revealed the following: (1) excretion rates of PO inf4 sup3– by single Daphnia thorata were below detection (5 pmol animal–1 min–1) in 20 ml of oligotrophic lake water over a period of 10 min, (2) experimental addition of D. thorata to 20 ml aliquots of lake water decreased community-wide microbial uptake of PO inf4 sup3– on two occasions (as measured by 32PO inf4 sup3– incorporation), and (3) the presence of D. thorata increased uptake by organisms smaller than 1µm, and decreased uptake by large phytoplankton. The specific mechanism for these responses remains unclear, but the results imply that when phytoplankton larger than 1µm encounter cm scale patches of water recently occupied by Daphnia they may experience decreased PO inf4 sup3– availability rather than elevated concentrations of PO inf4 sup3– caused by excretion. We show that 32P uptake experiments using natural plankton assemblages can be influenced by the presence or absence of large zooplankton, and that neither grazing, turbulence, nor PO inf4 sup3– excretion can account for this influence.  相似文献   

14.
Plankton communities and hydrochemistry of an oligotrophic lake occupying a glacial valley in Argentinian Patagonia (42 °49S; 71 °43W) were studied. Monthly samples at three stations integrated from 0 to 50 m and stratified samples at the site of maximum depth, were taken during the growing season. Transparency was always controlled by glacial silt, and not by phytoplankton. Lake water belongs to the calcium-bicarbonate type, with low conductivity (24 µS cm–1), and poor buffering capacity. Forty-five phytoplankton taxa were found. Mean phytoplankton density was 49 cells ml–1 and mean biomass 69 µg l–1. N:P relationships, inorganic nitrogen exhaustion in the photic layer, and correlations between nutrients and phytoplankton density suggests nitrogen as the main limiting factor. Fifteen zooplankton species were found. Mean zooplankton density was 12.2 ind. l–1 and mean biomass 22.9 µg l–1. Diatoms and Boeckellidae were the dominant planktonic groups. Morphometry and hydrological factors were responsible for horizontal heterogeneity in phytoplankton and chemical variables.  相似文献   

15.
Restoration of the highly eutrophic Reeuwijk lakes (ca. 700 ha) started in 1986 by reducing the external phosphorus loading. As an additional measure to improve the quality of the lake water, the structure of the fish population in Lake Klein Vogelenzang (18 ha) was altered in 1989 by the removal of ca. 100 kg ha–1 bream from the lake in April and December. This constituted about 50% of the total bream biomass in the lake.The fish-stock reduction in April, 1989, was initially followed by high phosphorus concentrations, probably the result of considerable phosphorus release from the sediments. The resulting heavy algal blooms that occurred reduced the transparency to very low values. During the summer the zooplankton population increased markedly in numbers coinciding with reductions in total suspended matter including (blue-green) algae. A great improvement in Secchi-disc transparency was observed and by the end of December, 1989, the bottom of the lake (1.5–2.0 m) was visible. After heavy storms in January and February 1990, transparency dropped to < 1 m as a result of resuspension of high concentrations of suspended matter from the bottom sediments. Although transparency over the rest of 1990 was higher than in 1988, i.e. the year preceding the removal of fish (biomanipulation), it was lower than expected, based on the results of 1989. The study shows that technical and biological factors can cause serious management problems for the implementation of biomanipulation in larger water bodies.  相似文献   

16.
M. Gophen 《Hydrobiologia》1984,113(1):249-258
Monthly averages of standing stock wet biomass of zooplankton in Lake Kinneret (Israel) varied between 11 and 76 g m–2 during 1969–1981, with the exception of two months. Averaged contributions of different groups were: Cladocera 58%, Copepoda 35% and Rotifera 7%. Total standing crop wet biomass is highest during January–June, averages varied between 35 and 50 g m–2, and decreases during summer–fall (23–36 g m–2). The winter biomass of Cladocera fluctuated between 22 and 35 g m–2 and dropped to a range of 9–23 g m–2 in summer, whereas copepod biomass varied very little around an average of 18 g (ww) m–2 with the exception of low values from April to June. The stock biomass of Rotifera is relatively high during winter floods season (December-March) whilst in summer it is very low.Young stages of fish in Lake Kinneret feed mostly on zooplankton and zoobenthic forms. The most abundant fish in the Kinneret ecosystem, Mirogrex terraesanctae terraesanctae, also feed on zooplankton at the adult stage throughout the year, and herbivorous fish consume zooplankton during the summer when lake plankton resources are limited.The summer ecosystem of Lake Kinneret is characterised as a steady state type, in which the impact of the zooplankton-chain is of great importance. Increase of predation pressure on zooplankton by fish can disequilibrate the balanced trophic relations existing between nannoplankton production and zooplankton grazing capacity. Such a situation can lead to organics accumulation as nannoplankton blooms, resulting in water quality deterioration. Management options aimed at preventing collapse of zooplankton populations are discussed.  相似文献   

17.
18.
A mesocosm experiment in 24 enclosures (6 m3) started at the end of June 1996 in a highly eutrophic shallow lake, Lake Köyliönjärvi (SW Finland). The original factorial design with nutrient, fish and macrophyte treatments was lost due to strong winds causing leakages. However, after the walls were made leak-proof again on July 11, the planktonic communities developed in divergent ways. On July 31 there was a tenfold variation in total crustacean biomass among the enclosures and the lake (40.2–417.5 g C l–1), and chlorophyll a varied from 9.5 to 67.0 g l–1. Here, the single-day data on the 25 planktonic communities is analysed by means of correlation and factor analysis in order to identify factors controlling the protozoans, with particular emphasis on ciliates. The data set comprised: total phosphorus, nitrogen, chlorophyll, bacteria, autotrophic picoplankton, heterotrophic flagellates, abundance and species composition of ciliates, phytoplankton and metazooplankton. The results indicate that although the total ciliate abundance (ranging from 16.2 to 95.0 ind l–1) was controlled by food resources, the observed differences in ciliate community structure could be attributed partly to differential predation by metazooplankton. The effect of Daphnia cucullata, the dominant daphnid cladoceran, was stronger than that of other metazoans.  相似文献   

19.
The effects of light intensity, oxygen concentration, and pH on the rates of photosynthesis and net excretion by metalimnetic phytoplankton populations of Little Crooked Lake, Indiana, were studied. Photosynthetic rates increased from 1.42 to 3.14 mg C·mg–1 chlorophylla·hour–1 within a range of light intensities from 65 to 150E·m–2·sec–1, whereas net excretion remained constant at 0.05 mg C·mg–1 chlorophylla·hour–1. Bacteria assimilated approximately 50% of the carbon released by the phytoplankton under these conditions. Excreted carbon (organic compounds either assimilated by bacteria or dissolved in the lake water) was produced by phytoplankton at rates of 0.02–0.15 mg C·mg–1 chlorophylla·hour–1. These rates were 6%–13% of the photosynthetic rates of the phytoplankton. Both total excretion of carbon and bacterial assimilation of excreted carbon increased at high light intensities whereas net excretion remained fairly constant. Elevated oxygen concentrations in samples incubated at 150E· m–2·sec–1 decreased rates of both photosynthesis and net excretion. The photosynthetic rate increased from 3.0 to 5.0 mg C·mg–1 chlorophylla· hour–1 as the pH was raised from 7.5 to 8.8. Net excretion within this range decreased slightly. Calculation of total primary production using a numerical model showed that whereas 225.8 g C·m–2 was photosynthetically fixed between 12 May and 24 August 1982, a maximum of about 9.3 g C·m–2 was released extracellularly.  相似文献   

20.
The paper summarizes the results of a ten-year (1981–1991) zooplankton research on the Lake Loosdrecht, a highly eutrophic lake. The main cause of the lake's eutrophication and deteriorating water quality was supply up to mid 1984 of water from the River Vecht. This supply was replaced by dephosphorized water from the Amsterdam-Rhine Canal in 1984. The effects of this and other restoration measures on the lake's ecosystem were studied. Despite a reduction in the external P-load from ca. 1.0 g P m–2 y–1 to ca. 0.35 g m–2 y–1 now, the filamentous prokaryotes, including cyanobacteria and Prochlorothrix, continue to dominate the phytoplankton.Among the crustacean plankton Bosmina spp, Chydorus sp. and three species of cyclopoid copepods and their nauplii are quite common. Though there was no major change in the composition of abundant species, Daphnia cucullata, which is the only daphnid in these lakes, became virtually extinct since 1989. Among about 20 genera and 40 species of rotifers the important ones are: Anuraeopsis fissa, Keratella cochlearis, Filinia longiseta and Polyarthra. The rotifers usually peak in mid-summer following the crustacean peak in spring. The mean annual densities of crustaceans decreased during 1988–1991. Whereas seston (< 150 µm) mean mass in the lake increased since 1983 by 20–60%, zooplankton (> 150 µm) mass decreased by 15–35%.The grazing by crustacean community, which was attributable mainly to Bosmina, had mean rates between 10 and 25% d–1. Between 42 and 47% of the food ingested was assimilated. In spring and early summer when both rotifers and crustaceans have their maximal densities the clearance rates of the rotifers were much higher. Based on C/P ratios, the zooplankton (> 150 µm) mass contained 2.5 times more phosphorus than seston (< 150 µm) mass so that the zooplankton comprised 12.5 % of the total-P in total particulate matter in the open water, compared with only 4.5% of the total particulate C. The mean excretion rates of P by zooplankton varied narrowly between 1.5 and 1.8 µg P 1 d–1, which equalled between 14 and 28% d–1 of the P needed for phytoplankton production.The lack of response to restoration measures cannot be ascribed to one single factor. Apparently, the external P-loading is still not low enough and internal P-loading, though low, may be still high enough to sustain high seston levels. Intensive predation by bream is perhaps more important than food quality (high concentrations of filamentous cyanobacteria) in depressing the development of large-bodied zooplankton grazers, e.g. Daphnia. This may also contribute to resistance of the lake's ecosystem to respond to rehabilitation measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号