首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Information specificity can be important to animals in makingoptimal decisions. However, it is not always necessary to useevery level of specificity. We analyzed the response of thepredatory mite Phytoseiulus persimilis to plant-produced informationrelated to a nonprey herbivore. This predator is a specialistfeeding on spider mites in the genus Tetranychus. Caterpillarsof Spodoptera exigua cannot serve as prey. Plants respond toan infestation by herbivores with the emission of volatilesthat attract carnivorous enemies of the herbivores. Conspecific plants infested with different herbivore species can emit blendsthat are qualitatively identical, while differing in the ratiosof blend components. However, different plant species emitvolatile blends that differ qualitatively. We demonstratedthat the predator P. persimilis is attracted to volatiles frombean plants infested with S. exigua caterpillars, but thatthis attraction is affected by predator starvation and host-plantexperience. One-hour and 24-h starved predators were made to represent predators that just lost a prey patch versus predatorsthat have totally lost a prey patch. Predators reared on spidermites on bean were attracted to bean plants infested with caterpillarswhen starved for 1 h but not when starved for 24 h. Both predatorgroups were attracted to bean plants infested with prey (i.e.,spider mites). One-hour starved predators can use the odorto relocate the rewarding prey patch they just lost contactwith, and using a general olfactory representation of the blendis sufficient for relocation. In contrast, for 24-h starvedpredators, the perception of a plant's odor blend is unlikelyto represent the prey patch lost, and discriminating betweenan odor blend representing prey or nonprey will avoid investingtime in finding a nonprey herbivore. In contrast, predatorsthat had been reared on spider mites on cucumber and thus hadexperienced a qualitatively different odor blend were not attractedto volatiles from caterpillar-infested bean plants. They wereattracted to spider mite-infested bean plants, irrespectiveof starvation level. To cucumber-experienced predators, theperception of bean plant odor cannot represent the prey patch lost, but only a new prey patch. Being discriminative and onlyresponding to prey-infested plants is adaptive in this situation.Our results are discussed in the context of optimal informationprocessing.  相似文献   

2.
Lennart Persson 《Oecologia》1985,67(3):338-341
Summary The foraging efficiency of a visually feeding fish, perch (Perca fluviatilis) was studied on two prey species (Daphnia magna and Chaoborus obscuripus) presented either separately or combined. It is shown that when both prey species are present, the foraging efficiency of the predator is reduced. This is due to the predator's inability to simultaneously cope with prey species with different anti-predatory behaviour. In the mixed-meal experiment the predator captured both prey species in equal proportions in disagreement with optimal foraging models assuming that handling time and encounter rate for a prey species are independent of other prey species. The results are, however, in agreement with optimal foraging models assuming that handling time and encounter rate are influenced by short time learning.  相似文献   

3.
Feeding of three species of molluscivorous Conus, C. textile,C. bandanus and C. omaria, was studied in aquaria. Conus spp.are able to kill and remove from the shell prey larger thanthemselves. Also, Conus swallowed prey with weight up to halfthat of the predator. Estimates suggest that molluscivorousspecies of Conus are probably able to swallow prey with a shellvolume reaching 85% of that of the predator, depending on theshape of the prey's body. It is confirmed that the thinningof the inner shell walls in Conus is connected with the abilityto swallow voluminous prey. Digestion of prey occurs in boththe oesophagus and stomach. (Received 9 August 2006; accepted 4 January 2007)  相似文献   

4.
Spatial variation in habitat riskiness has a major influence on the predator–prey space race. However, the outcome of this race can be modulated if prey shares enemies with fellow prey (i.e., another prey species). Sharing of natural enemies may result in apparent competition, and its implications for prey space use remain poorly studied. Our objective was to test how prey species spend time among habitats that differ in riskiness, and how shared predation modulates the space use by prey species. We studied a one‐predator, two‐prey system in a coastal dune landscape in the Netherlands with the European hare (Lepus europaeus) and European rabbit (Oryctolagus cuniculus) as sympatric prey species and red fox (Vulpes vulpes) as their main predator. The fine‐scale space use by each species was quantified using camera traps. We quantified residence time as an index of space use. Hares and rabbits spent time differently among habitats that differ in riskiness. Space use by predators and habitat riskiness affected space use by hares more strongly than space use by rabbits. Residence time of hare was shorter in habitats in which the predator was efficient in searching or capturing prey species. However, hares spent more time in edge habitat when foxes were present, even though foxes are considered ambush predators. Shared predation affected the predator–prey space race for hares positively, and more strongly than the predator–prey space race for rabbits, which were not affected. Shared predation reversed the predator–prey space race between foxes and hares, whereas shared predation possibly also released a negative association and promoted a positive association between our two sympatric prey species. Habitat riskiness, species presence, and prey species’ escape mode and foraging mode (i.e., central‐place vs. noncentral‐place forager) affected the prey space race under shared predation.  相似文献   

5.
Theory predicts that a predator can promote coexistence amongcompeting prey, and so enhance prey diversity (the keystonepredation effect), by fostering dominance of slow-growing, consumption-resistantprey. In contrast, if the predator promotes dominance by fast-growingvulnerable prey, theory predicts that the predator is unlikelyto promote prey diversity. Theory is silent about keystone predationeffects when the predator does not cause a net change in thevulnerability of the prey assemblage. I present experimentalevidence that Daphnia can act as a keystone predator withoutcausing a net change in the grazing resistance of the phytoplanktonassemblage. No change in resistance was observed, despite strongDaphnia effects on the species composition of the phytoplankton.  相似文献   

6.
The foraging behavior of a predator species is thought to bethe cause of short-term apparent competition among those preyspecies that share the predator. Short-term apparent competitionis the negative indirect effect that one prey species has onanother prey species via its effects on predator foraging behavior.In theory, the density-dependent foraging behavior of granivorousrodents and their preference for certain seeds are capable of inducing short-term apparent competition among seed species.In this study, I examined the foraging behavior of two heteromyidrodent species (family Heteromyidae), Merriam's kangaroo rats(Dipodomys merriami) and little pocket mice (Perognathus longimembris).In one experiment I tested the preferences of both rodent speciesfor the seeds of eight plant species. Both rodent species exhibiteddistinct but variable preferences for some seeds and avoidanceof others. However, the differences in preference appearedto have only an occasional effect on the strength of the short-term apparent competition detected in a field experiment. In anotherexperiment, I found that captive individuals of both rodentspecies had approximately equal foraging effort (i.e., timespent foraging) in patches that contained a highly preferredseed type (Oryzopsis hymenoides) regardless of seed density and the presence of a less preferred seed type (Astragalus cicer)in the patches. The rodents also harvested a large proportionof O. hymenoides seeds regardless of initial seed density;this precluded a negative indirect effect of A. cicer on O.hymenoides. But there was a negative indirect effect of O.hymenoides on A. cicer caused by rodents having a lower foragingeffort in patches that only contained A. cicer seeds than inpatches that contained A. cicer and O. hymenoides seeds. Theindirect interaction between O. hymenoides and A. cicer thusrepresented a case of short-term apparent competition thatwas non-reciprocal. Most importantly, it was caused by theforaging behavior of the rodents.  相似文献   

7.
Predator versus prey: on aerial hunting and escape strategies in birds   总被引:5,自引:0,他引:5  
Predator and prey attack-escape performance is likely to bethe outcome of an evolutionary arms race. Predatory birds aretypically larger than their prey, suggesting different flightperformances. We analyze three idealized attack-escape situationsbetween predatory and prey birds: climbing flight escape, horizontalspeeding, and turning and escape by diving. Generally a smallerbird will outclimb a larger predator and hence outclimbing shouldbe a common escape strategy. However, some predators such asthe Eleonora's falcon (Falco elenorae) has a very high rateof climb for its size. Prey species with an equal or highercapacity to climb fast, such as the swift Apus apus, usuallyadopt climbing escape when attacked by Eleonora's falcons.To analyze the outcome of the turning gambit between predatorand prey we use a Howland diagram, where the relative lineartop speeds and minimum turning radii of prey and predator definethe escape and danger zones. Applied to the Eleonora's falconand some potential prey species, this analysis indicates thatthe falcon usually wins against the example prey species; thatis, the prey will be captured. Level maneuvering hunting isthe most common strategy seen in Eleonora's falcons. To avoidcapture via use of this strategy by a predator, the prey shouldbe able to initiate tight turns at high linear speed, whichis facilitated by a low wing loading (weight per unit of wingarea). High diving speed is favored by large size. If close enough to safe cover, a prey might still opt for a verticaldive to escape in spite of lower terminal diving speed thanthat of the predator. On the basis of aerodynamic considerationswe discuss escape flight strategies in birds in relation tomorphological adaptations.  相似文献   

8.
It is argued that alternate prey species in the diet of a food-limited generalist predator should reduce each other's equilibrial abundances, whether or not they directly compete. Such indirect, interspecific interactions are labeled apparent competition. Two examples are discussed in which an observed pattern of habitat segregation was at first interpreted as evidence for direct competition, but later interpreted as apparent competition resulting from shared predation. In order to study the consequences of predator-mediated apparent competition in isolation from other complicating factors, a model community is analyzed in which there is no direct interspecific competition among the prey. An explicit necessary condition for prey species coexistence is derived for the case of one predator feeding on many prey species. This model community has several interesting properties: (1) Prey species with high relative values for a parameter ra are “keystone” species in the community; (2) prey species can be excluded from the community by “diffuse” apparent competition; (3) large changes in the niche breadth of the predator need not correspond to large changes in predator density; (4) the prey trophic level as a whole is regulated by the predator, yet each of its constituent species is regulated by both the predator and available resources; (5) increased productivity may either increase, decrease, or leave unchanged the number of species in the community; (6) a decrease in density-independent mortality may decrease species diversity. These conclusions seem to be robust to changes in the prey growth equations and to the incorporation of predator satiation. By contrast, adding prey refugia or predator switching to the model weakens these conclusions. If the predator can be satiated or switched, the elements aij comprising the community matrix may have signs opposite the long-term effect of j upon i. The effect of natural selection upon prey species coexistence is discussed. Unless ri, Ki, and ai are tightly coupled, natural selection within prey species i will tend to decrease the equilibrial abundance of species j.  相似文献   

9.
We develop a model of predators foraging within a single patch,on prey that become temporarily immune to predation (depressed)after detecting a predator. Interference through prey depressionoccurs because the proportion of vulnerable prey (and henceintake rate) decreases as predator density increases. Predatorsin our model are not forced to move randomly within the patch,as is the case in other similar models, but can avoid areasof depressed prey and so preferentially forage over vulnerableprey. We compare the extent to which different avoidance rules(e.g., move more quickly over depressed prey or turn if approachingdepressed prey) influence the amount of time spent foragingover depressed and vulnerable prey, and how this influencesthe strength of interference. Although based on a different mechanism, our model produces two similar general predictionsto interference models based on direct interactions betweenpredators: the strength of interference increases with (1)increased competitor density and (2) decreased prey encounterrate. This suggests that there are underlying similarities in the nature of interference even when it arises through differentprocesses. Not surprisingly, avoidance of depressed prey cansubstantially reduce the strength of interference comparedwith random foraging. However, we identify the region of themodel's parameter space in which this reduction is particularlylarge and show that the only system for which suitable dataare available, redshank Tringa totanus feeding on Corophium volutator, falls within this region. The model shows that, byadjusting its search path to avoid areas of depressed prey,a predator can substantially reduce the amount of the interferenceit experiences and that this applies over a wide range of parameterspace, including the region occupied by a real system. Thissuggests that behavior-based interference models should consider predator search pattern if they are to accurately predict thestrength of the interference.  相似文献   

10.
The diel migration patterns of Mesocyclops edax and its preyin a small lake were followed in two studies separated by approximatelyone year. Gut contents of the predators were examined and selectivityindices calculated at each depth at 0100 h during 1980. Thethree principal zooplankton prey found in the guts of M. edaxwere Keratella, Kellicottia, and Bosmina. The predator and allthree major prey species exhibited unique and different dielvertical distribution and migration patterns. The complex natureof the spatio-temporal variation in prey density to which M.edax is exposed, demonstrates the dangers of using selectivityindices without knowledge of the distribution patterns of bothpredator and prey. An increase in vertebrate predation pressurefrom one year to the next is thought to be responsible for anincrease in the abundance of small zooplankton species, thedisappearance of two out of three of the large zooplankton species,and the onset of a pronounced nocturnal migration pattern inthe third large species. 1Present address: Biology Department, Williams Hall #31, LehighUniversity, Bethlehem, PA 18015, USA  相似文献   

11.
Food acquisition is an important modulator of animal behavior and habitat selection that can affect fitness. Optimal foraging theory predicts that predators should select habitat patches to maximize their foraging success and net energy gain, likely achieved by targeting areas with high prey availability. However, it is debated whether prey availability drives fine‐scale habitat selection for predators. We assessed whether an ambush predator, the timber rattlesnake (Crotalus horridus), exhibits optimal foraging site selection based on the spatial distribution and availability of prey. We used passive infrared camera trap detections of potential small mammal prey (Peromyscus spp., Tamias striatus, and Sciurus spp.) to generate variables of prey availability across the study area and used whether a snake was observed in a foraging location or not to model optimal foraging in timber rattlesnakes. Our models of small mammal spatial distributions broadly predicted that prey availability was greatest in mature deciduous forests, but T. striatus and Sciurus spp. exhibited greater spatial heterogeneity compared with Peromyscus spp. We found the spatial distribution of cumulative small mammal encounters (i.e., overall prey availability), rather than the distribution of any one species, to be highly predictive of snake foraging. Timber rattlesnakes appear to forage where the probability of encountering prey is greatest. Our study provides evidence for fine‐scale optimal foraging in a low‐energy, ambush predator and offers new insights into drivers of snake foraging and habitat selection.  相似文献   

12.
In a small temperate lake of the southern Andes, Bosmina longirostrisand Ceriodaphnia dubia coexist with the predaceous water miteLimnesia patagonica. Sampling of natural populations and laboratoryexperiments were carried out. The field population of Limnesiadid not show a numerical response to the density or biomassof its prey. Laboratory experiments showed that the water miterejected C.dubia adults and juveniles as prey, but consumedBosmina. The maximum predation rate was 40 prey predator–1day–1 and a linear relationship between predation rateand prey density was obtained (R2 = 66%). The contribution ofmortality due to predation and the predation risk are too lowto provoke a prey suppression. By means of computer modelling,the densities of predator necessary to explain half of the totalprey mortality were calculated. These densities were one ortwo orders of magnitude higher than those in the field. It isconcluded that Limnesia could really be a suppressor, but thepotential depends greatly on its density.  相似文献   

13.
Wolff  Jerry O. 《Behavioral ecology》2004,15(2):286-289
Predators use scent to locate their prey, and prey animals oftenalter their behavior in response to predation risk. I testedthe hypothesis that voles would decrease their frequency ofscent marking in response to predation risk. I conducted trialsin which prairie voles, Microtus ochrogaster, and woodland voles,M. pinetorum, were allowed to scent mark ceramic tiles placedin their runways in the field. The tiles were subjected to oneof three treatments: scented with odor from mink, Mustela vison(a rodent predator); rabbit, Oryctolagus cuniculus (a nonpredatormammal control); and no odor (control). No significant differenceswere found in the frequency of scent marking in response tothe three treatments for either species. To validate that volesdid not decrease their scent marking in response to predationrisk, I brought male prairie voles from the field site intothe laboratory and allowed them to scent mark white paper substratetreated with mink odor, rabbit odor, or no odor. No significantdifferences were found in the frequency of scent marks in responseto the three treatments. These results differ from what waspredicted based on laboratory studies with other species ofrodents that show avoidance, reproductive suppression, decreasedactivity, and reduced scent marking in response to odors ofpredators. Voles appear to scent mark different substrates andunder a wide variety of social and environmental situations,and this is not influenced by the presence of odor from a predator.  相似文献   

14.
Ecological theory suggests that prey size should increase with predator size, but this trend may be masked by other factors affecting prey selection, such as environmental constraints or specific prey preferences of predator species. Owls are an ideal case study for exploring how predator body size affects prey selection in the presence of other factors due to the ease of analyzing their diets from owl pellets and their widespread distributions, allowing interspecific comparisons between variable habitats. Here, we analyze various dimensions of prey resource selection among owls, including prey size, taxonomy (i.e., whether or not particular taxa are favored regardless of their size), and prey traits (movement type, social structure, activity pattern, and diet). We collected pellets of five sympatric owl species (Athene noctua, Tyto alba, Asio otus, Strix aluco, and Bubo bubo) from 78 sites across the Mediterranean Levant. Prey intake was compared between sites, with various environmental variables and owl species as predictors of abundance. Despite significant environmental impacts on prey intake, some key patterns emerge among owl species studied. Owls select prey by predator body size: Larger owls tend to feed on wider ranges of prey sizes, leading to higher means. In addition, guild members show both specialization and generalism in terms of prey taxa, sometimes in contrast with the expectations of the predator–prey body size hypothesis. Our results suggest that while predator body size is an important factor in prey selection, taxon specialization by predator species also has considerable impact.  相似文献   

15.
In situations of aggressive mimicry, predators adapt their colorto that of the substrate on which they sit for hunting, a behaviorthat is presumed to hide them from prey as well as from theirown predators. Females of few crab-spider species encountersuch situations when lying on flowers to ambush pollinators.To evaluate the efficiency of spider camouflage on flowers,we measured by spectroradiometry adult female Thomisus onustusand marguerite daisies, Leucanthemum vulgare. We compared chromaticcontrast (color used for short-range detection) of each pairof spider and flower to detection thresholds computed in thevisual systems of both Hymenopteran prey and passerine birdpredator. We also computed achromatic contrast (brightness)used for long-range detection. In both visual systems, eachindividual spider was efficiently matching the precise colorof the flower center on which it was hunting. Being significantlydarker than flowers, crab-spiders could in theory be detectedat long range by either predator or prey using achromatic contrast.However, long-range detection is unlikely, owing to small spidersize. Spiders also generated significant chromatic and achromaticcontrasts to both Hymenoptera and bird when moving on flowerperiphery. Our study is the first to identify which photoreceptorsof both prey and predator are involved in camouflage. The analysissuggests more research on bird predation and vision to determineto which extent bird predators effectively constrain spidercrypsis.  相似文献   

16.
SUMMARY.
  • 1 The ratio: number of predator species/number of prey species is reviewed using comprehensive faunal lists for a range of freshwater habitats in Britain and North America. Prey species are defined as detritivores, herbivores and fungivores; predators eat metazoan animals as the main component of their diet. Our data refer only to invertebrates.
  • 2 The numbers of predators and prey species are apparently very closely correlated in freshwater communities (r=0.84, In transformed data), with an average ratio of predators to prey of 0.36. The average ratio of predators to prey changes from 0.48 in small (species-poor) collections to 0.29 in large (species-rich) collections.
  • 3 We suggest that an approximately constant ratio of predators to prey may be generated by: (a) the number of predator species being a function of the number of broad classes or kinds of prey; and (b) the number of prey species being constrained by competition between prey for ‘enemy free space’, i.e. species that are too similar are unable to coexist with shared predators.
  相似文献   

17.
The common mummichog, Fundulus heteroclitus, functions as bothpredator and prey in the trophic structure of east coast tidalmarshes. Although mummichogs are generally considered importantto energy transformations within marshes, few studies have convincinglydemonstrated that predation by F. heteroclitus affects the abundanceof salt marsh benthic invertebrates. Thus far investigationsof this type have dealt only with the direct effects of adultmummichogs. The results of recent experiments have suggestedthat by controlling smaller predators, mummichogs may indirectlyhave a positive effect on the densities of some infaunal marshinvertebrates. Our current knowledge of larval and juvenilemummichogs in their natural habitat is minimal. Unlike the adults,which can utilize the intertidal zone only when it is flooded,the young remain on the marsh even at low tide, inhabiting shallowpuddles of residual tidal water that form between clumps ofvegetation and around fiddler crab (Uca sp.) burrows. The importanceof F. heteroclitus in salt marsh communities will remain incompletelyunderstood unless future studies consider the role of larvaland juvenile mummichogs. Although many species of fishes andwading birds feed on mummichogs, the blue crab (Callinectessapidus) is probably the major predator of adult F. heteroclitusin the intertidal salt marsh. Predation by adult mummichogsand xanthid crabs (e.g., Eurytium limosum) may contribute tothe high mortality of larval and juvenile Fundulus.  相似文献   

18.
Behavioral interactions between a cyclopoid copepod predator and its prey   总被引:4,自引:0,他引:4  
Behavioral observations on the predatory interactions betweenMesocyclops edax and several different types and sizes of preyrevealed that prey size alone was less important than otherspecific morphological and behavioral characteristics of theprey in deterring successful predation by the copepod. The behavioralresponses of Bosmina and Asplanchna to an attacking copepodwere passive and consisted of a simple retraction of vulnerableswimming appendages which made the prey more difficult to grasp.Daphnia and Diaphanosoma on the other hand exhibited very activeswimming escape responses. Tropocyclops usually avoided M. edaxby fleeing before the larger predator could detect them. Thehard carapaces of Daphnia, Bosmina and Keratella were effectiveat reducing ingestion following capture by M. edax. The resultsof these behavioral observations were supported by enclosureexperiments in which the predator was offered a choice betweentwo prey simultaneously. Cyclopoid copepods are capable of successfullyattacking, capturing and ingesting prey organisms several timestheir own body length. Although size alone may influence thepreference of cyclopoid copepods on large and small individualsof the same or similar prey species, it is not a dependabledeterminant of the preference of cyclopoids on multispecificprey assemblages. 1Present address: Department of Biology, Williams Hall No. 31,Lehigh University, Bethlehem, PA 18015, USA  相似文献   

19.
Adaptive responses to predation are generally studied assuming only one predator type exists, but most prey species are depredated by multiple types. When multiple types occur, the optimal antipredator response level may be determined solely by the probability of attack by the relevant predator: "specific responsiveness." Conversely, an increase in the probability of attack by one predator type might increase responsiveness to an alternative predator type: "general wariness." We formulate a mathematical model in which a prey animal perceives a cue providing information on the probability of two predator types being present. It can perform one of two evasive behaviors that vary in their suitability as a response to the "wrong" predator type. We show that general wariness is optimal when incorrect behavioral decisions have differential fitness costs. Counterintuitively, difficulty in discriminating between predator types does not favor general wariness. We predict that where responses to predator types are mutually exclusive (e.g., referential alarm-calling), specific responsiveness will occur; we suggest that prey generalize their defensive responses based on cue similarity due to an assumption of response utility; and we predict, with relevance to conservation, that habituation to human disturbance should generalize only to predators that elicit the same antipredator response as humans.  相似文献   

20.
Studies of food preference often measure the rate of consumptionof prey items by a predator; this confounds the factors determiningattractiveness and edibility, ignoring the fact that preferencesare probably resolved at the pre-ingestive stage of a consumer'sfeeding behaviour. In this paper, a novel technique has beendeveloped to measure the importance of chemical stimuli to feed,perceived by olfactory and gustatory means, as determinantsof the subsequent feeding behaviour of the generalist intertidalherbivore,Littorina littorea (L.). Cell-free extracts of a rangeof algae were presented simultaneously, impregnated in artificialcellulose-based substrates. Subsequent ranking of feeding preferencesreveals hierarchies which correspond with those establishedby other workers, using intact algae to feed L. littorea. Extractsof ephemeral early successional species (e.g. Ulva lactuca,Porphyra umbilicalis) generally provoke a more positive feedingresponse than perennial late successional species (e.g. Fucusvesiculosus, Asco-phyllum nodosum). Animals fed a preferredalga (Ulva lactuca) prior to preference trials displayed a reductionin the strength of preference relative to starved animals. Therewas no evidence of ‘switching’ of preference rankingsdue to satiation, however. These findings confirm the importanceof olfactory-and gustatory-mediated feeding behaviour as theprimary determinant of food preference in L. littorea. Theyare consistent with the hypothesis that the factors which determinethe attractiveness of a food type, such as chemical cues, arethe criteria by which consumers predict the value of that food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号